1
|
Lin X, Fang Y, Mi X, Fu J, Chen S, Wu M, Jin N. Intrauterine injection of bioengineered hydrogel loaded exosomes derived from HUCM stem cells and spermidine prominently augments the pregnancy rate in thin endometrium rats. Regen Ther 2024; 27:63-72. [PMID: 38525237 PMCID: PMC10959642 DOI: 10.1016/j.reth.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
The endometrium is essential to the development of embryos and pregnancy. Human umbilical cord mesenchymal stem cells (HUCMSCs) are promising stem cell sources. HUCMSCs self-renew quickly and are painless to collect. Spermidine is an inherent polyamine needed for cellular and molecular processes that regulate physiology and function. HUCMSCs and spermidine (SN) may heal intrauterine adhesions. HUCMSCs were investigated for endometrial repair in rats. Composite hydrogels are used for medical exosome implantation, including their materials, properties, and embedding procedures. This study examined whether bioengineered hydrogel-loaded exosomes from HUCMSCs and spermidine prenatally improved conception rates in mice with poor endometrial lining. The data show that HUCMSC and SN provide a good experimental base for HUCMSC safety and intrauterine treatment in rats. Western blots, exosome structural analysis, pregnancy outcomes, flow cytometry, H&E staining, immunohistochemistry, and immunofluorescence labelling found and recovered the aberrant area. HUCM-derived stem cells and spermidine-derived exosomes biophysically match. These traits strengthen and prolong endometrial function. Pregnant rats with HUCMSC and SN had thinner endometrium. Hydrogel-incorporated HEHUCMSC and SN exosomes may improve IUI in rats with thin endometrium.
Collapse
Affiliation(s)
- Xiuying Lin
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Yanbian University, Yanbian 133002, China
- Center of Reproductive Medicine, Jilin Province People's Hospital, Changchun 130021, China
| | - Yanqiu Fang
- Center of Reproductive Medicine, Jilin Province People's Hospital, Changchun 130021, China
| | - Xuguang Mi
- Center of Reproductive Medicine, Jilin Province People's Hospital, Changchun 130021, China
| | - Jianhua Fu
- Center of Reproductive Medicine, Jilin Province People's Hospital, Changchun 130021, China
| | - Shiling Chen
- Center of Reproductive Medicine, Jilin Province People's Hospital, Changchun 130021, China
| | - Mengxue Wu
- Center of Reproductive Medicine, Jilin Province People's Hospital, Changchun 130021, China
| | - Ningyi Jin
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Yanbian University, Yanbian 133002, China
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| |
Collapse
|
2
|
Mukherjee C, Ghosh A, M T, Ravishankar K, Das AK, Selvaraj M, Chaudhuri S, Sarkar J. Self-Healable Hydrogels from Vegetable Oil: Preparation, Mechanism, and Applications. Biomacromolecules 2024; 25:7323-7333. [PMID: 39438451 DOI: 10.1021/acs.biomac.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hydrogels are indispensable for a variety of applications. Conventional biomaterial-based hydrogels, typically made from proteins or polysaccharides, often suffer from high costs, poor mechanical properties, and limited chemical functionality for modification. In this work, we present a novel hydrogel developed from modified castor oil, which is a renewable and cost-effective resource. Castor oil-based oligomer (CG) was synthesized using glycidyl methacrylate and triethylamine via ring-opening polymerization. The oligomer formed a gel only with Cu2+ ions among the various systematically studied metal ions. Comprehensive density functional theory calculations, atoms in molecules analysis, and steady and dynamic shear rheology were conducted to investigate the metal-binding sites and metal-oligomer interactions as well as the self-healing and viscoelastic properties of the oil-based hydrogels. The hydrogel exhibited 94% self-healing efficiency and performed as a recyclable rhodamine B dye adsorbent (73-90%). This innovative approach offers a novel, cost-effective, and sustainable alternative to traditional hydrogels, paving the way for advanced applications.
