1
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
2
|
Khameneh SC, Razi S, Lashanizadegan R, Akbari S, Sayaf M, Haghani K, Bakhtiyari S. MicroRNA-mediated metabolic regulation of immune cells in cancer: an updated review. Front Immunol 2024; 15:1424909. [PMID: 39007129 PMCID: PMC11239499 DOI: 10.3389/fimmu.2024.1424909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The study of immunometabolism, which examines how immune cells regulate their metabolism to maintain optimal performance, has become an important area of focus in cancer immunology. Recent advancements in this field have highlighted the intricate connection between metabolism and immune cell function, emphasizing the need for further research. MicroRNAs (miRNAs) have gained attention for their ability to post-transcriptionally regulate gene expression and impact various biological processes, including immune function and cancer progression. While the role of miRNAs in immunometabolism is still being explored, recent studies have demonstrated their significant influence on the metabolic activity of immune cells, such as macrophages, T cells, B cells, and dendritic cells, particularly in cancer contexts. Disrupted immune cell metabolism is a hallmark of cancer progression, and miRNAs have been linked to this process. Understanding the precise impact of miRNAs on immune cell metabolism in cancer is essential for the development of immunotherapeutic approaches. Targeting miRNAs may hold potential for creating groundbreaking cancer immunotherapies to reshape the tumor environment and improve treatment outcomes. In summary, the recognition of miRNAs as key regulators of immune cell metabolism across various cancers offers promising potential for refining cancer immunotherapies. Further investigation into how miRNAs affect immune cell metabolism could identify novel therapeutic targets and lead to the development of innovative cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sara Razi
- Vira Ideators of Modern Science, Tehran, Iran
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Masoud Sayaf
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Azad University Central Tehran Branch, Tehran, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Qiu S, Dai H, Wang Y, Lv Y, Yu B, Yao C. The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination. Front Cell Neurosci 2024; 18:1404463. [PMID: 38812792 PMCID: PMC11135050 DOI: 10.3389/fncel.2024.1404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause loss of sensory and motor function below the level of injury, posing a serious threat to human health and quality of life. One significant characteristic feature of pathological changes following injury in the nervous system is demyelination, which partially contributes to the long-term deficits in neural function after injury. The remyelination in the central nervous system (CNS) is mainly mediated by oligodendrocyte progenitor cells (OPCs). Numerous complex intracellular signaling and transcriptional factors regulate the differentiation process from OPCs to mature oligodendrocytes (OLs) and myelination. Studies have shown the importance of microRNA (miRNA) in regulating OPC functions. In this review, we focus on the demyelination and remyelination after SCI, and summarize the progress of miRNAs on OPC functions and remyelination, which might provide a potential therapeutic target for SCI treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
4
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
5
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Maharati A, Moghbeli M. Role of microRNAs in regulation of doxorubicin and paclitaxel responses in lung tumor cells. Cell Div 2023; 18:11. [PMID: 37480054 PMCID: PMC10362644 DOI: 10.1186/s13008-023-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Lung cancer as the leading cause of cancer related mortality is always one of the main global health challenges. Despite the recent progresses in therapeutic methods, the mortality rate is still significantly high among lung cancer patients. A wide range of therapeutic methods including chemotherapy, radiotherapy, and surgery are used to treat lung cancer. Doxorubicin (DOX) and Paclitaxel (TXL) are widely used as the first-line chemotherapeutic drugs in lung cancer. However, there is a significant high percentage of DOX/TXL resistance in lung cancer patients, which leads to tumor recurrence and metastasis. Considering, the side effects of these drugs in normal tissues, it is required to clarify the molecular mechanisms of DOX/TXL resistance to introduce the efficient prognostic and therapeutic markers in lung cancer. MicroRNAs (miRNAs) have key roles in regulation of different pathophysiological processes including cell division, apoptosis, migration, and drug resistance. MiRNA deregulations are widely associated with chemo resistance in various cancers. Therefore, considering the importance of miRNAs in chemotherapy response, in the present review, we discussed the role of miRNAs in regulation of DOX/TXL response in lung cancer patients. It has been reported that miRNAs mainly induced DOX/TXL sensitivity in lung tumor cells by the regulation of signaling pathways, autophagy, transcription factors, and apoptosis. This review can be an effective step in introducing miRNAs as the non-invasive prognostic markers to predict DOX/TXL response in lung cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Eyileten C, Skrobucha A, Starczyński M, Boszko M, Jarosz-Popek J, Fitas A, Filipiak KJ, Kochman J, Huczek Z, Rymuza B, Wilimski R, Kuśmierczyk M, Siller-Matula JM, Postula M, Gąsecka A. Expression of miR-223 to predict outcomes after transcatheter aortic valve implantation. Cardiol J 2022; 31:111-123. [PMID: 36200549 PMCID: PMC10919566 DOI: 10.5603/cj.a2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) is an established treatment for aortic stenosis (AS) in patients at increased surgical risk. Up to 29% of patients annually experience major adverse cardiac and cerebrovascular events (MACCE) after TAVI. MicroRNAs (miRNA) are currently widely investigated as novel cardiovascular biomarkers. The aim of this study was to determine the influence of TAVI on the expressions of selected miRNAs associated with platelet function (miR-125a-5p, miR-125b and miR-223), and evaluate the predictive value of these miRNAs for MACCE in 65 patients undergoing TAVI. METHODS Venous blood samples for miRNA expression analysis were collected 1 day before TAVI and at hospital discharge. The expression of miR-223, miR-125a-5p, miR-125b was evaluated in platelet-depleted plasma. RESULTS The expression of miR-223 and miR-125b increased after TAVI, compared to the measurement before (p = 0.020, p = 0.003, respectively). Among 63 patients discharged from the hospital, 18 patients experienced MACCE (29%) during the median 15 months of observation. Baseline low miR-223 expression was a predictor of MACCE in univariate Cox regression analysis (hazard ratio [HR]: 2.71, 95% confidence interval [CI]: 1.04-7.01; p = 0.041). After inclusion of covariates, age, gender (male), New York Heart Association class and diabetes into the multivariate Cox regression model, miR-223 did not reach statistical significance (HR: 2.56, 95% CI: 0.79-8.33; p = 0.118). CONCLUSIONS To conclude, miR-223 might improve risk stratification after TAVI. Further studies are required to confirm the clinical applicability of this promising biomarker.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Alicja Skrobucha
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Miłosz Starczyński
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Maria Boszko
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Janusz Kochman
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Zenon Huczek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Bartosz Rymuza
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Poland.
| | | | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| |
Collapse
|
8
|
Liang Z, He Y, Hu X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int J Mol Sci 2022; 23:ijms231810617. [PMID: 36142538 PMCID: PMC9501315 DOI: 10.3390/ijms231810617] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy have brought hope to cancer patients. With the prolongation of survival of cancer patients and increased clinical experience, cancer-therapy-induced cardiovascular toxicity has attracted attention. The adverse effects of cancer therapy that can lead to life-threatening or induce long-term morbidity require rational approaches to prevention and treatment, which requires deeper understanding of the molecular biology underpinning the disease. In addition to the drugs used widely for cardio-protection, traditional Chinese medicine (TCM) formulations are also efficacious and can be expected to achieve “personalized treatment” from multiple perspectives. Moreover, the increased prevalence of cancer in patients with cardiovascular disease has spurred the development of “reverse cardio-oncology”, which underscores the urgency of collaboration between cardiologists and oncologists. This review summarizes the mechanisms by which cancer therapy induces cardiovascular toxicity, the combination of antineoplastic and cardioprotective drugs, and recent advances in reverse cardio-oncology.
Collapse
|
9
|
Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy. Sci Rep 2022; 12:15030. [PMID: 36056063 PMCID: PMC9440113 DOI: 10.1038/s41598-022-19027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a condition of impaired ventricular remodeling and systolic diastole that is often complicated by arrhythmias and heart failure with a poor prognosis. This study attempted to identify autophagy-related genes (ARGs) with diagnostic biomarkers of DCM using machine learning and bioinformatics approaches. Differential analysis of whole gene microarray data of DCM from the Gene Expression Omnibus (GEO) database was performed using the NetworkAnalyst 3.0 platform. Differentially expressed genes (DEGs) matching (|log2FoldChange ≥ 0.8, p value < 0.05|) were obtained in the GSE4172 dataset by merging ARGs from the autophagy gene libraries, HADb and HAMdb, to obtain autophagy-related differentially expressed genes (AR-DEGs) in DCM. The correlation analysis of AR-DEGs and their visualization were performed using R language. Gene Ontology (GO) enrichment analysis and combined multi-database pathway analysis were served by the Enrichr online enrichment analysis platform. We used machine learning to screen the diagnostic biomarkers of DCM. The transcription factors gene regulatory network was constructed by the JASPAR database of the NetworkAnalyst 3.0 platform. We also used the drug Signatures database (DSigDB) drug database of the Enrichr platform to screen the gene target drugs for DCM. Finally, we used the DisGeNET database to analyze the comorbidities associated with DCM. In the present study, we identified 23 AR-DEGs of DCM. Eight (PLEKHF1, HSPG2, HSF1, TRIM65, DICER1, VDAC1, BAD, TFEB) molecular markers of DCM were obtained by two machine learning algorithms. Transcription factors gene regulatory network was established. Finally, 10 gene-targeted drugs and complications for DCM were identified.
Collapse
|
10
|
Xu Q, Xu JL, Chen WQ, Xu WX, Song YX, Tang WJ, Xu D, Jiang MP, Tang J. Roles and mechanisms of miR-195-5p in human solid cancers. Biomed Pharmacother 2022; 150:112885. [PMID: 35453003 DOI: 10.1016/j.biopha.2022.112885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer persists as a worldwide disease that contributes to high morbidity and mortality rates. As a class of non-coding RNA, microRNAs (miRNAs) are one kind of important regulators in cancer and frequently implicated in tumor development and progression. Emerging experiments have suggested that miRNA-195-5p (miR-195-5p) can regulate neoplastic processes in many pathways. For instance, miR-195-5p can not only regulate proliferation, migration and invasion of tumor cells but also promote tumor cell apoptosis. Furthermore, low expression of miR-195-5p could induce drug resistance. Our review focuses on the expression of miR-195-5p in various tumors and elucidates the related mechanisms of which miR-195-5p participates in tumor biology, as well as summarizes the roles of miR-195-5p in tumor progression. We believe that miR-195-5p might have potential utility as a novel diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Qi Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jia-Lin Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Quan Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yu-Xin Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Juan Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Di Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Meng-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
11
|
Vasileiou PVS, Siasos G, Gorgoulis VG. Molecular biomarkers in cardio-oncology: Where we stand and where we are heading. Bioessays 2022; 44:e2100234. [PMID: 35352831 DOI: 10.1002/bies.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Until recently, cardiotoxicity in the setting of a malignant disease was attributed solely to the detrimental effects of chemo- and/or radio-therapy to the heart. On this account, the focus was on the evaluation of well-established cardiac biomarkers for the early detection of myocardial damage. Currently, this view has been revised. Cardiotoxicity is not restricted to a single organ but instead affects the endothelium as a whole. Indeed, it has come into light that not only cancer therapy but also malignant cells per se can impair the cardiovascular system, through a paracrine and endocrine mode of action. Even more intriguingly, a clear interplay between molecular pathways involved in cancer and cardiovascular disease has become prevalent, suggesting a common nominator that governs the pathophysiology of these two entities. Taken together, our strategy in the quest of novel biomarkers in the emerging field of cardio-oncology should be critically reshaped.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
12
|
Stikbakke E, Wilsgaard T, Haugnes HS, Pedersen MI, Knutsen T, Støyten M, Giovannucci E, Eggen AE, Thune I, Richardsen E. Expression of miR-24-1-5p in Tumor Tissue Influences Prostate Cancer Recurrence: The PROCA- life Study. Cancers (Basel) 2022; 14:cancers14051142. [PMID: 35267449 PMCID: PMC8909269 DOI: 10.3390/cancers14051142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The role of miR-24-1-5p and its prognostic implications associated with prostate cancer are mainly unknown. In a population-based cohort, the Prostate Cancer Study throughout life (PROCA-life), all men had a general health examination at study entry and were followed between 1994 and 2016. Patients with available tissue samples after a prostatectomy with curative intent were identified (n = 189). The tissue expression of miR-24-1-5p in prostate cancer was examined by in situ hybridization (ISH) in tissue microarray (TMA) blocks by semi-quantitative scoring by two independent investigators. Multivariable Cox regression models were used to study the associations between miR-24-1-5p expression and prostate cancer recurrence. The prostate cancer patients had a median age of 65.0 years (range 47−75 years). The Cancer of the Prostate Risk Assessment Postsurgical Score, International Society of Urological Pathology grade group, and European Association of Urology Risk group were all significant prognostic factors for five-year recurrence-free survival (p < 0.001). Prostate cancer patients with a high miR-24-1-5p expression (≥1.57) in the tissue had a doubled risk of recurrence compared to patients with low expression (HR 1.99, 95% CI 1.13−3.51). Our study suggests that a high expression of miR-24-1-5p is associated with an increased risk of recurrence of prostate cancer after radical prostatectomy, which points to the potential diagnostic and therapeutic value of detecting miR-24-1-5p in prostate cancer cases.
