1
|
Holland I. Extrusion bioprinting: meeting the promise of human tissue biofabrication? PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:023001. [PMID: 39904058 PMCID: PMC11894458 DOI: 10.1088/2516-1091/adb254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.
Collapse
Affiliation(s)
- Ian Holland
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Deanery of Biomedical Science, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Strobel HA, Moss SM, Hoying JB. Isolated Fragments of Intact Microvessels: Tissue Vascularization, Modeling, and Therapeutics. Microcirculation 2024; 31:e12852. [PMID: 38619428 DOI: 10.1111/micc.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The microvasculature is integral to nearly every tissue in the body, providing not only perfusion to and from the tissue, but also homing sites for immune cells, cellular niches for tissue dynamics, and cooperative interactions with other tissue elements. As a microtissue itself, the microvasculature is a composite of multiple cell types exquisitely organized into structures (individual vessel segments and extensive vessel networks) capable of considerable dynamics and plasticity. Consequently, it has been challenging to include a functional microvasculature in assembled or fabricated tissues. Isolated fragments of intact microvessels, which retain the cellular composition and structures of native microvessels, are proving effective in a variety of vascularization applications including tissue in vitro disease modeling, vascular biology, mechanistic discovery, and tissue prevascularization in regenerative therapeutics and grafting. In this review, we will discuss the importance of recapitulating native tissue biology and the successful vascularization applications of isolated microvessels.
Collapse
Affiliation(s)
| | - Sarah M Moss
- Advanced Solutions Life Sciences, Manchester, USA
| | | |
Collapse
|
3
|
Vignes H, Smaida R, Conzatti G, Hua G, Benkirane-Jessel N. Custom-made meniscus biofabrication. Trends Biotechnol 2023; 41:1467-1470. [PMID: 37423883 DOI: 10.1016/j.tibtech.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Reconstructing the meniscus is not currently possible due to its intricate and heterogeneous structure. In this forum, we first discuss the shortcomings of current clinical strategies in meniscus repair. Then, we describe a new promising cell-based, ink-free 3D biofabrication technology to produce tailor-made large-scale functional menisci.
Collapse
Affiliation(s)
- Hélène Vignes
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Rana Smaida
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Guillaume Conzatti
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Guoqiang Hua
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France
| | - Nadia Benkirane-Jessel
- French National Institute of Health and Medical Research (INSERM), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg (Faculté de Médecine, Faculté de Chirurgie Dentaire, Faculté de Pharmacie), Strasbourg, France.
| |
Collapse
|
4
|
Vascularized Tissue Organoids. Bioengineering (Basel) 2023; 10:bioengineering10020124. [PMID: 36829618 PMCID: PMC9951914 DOI: 10.3390/bioengineering10020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tissue organoids hold enormous potential as tools for a variety of applications, including disease modeling and drug screening. To effectively mimic the native tissue environment, it is critical to integrate a microvasculature with the parenchyma and stroma. In addition to providing a means to physiologically perfuse the organoids, the microvasculature also contributes to the cellular dynamics of the tissue model via the cells of the perivascular niche, thereby further modulating tissue function. In this review, we discuss current and developing strategies for vascularizing organoids, consider tissue-specific vascularization approaches, discuss the importance of perfusion, and provide perspectives on the state of the field.
Collapse
|
5
|
Dairaghi J, Benito Alston C, Cadle R, Rogozea D, Solorio L, Barco CT, Moldovan NI. A dual osteoconductive-osteoprotective implantable device for vertical alveolar ridge augmentation. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1066501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Repair of large oral bone defects such as vertical alveolar ridge augmentation could benefit from the rapidly developing additive manufacturing technology used to create personalized osteoconductive devices made from porous tricalcium phosphate/hydroxyapatite (TCP/HA)-based bioceramics. These devices can be also used as hydrogel carriers to improve their osteogenic potential. However, the TCP/HA constructs are prone to brittle fracture, therefore their use in clinical situations is difficult. As a solution, we propose the protection of this osteoconductive multi-material (herein called “core”) with a shape-matched “cover” made from biocompatible poly-ɛ-caprolactone (PCL), which is a ductile, and thus more resistant polymeric material. In this report, we present a workflow starting from patient-specific medical scan in Digital Imaging and Communications in Medicine (DICOM) format files, up to the design and 3D printing of a hydrogel-loaded porous TCP/HA core and of its corresponding PCL cover. This cover could also facilitate the anchoring of the device to the patient's defect site via fixing screws. The large, linearly aligned pores in the TCP/HA bioceramic core, their sizes, and their filling with an alginate hydrogel were analyzed by micro-CT. Moreover, we created a finite element analysis (FEA) model of this dual-function device, which permits the simulation of its mechanical behavior in various anticipated clinical situations, as well as optimization before surgery. In conclusion, we designed and 3D-printed a novel, structurally complex multi-material osteoconductive-osteoprotective device with anticipated mechanical properties suitable for large-defect oral bone regeneration.
Collapse
|
6
|
Moss SM, Schilp J, Yaakov M, Cook M, Schuschke E, Hanke B, Strobel HA, Hoying JB. Point-of-use, automated fabrication of a 3D human liver model supplemented with human adipose microvessels. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:358-368. [PMID: 35772696 DOI: 10.1016/j.slasd.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Advanced in vitro tissue models better reflect healthy and disease tissue conditions in the body. However, complex tissue models are often manufactured using custom solutions and can be challenging to manufacture to scale. Here, we describe the automated fabrication of a cell-dense, thick (≤ 1 cm), human vascularized liver tissue model using a robotic biomanufacturing platform and off-the-shelf components to build, culture, and sample liver tissues hands-free without compromising tissue health or function. Fabrication of the tissue involved 3D bioprinting and incorporation of primary human hepatocytes, primary human non-parenchymal cells, and isolated fragments of intact human microvessels as vascular precursors. No differences were observed in select assessments of the liver tissues fabricated by hand or via automation. Furthermore, constant media exchange, via perfusion, improved urea output and elevated tissue metabolism. Interestingly, inclusion of adipose-derived human microvessels enhanced functional gene expression, including an enhanced response to a drug challenge. Our results describe the fabrication of a thick liver tissue environment useful for a variety of applications including liver disease modeling, infectious agent studies, and cancer investigations. We expect the automated fabrication of the vascularized liver tissue, at the point of use and using off-the-shelf platforms, eases fabrication of the complex model and increases its utility.
Collapse
Affiliation(s)
- Sarah M Moss
- Advanced Solutions Life Sciences, Manchester, NH 03101, United States
| | - Jillian Schilp
- Advanced Solutions Life Sciences, Manchester, NH 03101, United States
| | - Maya Yaakov
- Advanced Solutions Life Sciences, Manchester, NH 03101, United States
| | - Madison Cook
- Advanced Solutions Life Sciences, Manchester, NH 03101, United States
| | - Erik Schuschke
- Advanced Solutions Life Sciences, Louisville, KY 40223, United States
| | - Brandon Hanke
- Advanced Solutions Life Sciences, Louisville, KY 40223, United States
| | - Hannah A Strobel
- Advanced Solutions Life Sciences, Manchester, NH 03101, United States
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, NH 03101, United States.
| |
Collapse
|