Collapse
Affiliation(s)
- Chandrapaul Mukherjee
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tamilarasi M
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Kartik Ravishankar
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Mariappan Selvaraj
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Chaudhuri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Organic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Jit Sarkar
- Polymer Science & Technology Unit, Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI) Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Xie X, Ao X, Xu R, Lv H, Tan S, Wu J, Zhao L, Wang Y. Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions. Int J Biol Macromol 2024; 270:132363. [PMID: 38754675 DOI: 10.1016/j.ijbiomac.2024.132363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
The combination of pharmacological and physical barrier therapy is a highly promising strategy for treating intrauterine adhesions (IUAs), but there lacks a suitable scaffold that integrates good injectability, proper mechanical stability and degradability, excellent biocompatibility, and non-toxic, non-rejection therapeutic agents. To address this, a novel injectable, degradable hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA), sodium alginate (SA), and l-serine, and loaded with platelet-rich plasma (PRP) (referred to as PSL-PRP) is developed for treating IUAs. l-Serine induces rapid gelation within 1 min and enhances the mechanical properties of the hydrogel, while degradable SA provides the hydrogel with strength, toughness, and appropriate degradation capabilities. As a result, the hydrogel exhibits an excellent scaffold for sustained release of growth factors in PRP and serves as an effective physical barrier. In vivo testing using a rat model of IUAs demonstrates that in situ injection of the PSL-PRP hydrogel significantly reduces fibrosis and promotes endometrial regeneration, ultimately leading to fertility restoration. The combined advantages make the PSL-PRP hydrogel very promising in IUAs therapy and in preventing adhesions in other internal tissue wounds.
Collapse
Affiliation(s)
- Xiangyan Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xue Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijuan Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyi Lv
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Shiqiao Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
5
|
Lisa Z, Richtarova A, Hlinecka K, Boudova B, Kuzel D, Fanta M, Mara M. 4DryField vs. hyalobarrier gel for preventing the recurrence of intrauterine adhesions - a pilot study. MINIM INVASIV THER 2024:1-7. [PMID: 38771725 DOI: 10.1080/13645706.2024.2351829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/08/2024] [Indexed: 05/23/2024]
Abstract
INTRODUCTION This was a single-center pilot study that sought to describe an innovative use of 4DryField® PH (premix) for preventing the recurrence of intrauterine adhesions (IUAs) after hysteroscopic adhesiolysis in patients with Asherman's syndrome (AS). MATERIAL AND METHODS Twenty-three patients with AS were enrolled and 20 were randomized (1:1 ratio) to intrauterine application of 4DryField® PH (n = 10) or Hyalobarrier® gel (n = 10) in a single-blind manner. We evaluated IUAs (American Fertility Society [AFS] score) during initial hysteroscopy and second-look hysteroscopy one month later. Patients completed a follow-up symptoms questionnaire three and reproductive outcomes questionnaire six months later. RESULTS The demographic and clinical characteristics, as well as severity of IUAs, were comparable in both groups. The mean initial AFS score was 9 and 8.5 in the 4DryField® PH and Hyalobarrier® gel groups, respectively (p = .476). There were no between-group differences in AFS progress (5.9 vs. 5.6, p = .675), need for secondary adhesiolysis (7 vs. 7 patients, p = 1), and the follow-up outcomes. CONCLUSION 4DryField® PH could be a promising antiadhesive agent for preventing the recurrence of IUAs, showing similar effectiveness and safety to Hyalobarrier® gel. Our findings warrant prospective validation in a larger clinical trial. CLINICAL TRIAL REGISTRY NUMBER ISRCTN15630617.