Collapse
Affiliation(s)
- Einar Stikbakke
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Correspondence:
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (T.W.); (A.E.E.)
| | - Hege Sagstuen Haugnes
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Mona Irene Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (M.I.P.); (E.R.)
| | - Tore Knutsen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Urology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Martin Støyten
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Edward Giovannucci
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anne Elise Eggen
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (T.W.); (A.E.E.)
| | - Inger Thune
- Department of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (H.S.H.); (T.K.); (M.S.); (I.T.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Oncology, The Cancer Centre, Oslo University Hospital, 0424 Oslo, Norway
| | - Elin Richardsen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway; (M.I.P.); (E.R.)
- Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
13
|
The Study of Cerebrospinal Fluid microRNAs in Spinal Cord Injury and Neurodegenerative Diseases: Methodological Problems and Possible Solutions. Int J Mol Sci 2021; 23:ijms23010114. [PMID: 35008540 PMCID: PMC8744986 DOI: 10.3390/ijms23010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Despite extensive research on neurological disorders, unanswered questions remain regarding the molecular mechanisms underpinning the course of these diseases, and the search continues for effective biomarkers for early diagnosis, prognosis, or therapeutic intervention. These questions are especially acute in the study of spinal cord injury (SCI) and neurodegenerative diseases. It is believed that the changes in gene expression associated with processes triggered by neurological disorders are the result of post-transcriptional gene regulation. microRNAs (miRNAs) are key regulators of post-transcriptional gene expression and, as such, are often looked to in the search for effective biomarkers. We propose that cerebrospinal fluid (CSF) is potentially a source of biomarkers since it is in direct contact with the central nervous system and therefore may contain biomarkers indicating neurodegeneration or damage to the brain and spinal cord. However, since the abundance of miRNAs in CSF is low, their isolation and detection is technically difficult. In this review, we evaluate the findings of recent studies of CSF miRNAs as biomarkers of spinal cord injury (SCI) and neurodegenerative diseases. We also summarize the current knowledge concerning the methods of studying miRNA in CSF, including RNA isolation and normalization of the data, highlighting the caveats of these approaches and possible solutions.
Collapse
|
14
|
Wurtzel JGT, Lazar S, Sikder S, Cai KQ, Astsaturov I, Weyrich AS, Rowley JW, Goldfinger LE. Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS One 2021; 16:e0261633. [PMID: 34936674 PMCID: PMC8694476 DOI: 10.1371/journal.pone.0261633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the contributions of platelet microRNAs (miRNAs) to the rate of growth and regulation of gene expression in primary ectopic tumors using mouse models. We previously identified an inhibitory role for platelets in solid tumor growth, mediated by tumor infiltration of platelet microvesicles (microparticles) which are enriched in platelet-derived miRNAs. To investigate the specific roles of platelet miRNAs in tumor growth models, we implanted pancreatic ductal adenocarcinoma cells as a bolus into mice with megakaryocyte-/platelet-specific depletion of mature miRNAs. We observed an ~50% increase in the rate of growth of ectopic primary tumors in these mice compared to controls including at early stages, associated with reduced apoptosis in the tumors, in particular in tumor cells associated with platelet microvesicles-which were depleted of platelet-enriched miRNAs-demonstrating a specific role for platelet miRNAs in modulation of primary tumor growth. Differential expression RNA sequencing of tumor cells isolated from advanced primary tumors revealed a broad cohort of mRNAs modulated in the tumor cells as a function of host platelet miRNAs. Altered genes comprised 548 up-regulated transcripts and 43 down-regulated transcripts, mostly mRNAs altogether spanning a variety of growth signaling pathways-notably pathways related to epithelial-mesenchymal transition-in tumor cells from platelet miRNA-deleted mice compared with those from control mice. Tumors in platelet miRNA-depleted mice showed more sarcomatoid growth and more advanced tumor grade, indicating roles for host platelet miRNAs in tumor plasticity. We further validated increased protein expression of selected genes associated with increased cognate mRNAs in the tumors due to platelet miRNA depletion in the host animals, providing proof of principle of widespread effects of platelet miRNAs on tumor cell functional gene expression in primary tumors in vivo. Together, these data demonstrate that platelet-derived miRNAs modulate solid tumor growth in vivo by broad-spectrum restructuring of the tumor cell transcriptome.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sonali Sikder
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Kathy Q. Cai
- Cancer Biology Program and Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Igor Astsaturov
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Andrew S. Weyrich
- Molecular Medicine Program, Pathology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Jesse W. Rowley
- Molecular Medicine Program, Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Huang P, Wei S, Luo M, Tang Z, Lin Q, Wang X, Luo M, He Y, Wang C, Wei D, Xia C, Xu J. MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1594. [PMID: 34790800 PMCID: PMC8576692 DOI: 10.21037/atm-21-5149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Background Phosphodiesterase 4D (PDE4D) inhibitor is commonly used to treat depression, but side effects seriously decrease its efficacy. PDE4D was a downstream target mRNA of miR-139-5p. Therefore, we examined the effects of hippocampal miR-139-5p gain- and loss-of-function on depression-like behaviors, the expression level of PDE4D, and hippocampus neurogenesis. Methods Bioinformatic analyses were carried out to to screen differential genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay were used to confirm the relationship between miR-139-5p and PDE4D. MiR-139-5p mimics, miR-139-5p inhibitor, or miR-NC were used to explore the function of miR-139-5p in HT-22 cells. We further explored the role of miR-139-5p in vivo using AAV-injection. Elisa, western blotting, and fluorescence in situ hybridization (FISH) were used to detect the expression of miR-139-5p and PDE4D in CRC tissues. Results Here, we showed that PDE4D messenger RNA (mRNA) was a direct target of microRNA (miR)-139-5p, which was downregulated in a chronic ultra-mild stress (CUMS)-induced depression mouse model. Moreover, in experiments in vitro, miR-139-5p mimic repressed PDE4D expression in HT-22 cells, but promoted phosphorylated cyclic-AMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) expression. Interestingly, adeno-associated virus (AAV)-miR-139-5p downregulated susceptibility to stress-induced depression-like behaviors in mice. AAV-miR-139-5p suppressed PDE4D in mouse hippocampal cells, increasing expression level of cyclic adenosine monophosphate (cAMP), p-CREB, and BDNF, and stimulating mouse hippocampal neurogenesis. Conclusions Our findings suggested that miR-139-5p acted like an antidepressant by targeting PDE4D, thereby regulating the cAMP/protein kinase A (PKA)/CREB/BDNF pathway to improve depression.
Collapse
Affiliation(s)
- Peng Huang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuohong Tang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Qingmei Lin
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xing Wang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Mi Luo
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Yanjun He
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chuan Wang
- Department of Biliary Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Dezhan Wei
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chenglai Xia
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Ding H, Yao J, Xie H, Wang C, Chen J, Wei K, Ji Y, Liu L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front Physiol 2021; 12:709123. [PMID: 34658906 PMCID: PMC8514870 DOI: 10.3389/fphys.2021.709123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus, which is associated with fibrosis and microRNAs (miRs). This study estimated the mechanism of miR-195-5p in endothelial mesenchymal transition (EndMT) and myocardial fibrosis in DCM. After the establishment of DCM rat models, miR-195-5p was silenced by miR-195-5p antagomir. The cardiac function-related indexes diastolic left ventricular anterior wall (LVAW, d), systolic LVAW (d), diastolic left ventricular posterior wall (LVPW, d), systolic LVPW (d), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were measured and miR-195-5p expression in myocardial tissue was detected. Myocardial fibrosis, collagen deposition, and levels of fibrosis markers were detected. Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (HG) and miR-195-5p was silenced. The levels of fibrosis proteins, endothelial markers, fibrosis markers, EndMT markers, and transforming growth factor beta 1 (TGF-β1)/Smads pathway-related proteins were measured in HUVECs. The interaction between miR-195-5p and Smad7 was verified. In vivo, miR-195-5p was highly expressed in the myocardium of DCM rats. Diastolic and systolic LVAW, diastolic and systolic LVPW were increased and LVEF and FS were decreased. Inhibition of miR-195-5p reduced cardiac dysfunction, myocardial fibrosis, collagen deposition, and EndMT, promoted CD31 and VE-cadehrin expressions, and inhibited α-SMA and vimentin expressions. In vitro, HG-induced high expression of miR-195-5p and the expression changes of endothelial markers CD31, VE-cadehrin and fibrosis markers α-SMA and vimentin were consistent with those in vivo after silencing miR-195-5p. In mechanism, miR-195-5p downregulation blocked EndMT by inhibiting TGF-β1-smads pathway. Smad7 was the direct target of miR-195-5p and silencing miR-195-5p inhibited EndMT by promoting Smad7 expression. Collectively, silencing miR-195-5p inhibits TGF-β1-smads-snail pathway by targeting Smad7, thus inhibiting EndMT and alleviating myocardial fibrosis in DCM.
Collapse
Affiliation(s)
- Huaisheng Ding
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jianhui Yao
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Hongxiang Xie
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Chengyu Wang
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jing Chen
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Kaiyong Wei
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Yangyang Ji
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Lihong Liu
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| |
Collapse
|
17
|
Du M, Wang Z, Su G, Zhou Y, Luo C. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells (BMSC) Inhibit Apoptosis Factors Caspase-3 and Caspase-9 to Promote the Repair of Cardiomyocytes. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the effect of exosomes derived from bone marrow mesenchymal stem cells (MSCs) on cardiomyocytes by inhibiting the apoptotic factors Caspase-3 and Caspase-9. Cell purity was evaluated under a microscope and exosomes were obtained by ultracentrifugation from the culture
supernatant of BMSCs. Tunable resistive pulse sensing (TRPS) method analyzed the concentration distribution of exosomes particle size, and specific surface antigens were examined by flow cytometry. Exosomes were used to process cardiomyocytes to detect cardiomyocyte repair. After plasmid interference
technology, the effect of exosomes on caspase-3 and caspase-9 expression was detected by western blot. The activity of cardiomyocytes was analyzed by CCK-8. Exosomes can promote the viability of cardiomyocytes. The mRNA and protein levels of GLUT3 in cardiomyocytes were significantly increased.
Exosomes can inhibit cardiomyocyte apoptosis by down-regulating the expression of apoptosis-related proteins. Exosomes can improve the function and promote the repair of myocardium by inhibiting the expression of apoptotic factors Caspase-3 and Caspase-9.
Collapse
Affiliation(s)
- Meijiao Du
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Zhengmei Wang
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Geng Su
- Department of Medical Administration, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Yunxia Zhou
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Chuan Luo
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| |
Collapse
|
18
|
Ding YQ, Zhang YH, Lu J, Li B, Yu WJ, Yue ZB, Hu YH, Wang PX, Li JY, Cai SD, Ye JT, Liu PQ. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Acta Pharmacol Sin 2021; 42:1422-1436. [PMID: 33247214 PMCID: PMC8379271 DOI: 10.1038/s41401-020-00563-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice. We first found that SIRT3 deficiency exacerbated Ang II-induced cardiac hypertrophy, and resulted in the development of spontaneous heart failure. Since miRNAs play crucial roles in the pathogenesis of cardiac hypertrophy, we performed miRNA sequencing on myocardium tissues from Ang II-infused Sirt3-/- and wild type mice, and identified microRNA-214 (miR-214) was significantly up-regulated in Ang II-infused mice. Similar results were also obtained in Ang II-treated neonatal mouse cardiomyocytes (NMCMs). Using dual-luciferase reporter assay we demonstrated that SIRT3 was a direct target of miR-214. Overexpression of miR-214 in vitro and in vivo decreased the expression of SIRT3, which resulted in extensive mitochondrial damages, thereby facilitating the onset of hypertrophy. In contrast, knockdown of miR-214 counteracted Ang II-induced detrimental effects via restoring SIRT3, and ameliorated mitochondrial morphology and respiratory activity. Collectively, these results demonstrate that miR-214 participates in Ang II-induced cardiac hypertrophy by directly suppressing SIRT3, and subsequently leading to mitochondrial malfunction, suggesting the potential of miR-214 as a promising intervention target for antihypertrophic therapy.