Collapse
Affiliation(s)
- Zdenka Lisa
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| | - Adela Richtarova
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| | - Kristyna Hlinecka
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| | - Barbora Boudova
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| | - David Kuzel
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| | - Michael Fanta
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| | - Michal Mara
- Department of Gynaecology, Obstetrics and Neonatology, First Faculty of Medicine, General University Hospital in Prague, Prague, The Czech Republic
| |
Collapse
|
6
|
Wang PH, Yang ST, Chang WH, Liu CH, Liu HH, Lee WL. Intrauterine adhesion. Taiwan J Obstet Gynecol 2024; 63:312-319. [PMID: 38802193 DOI: 10.1016/j.tjog.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
Intrauterine adhesions (IUA) occurred in the reproductive-age women are a big economic and health problem, resulting in severe impairment of social, psychological and physical function of the female genital organs. IUA-related symptoms or signs are varied greatly from free of symptoms or ambiguous symptoms (an incidental finding during the intervention) to ceased menstruation and loss of fecundability. The underlying pathophysiology is not completely understood, but intrauterine damage with broken basal layers of the endometrium formatting scar tissues or fibrosis in the endometrium with subsequently causing partial or complete occlusion of the uterine cavity may be a well-accepted hypothesis. Previously, infection is the most common cause to develop IUA, but now, intrauterine surgery may be a critical cause contributing to the majority of cases of IUA. In the current review, update information about the etiology, epidemiology, pathophysiology, sequelae and prevention of IUA will be renewed. We emphasize the importance of awareness of IUA, and primary prevention should be considered in the routine clinical practice if intrauterine surgery has been applied, based on uncertainty of ideal treatment for the established IUA and unpredictable outcomes after IUA treatment. So far, evidence supports that hyaluronic acid with/without other strategy is the most valuable and effective method to reduce the formation and re-formation of IUA as well as to achieve the best fertility outcome.
Collapse
Affiliation(s)
- Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Female Cancer Foundation, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Szu-Ting Yang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hsun Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Hao Liu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Hsien Liu
- Department of Medical Imaging and Intervention, Tucheng Hospital, New Taipei City, Taiwan
| | - Wen-Ling Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Wu Y, Gu X, Chen X, Cui Y, Jiang W, Liu B. Hydrogel: a new material for intravesical drug delivery after bladder cancer surgery. J Mater Chem B 2024; 12:2938-2949. [PMID: 38426380 DOI: 10.1039/d3tb02837b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The standard treatment for non-muscle invasive bladder cancer (NMIBC) is transurethral resection of bladder tumor (TURBT). However, this procedure may miss small lesions or incompletely remove them, resulting in cancer recurrence or progression. As a result, intravesical instillation of chemotherapy or immunotherapy drugs is often used as an adjunctive treatment after TURBT to prevent cancer recurrence. In the traditional method, drugs are instilled into the patient's bladder through a urinary catheter under sterile conditions. However, this treatment exposes the bladder mucosa to the drug directly, leading to potential side effects like chemical cystitis. Furthermore, this treatment has several limitations, including a short drug retention period, susceptibility to urine dilution, low drug permeability, lack of targeted effect, and limited long-term clinical efficacy. Hydrogel, a polymer material with a high-water content, possesses solid elasticity and liquid fluidity, making it compatible with tissues and environmentally friendly. It exhibits great potential in various applications. One emerging use of hydrogels is in intravesical instillation. By employing hydrogels, drug dilution is minimized, and drug absorption, retention, and persistence in the bladder are enhanced due to the mucus-adhesive and flotation properties of hydrogel materials. Furthermore, hydrogels can improve drug permeability and offer targeting capabilities. This article critically examines the current applications and future prospects of hydrogels in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Yalong Wu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China.
| | - Xinquan Gu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China.
| | - Xiaoxi Chen
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongliang Cui
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China.
| | - Wei Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Bin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China.
| |
Collapse
|
8
|
Luo X, Jia K, Xing J, Yi J. The utilization of nanotechnology in the female reproductive system and related disorders. Heliyon 2024; 10:e25477. [PMID: 38333849 PMCID: PMC10850912 DOI: 10.1016/j.heliyon.2024.e25477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The health of the reproductive system is intricately linked to female fertility and quality of life. There has been a growing prevalence of reproductive system disorders among women, particularly in younger age groups, resulting in significant adverse effects on their reproductive health. Consequently, there is an urgent need for effective treatment modalities. Nanotechnology, as an advanced discipline, provides innovative avenues for managing and treating diseases of the female reproductive system by enabling precise manipulation and regulation of biological molecules and cells. By utilizing nanodelivery systems, drugs can be administered with pinpoint accuracy, leading to reduced side effects and improved therapeutic efficacy. Moreover, nanomaterial imaging techniques enhance diagnostic precision and sensitivity, aiding in the assessment of disease severity and progression. Furthermore, the implementation of nanobiosensors facilitates early detection and prevention of ailments. This comprehensive review aims to summarize recent applications of nanotechnology in the treatment of female reproductive system diseases. The latest advancements in drug delivery, diagnosis, and treatment approaches will be discussed, with an emphasis on the potential of nanotechnology to improve treatment outcomes and overall quality of life.