Collapse
Affiliation(s)
- Yan-Qing Ding
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Hong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen-Jing Yu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhong-Bao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Huai Hu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan-Xia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Dong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pei-Qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
A Bioinformatics Investigation into the Pharmacological Mechanisms of Sodium-Glucose Co-transporter 2 Inhibitors in Diabetes Mellitus and Heart Failure Based on Network Pharmacology. Cardiovasc Drugs Ther 2021; 36:713-726. [PMID: 34028657 PMCID: PMC9270285 DOI: 10.1007/s10557-021-07186-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Diabetes mellitus (DM) is a major risk factor for the development of heart failure (HF). Sodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated consistent benefits in the reduction of hospitalization for HF in patients with DM. However, the pharmacological mechanism is not clear. To investigate the mechanisms of SGLT2 inhibitors in DM with HF, we performed target prediction and network analysis by a network pharmacology method. METHODS We selected targets of SGLT2 inhibitors and DM status with HF from databases and studies. The "Drug-Target" and "Drug-Target-Disease" networks were constructed using Cytoscape. Then the protein-protein interaction (PPI) was analyzed using the STRING database. Gene Ontology (GO) biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to investigate using the Bioconductor tool for analysis. RESULTS There were 125 effective targets between SGLT2 inhibitors and DM status with HF. Through further screening, 33 core targets were obtained, including SRC, MAPK1, NARS, MAPK3 and EGFR. It was predicted that the Rap1 signaling pathway, MAPK signaling pathway, EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications and other signaling pathways were involved in the treatment of DM with HF by SGLT2 inhibitors. CONCLUSION Our study elucidated the possible mechanisms of SGLT2 inhibitors from a systemic and holistic perspective based on pharmacological networks. The key targets and pathways will provide new insights for further research on the pharmacological mechanism of SGLT2 inhibitors in the treatment of DM with HF.
Collapse
|
20
|
He K, Han S, An L, Zhang J. Inhibition of MicroRNA-214 Alleviates Lung Injury and Inflammation via Increasing FGFR1 Expression in Ventilator-Induced Lung Injury. Lung 2021; 199:63-72. [PMID: 33389067 DOI: 10.1007/s00408-020-00415-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Ventilator-induced lung injury (VILI) is an additional inflammatory injury caused by mechanical ventilation (MV). This study aimed to determine the effects of microRNA-214 (miR-214) on VILI and its underlying mechanism of action. METHODS To develop a VILI mouse model, mice were subjected to MV. The expression of miR-214 was detected by qRT-PCR. The macrophages, fibroblasts, epithelial cells, and endothelial cells were isolated from lung tissues by fluorescence-activated cell sorting. The histopathological changes of lung, lung wet/dry weight (W/D) ratio, and myeloperoxidase (MPO) activity were used to evaluate the degree of lung injury. The levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to determine the interactions between miR-214 and FGFR1. Western blot was used to detect the protein expression of FGFR1, p-AKT, and p-PI3K. RESULTS The expression of miR-214 was increased in lung tissues and macrophages, fibroblasts, epithelial cells, and endothelial cells isolated from lung tissues in VILI mice. MiR-214 inhibition decreased the histopathological changes of lung, lung W/D ratio, MPO activity, and pro-inflammatory cytokines levels in BALF in VILI mice. FGFR1 was targeted by miR-214. The protein expression of FGFR1 was decreased in VILI mice. Ponatinib (FGFR1 inhibitor) reversed the suppressive effects of miR-214 inhibition on lung injury and inflammation of VILI mice. MiR-214 increased the activity of PI3K/AKT pathway by regulating FGFR1. CONCLUSIONS Inhibition of miR-214 attenuated lung injury and inflammation in VILI mice by increasing FGFR1 expression, providing a novel therapeutic target for VILI.
Collapse
Affiliation(s)
- Kun He
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Shuang Han
- Department of Anesthesiology, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Li An
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| | - Jin Zhang
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
21
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
22
|
El‐maadawy EA, Bakry RM, Moussa MM, El‐Naby S, Talaat RM. Alteration in miRNAs expression in paediatric acute lymphocyticleukaemia: Insight into patients' therapeutic response. Clin Exp Pharmacol Physiol 2021. [DOI: 10.1111/1440-1681.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Eman A. El‐maadawy
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City Sadat City Egypt
| | - Rania M. Bakry
- South Egypt Cancer Institute Assiut University Asyut Egypt
| | - Mohamed M. Moussa
- Clinical Hematology and Bone Marrow Transplantation Ain‐Shams University Cairo Egypt
| | - SobhyHasab El‐Naby
- Zoology Department Faculty of Science Menoufia University Menoufia Egypt
| | - Roba M. Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City Sadat City Egypt
| |
Collapse
|
23
|
Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Shao L. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR‑195. Mol Med Rep 2020; 22:4579-4588. [PMID: 33174051 PMCID: PMC7646841 DOI: 10.3892/mmr.2020.11558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
FGD5 antisense RNA 1 (FGD5-AS1) is a long non-coding RNA in acute myocardial infarction (AMI), which is primarily caused by myocardial ischemia-hypoxia. Retinoid acid receptor-related orphan receptor α (RORA) is a key protector in maintaining heart function. However, the roles of FGD5-AS1 and RORA in AMI have not previously been elucidated. The present study investigated the effect and mechanism of FGD5-AS1 and RORA in human cardiomyocyte AC16 cells under hypoxia. Reverse transcription-quantitative PCR and western blotting demonstrated that FGD5-AS1 and RORA were downregulated in the serum of patients with AMI and hypoxia-challenged AC16 cells. Functional experiments were performed via assays, flow cytometry and western blotting. In response to hypoxia, superoxide dismutase (SOD) activity was inhibited, but apoptosis rate and levels of reactive oxygen species and malondialdehyde were promoted in AC16 cells, accompanied by increased Bax and cleaved caspase-3 expression levels, and decreased SOD2 and glutathione peroxidase 1 expression levels. However, hypoxia-induced oxidative stress and apoptosis in AC16 cells were attenuated by ectopic expression of FGD5-AS1 or RORA. Moreover, silencing RORA counteracted the suppressive role of FGD5-AS1 overexpression in hypoxic injury. FGD5-AS1 controlled RORA expression levels via microRNA-195-5p (miR-195), as confirmed by dual-luciferase reporter and RNA pull-down assays. Consistently, miR-195 knockdown suppressed hypoxia-induced oxidative stress and apoptosis in AC16 cells, which was abrogated by downregulating FGD5-AS1 or RORA. In conclusion, FGD5-AS1 modulated hypoxic injury in human cardiomyocytes partially via the miR-195/RORA axis, suggesting FGD5-AS1 as a potential target in interfering with the progression of AMI.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu Wang
- Department of Gerontology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Zeng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Yang B, Li S, Zhu J, Huang S, Zhang A, Jia Z, Ding G, Zhang Y. miR-214 Protects Against Uric Acid-Induced Endothelial Cell Apoptosis. Front Med (Lausanne) 2020; 7:411. [PMID: 32850909 PMCID: PMC7419469 DOI: 10.3389/fmed.2020.00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Uric acid (UA) has been reported to be an important risk factor for cardiovascular diseases and can cause endothelial cell apoptosis through unclear mechanisms. Accumulating evidence has demonstrated that miR-214 plays a pivotal role in the pathogenesis of cardiovascular diseases. This study was to investigate the role of miR-214 in UA-induced endothelial cell apoptosis and the underlying mechanism. Material and methods: We enrolled 30 patients with hyperuricemia and 32 healthy controls and analyzed the levels of miR-214 in the serum of the participants. Then mouse aorta endothelial cells (MAECs) were treated with UA to induce cell apoptosis. An miR-214 mimic and a specific COX-2 inhibitor (NS398) were used to confirm the roles of these molecules in mediating UA-induced MAEC apoptosis or COX-2/PGE2 cascade activation. Results: A significant reduction in circulating miR-214 in the hyperuricemia patients compared with the healthy controls, along with a negative correlation with UA levels was observed. In the MAECs, UA treatment strikingly increased apoptosis as shown by the upregulation of BAX and cleaved Caspase-3 and the increased number of apoptotic cells. Interestingly, the expression of COX-2 was also upregulated at both the protein and mRNA levels during UA-induced cell apoptosis. In addition, an miR-214 mimic blocked UA-induced MAEC apoptosis, COX-2 induction and PGE2 secretion. The inhibition of COX-2 markedly ameliorated UA-induced apoptotic response and PGE2 production in MAECs. Luciferase activity assays further confirmed that COX-2 is a target gene of miR-214 in endothelial cells. Conclusion: We concluded that miR-214 could alleviate UA-induced MAEC apoptosis possibly by inhibiting the COX-2/PGE2 cascade.
Collapse
Affiliation(s)
- Bingyu Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shuzhen Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Samidurai A, Xi L, Salloum FN, Das A, Kukreja RC. PDE5 inhibitor sildenafil attenuates cardiac microRNA 214 upregulation and pro-apoptotic signaling after chronic alcohol ingestion in mice. Mol Cell Biochem 2020; 471:189-201. [PMID: 32535704 PMCID: PMC10801845 DOI: 10.1007/s11010-020-03779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Abusive chronic alcohol consumption can cause metabolic and functional derangements in the heart and is a risk factor for development of non-ischemic cardiomyopathy. microRNA 214 (miR-214) is a molecular sensor of stress signals that negatively impacts cell survival. Considering cardioprotective and microRNA modulatory effects of sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, we investigated the impact of chronic alcohol consumption on cardiac expression of miR-214 and its anti-apoptotic protein target, Bcl-2 and whether sildenafil attenuates such changes. Adult male FVB mice received unlimited access to either normal liquid diet (control), alcohol diet (35% daily calories intake), or alcohol + sildenafil (1 mg/kg/day, p.o.) for 14 weeks (n = 6-7/group). The alcohol-fed groups with or without sildenafil had increased total diet consumption and lower body weight as compared with controls. Echocardiography-assessed left ventricular function was unaltered by 14-week alcohol intake. Alcohol-fed group had 2.6-fold increase in miR-214 and significant decrease in Bcl-2 expression, along with enhanced phosphorylation of ERK1/2 and cleavage of PARP (marker of apoptotic DNA damage) in the heart. Co-ingestion with sildenafil blunted the alcohol-induced increase in miR-214, ERK1/2 phosphorylation, and maintained Bcl-2 and decreased PARP cleavage levels. In conclusion, chronic alcohol consumption triggers miR-214-mediated pro-apoptotic signaling in the heart, which was prevented by co-treatment with sildenafil. Thus, PDE5 inhibition may serve as a novel protective strategy against cardiac apoptosis due to chronic alcohol abuse.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA.
- Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
26
|
Chao C, Yeh H, Han D, Huang J, Huang K. Determinants of circulating microRNA-125b, a risk predictor of vascular calcification, among community-dwelling older adults . Clin Transl Med 2020; 10:e145. [PMID: 32898327 PMCID: PMC7423181 DOI: 10.1002/ctm2.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chia‐Ter Chao
- Nephrology DivisionDepartment of Internal MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Graduate Institute of ToxicologyNational Taiwan University College of MedicineTaipeiTaiwan
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
| | | | - Der‐Sheng Han
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Department of Rehabilitation and Physical MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
| | - Jenq‐Wen Huang
- Nephrology DivisionDepartment of Internal MedicineNational Taiwan University Hospital Yunlin BranchYunlin CountyTaiwan
| | - Kuo‐Chin Huang
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Department of Family MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Department of Family MedicineNational Taiwan University HospitalTaipeiTaiwan
- Department of Family MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
27
|
Xuan L, Zhu Y, Liu Y, Yang H, Wang S, Li Q, Yang C, Jiao L, Zhang Y, Yang B, Sun L. Up-regulation of miR-195 contributes to cardiac hypertrophy-induced arrhythmia by targeting calcium and potassium channels. J Cell Mol Med 2020; 24:7991-8005. [PMID: 32468736 PMCID: PMC7348160 DOI: 10.1111/jcmm.15431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Previous studies have confirmed that miR-195 expression is increased in cardiac hypertrophy, and the bioinformatics website predicted by Targetscan software shows that miR-195 can directly target CACNB1, KCNJ2 and KCND3 to regulate Cavβ1, Kir2.1 and Kv4.3 proteins expression. The purpose of this study is to confirm the role of miR-195 in arrhythmia caused by cardiac hypertrophy. The protein levels of Cavβ1, Kir2.1 and Kv4.3 in myocardium of HF mice were decreased. After miR-195 was overexpressed in neonatal mice cardiomyocytes, the expression of ANP, BNP and β-MHC was up-regulated, and miR-195 inhibitor reversed this phenomenon. Overexpression of miR-195 reduced the estimated cardiac function of EF% and FS% in wild-type (WT) mice. Transmission electron microscopy showed that the ultrastructure of cardiac tissues was damaged after miR-195 overexpression by lentivirus in mice. miR-195 overexpression increased the likelihood of arrhythmia induction and duration of arrhythmia in WT mice. Lenti-miR-195 inhibitor carried by lentivirus can reverse the decreased EF% and FS%, the increased incidence of arrhythmia and prolonged duration of arrhythmia induced by TAC in mice. After miR-195 treatment, the protein expressions of Cavβ1, Kir2.1 and Kv4.3 were decreased in mice. The results were consistent at animal and cellular levels, respectively. Luciferase assay results showed that miR-195 may directly target CACNB1, KCNJ2 and KCND3 to regulate the expression of Cavβ1, Kir2.1 and Kv4.3 proteins. MiR-195 is involved in arrhythmia caused by cardiac hypertrophy by inhibiting Cavβ1, Kir2.1 and Kv4.3.