Collapse
Affiliation(s)
- Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
9
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
10
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Xu B, Zhou M, Liu M, Wang Z, Duan J, Li W, Cui W, Zhang A. Bioactive Injectable and Self-Healing Hydrogel Via Cell-Free Fat Extract for Endometrial Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300481. [PMID: 37035992 DOI: 10.1002/smll.202300481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
The damaged endometrium and the formation of fibrosis are key barriers to pregnancy and further lead to infertility. However, how to promote endometrium repair is always a challenge. Here, a bioactive injectable and self-healing hydrogel is developed by physically combination of thiolated polyethylene (PEG), Cu2+ and cell-free fat extract (CEFFE, CF) for endometrial regeneration and fertility. By inheriting the advantages of various active proteins contained in CEFFE, it could induce the overall repair of endometrial microenvironment for intrauterine adhesion (IUA). In vitro, CF@Cu-PEG reduces endometrial cell apoptosis by more than 50%, and increases angiogenesis by 92.8%. In the IUA mouse, injection of CF@Cu-PEG significantly reduces the rate of uterine hydrometra and prevents the formation of endometrial fibrosis. Remarkably, CF@Cu-PEG contributes to the repair of endometrial microstructure, especially increases the number of endometrial pinopodes, significantly improves endometrial receptivity, and increases the pregnancy rate of IUA mice from 7.14% to 66.67%. In summary, through the physically combination of CEFFE and Cu-PEG, the construction of loaded bioactive injectable hydrogel not only inhibits the IUA, but also induces the self-repair of endometrial cells in situ and improves fertility, providing a new strategy for IUA repair in clinical application.
Collapse
Affiliation(s)
- Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
12
|
Peng L, Liang Y, Yue J, Li H, Deng A, Xie S, Tang XZ, Wang J, Mao Z. Dramatic improvement in the mechanical properties of polydopamine/polyacrylamide hydrogel mediated human amniotic membrane. RSC Adv 2023; 13:3635-3642. [PMID: 36756590 PMCID: PMC9875367 DOI: 10.1039/d2ra07622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Human amniotic membrane (hAM) is a promising material for tissue engineering due to several benefits, including desirable biocompatibility, stem cell source, antibacterial activity, etc. However, because of its low elasticity, the clinical application of hAM is severely restricted. To solve this issue, we employed polydopamine/polyacrylamide (PDA/PAM) hydrogels to toughen hAM. The test results indicated that the PDA/PAM hydrogel can enhance the toughness of hAM dramatically due to the formation of abundant chemical bonds and the strong mechanical properties of the hydrogel itself. Compared to pure hAM, the break elongation and tensile strength of PDA/PAM-toughened hAM rose by 154.15 and 492.31%, respectively. And most importantly, the fracture toughness was almost 15 times higher than untreated hAM. In addition, the cytotoxicity of the PDA/PAM-coated hAM was not detected due to the superior biocompatibility of the chemicals used in the study. Treating hAM with adhesive hydrogels to increase its mechanical characteristics will further promote the application of hAM as a tissue engineering material.
Collapse
Affiliation(s)
- Lin Peng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Yufei Liang
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Jianling Yue
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Hanmei Li
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Shun Xie
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Xiu-Zhi Tang
- Research Institute of Aerospace Technology, Central South UniversityChangsha410083China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University Changsha 410083 China
| | - Zenghui Mao
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| |
Collapse
|
13
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
14
|
Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, Asim MH, Nazir I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022; 14:pharmaceutics14091909. [PMID: 36145657 PMCID: PMC9501312 DOI: 10.3390/pharmaceutics14091909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder’s natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain 64141, United Arab Emirates
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| |
Collapse
|