Collapse
Affiliation(s)
- Lina Xuan
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanmeng Zhu
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunqi Liu
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hua Yang
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingqi Li
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Yang
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Shen Y, Zhang W, Lee L, Hong M, Lee M, Chou G, Yu L, Sui Y, Chou B. RETRACTED: Down-regulated microRNA-195-5p and up-regulated CXCR4 attenuates the heart function injury of heart failure mice via inactivating JAK/STAT pathway. Int Immunopharmacol 2020; 82:106225. [PMID: 32155465 DOI: 10.1016/j.intimp.2020.106225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the integrity of the images in Figure 6, which appear to contain suspected image duplications, as detailed here: https://pubpeer.com/publications/A31DE9EEF13ED6B88BCC86A9CAC8D9 and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Most of these image duplications involve either pasting portions of one image into another, or rotating/flipping the image. Numerous additional suspected image duplications were detected within Figures 2A and 7A. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yuhua Shen
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518106, Guangdong, China
| | - Wen Zhang
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518106, Guangdong, China
| | - Lijun Lee
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Mianming Hong
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Minfei Lee
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Guohui Chou
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Li Yu
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Yuqing Sui
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Baihua Chou
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China.
| |
Collapse
|
29
|
Affiliation(s)
| | - Javid Moslehi
- Division of Cardiovascular MedicineClinical PharmacologyCardio‐Oncology ProgramVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
- Division of OncologyVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| |
Collapse
|
30
|
Preliminary study of hsa-miR-626 change in the cerebrospinal fluid of Parkinson’s disease patients. J Clin Neurosci 2019; 70:198-201. [DOI: 10.1016/j.jocn.2019.08.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022]
|
31
|
Cheng W, Kao Y, Chao T, Lin Y, Chen S, Chen Y. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmia. Acta Physiol (Oxf) 2019; 227:e13322. [PMID: 31152485 DOI: 10.1111/apha.13322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023]
Abstract
AIM Atrial fibrillation (AF) is an important cause of morbidity and mortality in the modern world. Loss-of-function mutation in the zinc finger homeobox 3 gene (ZFHX3) is associated with increased risk of AF. MicroRNAs (miRNAs) participate in arrhythmogenesis, and thus miRNA modulators may be applicable as therapeutic modalities for AF. However, the altered miRNA profiles after ZFHX3 knockdown (KD) remain unclear. This study aimed to analyse the changes of miRNA expression in loss-of-function of ZFHX3 and the effect of miRNA modulation on atrial arrhythmias in this model. METHODS We performed small RNA deep sequencing on ZFHX3-KD and control HL-1 mouse atrial myocytes. The effect of miRNAs on ZFHX3-dependent atrial arrhythmia was evaluated through in vitro and in vivo assays in mice. RESULTS Among the differentially expressed miRNAs, 11 were down-regulated and 6 were up-regulated after ZFHX3 KD. Quantitative real-time PCR analysis confirmed that after ZFHX3 KD, miR-133a and miR-133b were significantly down-regulated, whereas miR-184 was the most significantly up-regulated. DIANA-miRPath analysis suggested that miR-133a/b down-regulation increases the targeted signalling of miR-133 (ie, adrenergic, Wnt/calcium and fibroblast growth factor receptor 1 signalling), which could contribute to pathological remodelling of cardiomyocytes. These results were confirmed through Western blotting. After transfection of miR-133a/b mimics in ZFHX3-KD cells, miR-133a/b levels increased, accompanied by the inhibition of their target signalling. Treatment with miR-133a/b mimics diminished ZFHX3 KD-induced atrial ectopy in mice. CONCLUSION ZFHX3-KD promotes distinct miRNA expressional changes in atrial myocytes. MiR-133a/b mimics may reverse signalling of ZFHX3 KD-mediated cardiac remodelling and atrial arrhythmia.
Collapse
Affiliation(s)
- Wan‐Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| | - Yu‐Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Department of Medical Education and Research, Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Tze‐Fan Chao
- Division of Cardiology and Cardiovascular Research Center Taipei Veterans General Hospital Taipei Taiwan
| | - Yung‐Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital Taipei Medical University Taipei Taiwan
| | - Shih‐Ann Chen
- Division of Cardiology and Cardiovascular Research Center Taipei Veterans General Hospital Taipei Taiwan
- School of Medicine National Yang‐Ming University Taipei Taiwan
| | - Yi‐Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research Center, Wan Fang Hospital Taipei Medical University Taipei Taiwan
| |
Collapse
|
32
|
Bioinformatics analysis of circulating miRNAs related to cancer following spinal cord injury. Biosci Rep 2019; 39:BSR20190989. [PMID: 31444279 PMCID: PMC6753324 DOI: 10.1042/bsr20190989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with spinal cord injury (SCI) have an increased risk of developing esophageal, bladder and hematologic malignancies compared with the normal population. In the present study, we aimed to identify, through in silico analysis, miRNAs and their target genes related to the three most frequent types of cancer in individuals with SCI. In a previous study, we reported a pattern of expression of miRNAs in 17 sedentary SCI males compared with 22 healthy able-bodied males by TaqMan OpenArray. This list of miRNAs deregulated in SCI patients was uploaded to miRWALK2.0 to predict the target genes and pathways of selected miRNAs. We used Cytoscape software to construct the network displaying the miRNAs and their gene targets. Among the down-regulated miRNAs in SCI, 21, 19 and 20 miRNAs were potentially associated with hematological, bladder and esophageal cancer, respectively, and three target genes (TP53, CCND1 and KRAS) were common to all three types of cancer. The three up-regulated miRNAs were potentially targeted by 18, 15 and 10 genes associated with all three types of cancer. Our current bioinformatics analysis suggests the potential influence of several miRNAs on the development of cancer in SCI. In general, these data may provide novel information regarding potential molecular mechanisms involved in the development of cancer among individuals with SCI. Further studies aiming at understanding how miRNAs contribute to the development of the major cancers that affect patients after SCI may help elucidate the role of these molecules in the pathophysiology of the disease.
Collapse
|
33
|
Omar HA, El‐Serafi AT, Hersi F, Arafa EA, Zaher DM, Madkour M, Arab HH, Tolba MF. Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J 2019; 286:3540-3557. [DOI: 10.1111/febs.15000] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/29/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hany A. Omar
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Pharmacology, Faculty of Pharmacy Beni‐Suef University Egypt
| | - Ahmed T. El‐Serafi
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - El‐Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences Ajman University UAE
| | - Dana M. Zaher
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Hany H. Arab
- Department of Biochemistry, Faculty of Pharmacy Cairo University Egypt
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy Taif University Saudi Arabia
| | - Mai F. Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University Cairo Egypt
- Biology Department, School of Sciences and Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
34
|
Forouzan Jahromi Z, Javeri A, Fakhr Taha M. Tumor suppressive effects of the pleiotropically acting miR-195 in colorectal cancer cells. EXCLI JOURNAL 2019; 18:243-252. [PMID: 31217787 PMCID: PMC6558512 DOI: 10.17179/excli2019-1166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022]
Abstract
Downregulation of miR-195 in colorectal cancer tissues has been reported in several studies. We investigated the impact exogenous induction of mature miR-195-5p on some malignant features of human colorectal cancer cells. Caco-2 and SW480 human colon cancer cell lines were transfected with a synthetic miR-195-5p mimic. Exogenous induction of miR-195-5p suppressed multiple mediators of invasion and angiogenesis in colorectal cancer cells and increased the apoptotic cell population in both cell lines. Also, migration of both cell lines was significantly compromised after miR-195 transfection. Our results are indicating a strong tumor suppressive role for miR-195 in human colorectal cancer.
Collapse
Affiliation(s)
- Zahra Forouzan Jahromi
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
35
|
Ford KL, Anwar M, Heys R, Ahmed EM, Caputo M, Game L, Reeves BC, Punjabi PP, Angelini GD, Petretto E, Emanueli C. Optimisation of laboratory methods for whole transcriptomic RNA analyses in human left ventricular biopsies and blood samples of clinical relevance. PLoS One 2019; 14:e0213685. [PMID: 30870483 PMCID: PMC6417664 DOI: 10.1371/journal.pone.0213685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
This study aimed to optimise techniques for whole transcriptome and small RNA analyses on clinical tissue samples from patients with cardiovascular disease. Clinical samples often represent a particular challenge to extracting RNA of sufficient quality for robust RNA sequencing analysis, and due to availability, it is rarely possible to optimise techniques on the samples themselves. Therefore, we have used equivalent samples from pigs undergoing cardiopulmonary bypass surgery to test different protocols for optimal RNA extraction, and then validated the protocols in human samples. Here we present an assessment of the quality and quantity of RNA obtained using a variety of commercially-available RNA extraction kits on both left ventricular biopsies and blood plasma. RNA extraction from these samples presents different difficulties; left ventricular biopsies are small and fibrous, while blood plasma has a low RNA content. We have validated our optimised extraction techniques on human clinical samples collected as part of the ARCADIA (Association of non-coding RNAs with Coronary Artery Disease and type 2 Diabetes) cohort study, resulting in successful whole transcriptome and small RNA sequencing of human left ventricular tissue.
Collapse
Affiliation(s)
- Kerrie L. Ford
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Maryam Anwar
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Rachael Heys
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Eltayeb Mohamed Ahmed
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Laurence Game
- MRC London Institute of Medical Sciences, The Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Barnaby C. Reeves
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Prakash P. Punjabi
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Gianni D. Angelini
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Enrico Petretto
- MRC London Institute of Medical Sciences, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Costanza Emanueli
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Cai H, Miao M, Wang Z. miR-214-3p promotes the proliferation, migration and invasion of osteosarcoma cells by targeting CADM1. Oncol Lett 2018; 16:2620-2628. [PMID: 30013657 PMCID: PMC6036594 DOI: 10.3892/ol.2018.8927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023] Open
Abstract
Although osteosarcoma (OS) is the most common type of primary bone tumor in adolescents and young adults, its mechanism remains unclear. A previous study by the authors demonstrated that miR-214-3p was upregulated in OS patients. Therefore, the present study aimed to investigate the effect and molecular mechanism of miR-214-3p in OS cells. OS cell lines, U2OS and MNNG/HOS Cl#5, were transiently transfected with miR-214-3p mimics, a control mimic, miR-214-3p inhibitors and a control inhibitor. Subsequent assays revealed that elevated miR-214-3p promoted the proliferative, migratory and invasive abilities of OS cells, while the opposite effects were observed in cells that were transfected with miR-214-3p inhibitors. The interaction between miR-214-3p and cell adhesion molecule 1 (CADM1) 3'untranslated region (UTR) was verified by a dual luciferase assay, which indicated that the relative luciferase activity was decreased in 293T cells that were co-transfected with miR-214-3p mimic and psiCHECK2-CADM1-3'UTR compared with cells that were co-transfected with psiCHECK2-CADM1-3'UTR and control mimic. The knockdown of CADM1 using small-interfering RNA enhanced the proliferative, migratory and invasive abilities of OS cells. Furthermore, downregulated CADM1 expression increased the expression of phosphorylated P44/42 mitogen activated kinase (MAPK). In conclusion, miR-214-3p was able to directly target CADM1 and decrease its expression. This resulted in the activation of the P44/42 MAPK signaling pathway, and thereby promoted the proliferation, migration and invasion of OS cells.
Collapse
Affiliation(s)
- Haiqing Cai
- Pediatric Orthopedic Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200031, P.R. China
| | - Mingyuan Miao
- Pediatric Orthopedic Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200031, P.R. China
| | - Zhigang Wang
- Pediatric Orthopedic Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
37
|
Song Z, Li W, Wang L, Jia N, Chen B. MicroRNA-454 inhibits tumor cell proliferation, migration and invasion by downregulating zinc finger E‑box‑binding homeobox 1 in gastric cancer. Mol Med Rep 2017; 16:9067-9073. [PMID: 29039488 DOI: 10.3892/mmr.2017.7758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/12/2017] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer‑associated mortality globally. Accumulating studies have identified the involvement of microRNAs in the initiation and progression of gastric cancer. This study was aimed to investigate the expression, functional roles of microRNA‑454 (miR‑454) and its direct target gene in gastric cancer. According to the results, the expression level of miR‑454 was demonstrated to be reduced in gastric cancer tissues and cell lines compared with corresponding distant non‑tumor gastric tissues and human immortalized gastric epithelial, respectively. miR‑454 mimic transfection led to inhibition of gastric cancer cells proliferation, migration and invasion in vitro. Bioinformatic analysis predicated that zinc finger E‑box‑binding homeobox 1 (ZEB1) is a potential target gene of miR‑454. Luciferase reporter assays revealed that miR‑454 directly targeted the 3'UTR of ZEB1. miR‑454 overexpression significantly decreased the ZEB1 mRNA and protein expression levels. ZEB1 knockdown could mimic the tumor suppressive roles induced by miR‑454 overexpression on gastric cancer cell proliferation, migration and invasion. In conclusion, the present study suggested that miR‑454 under expression may be involved in gastric cancer initiation and progression, by promoting proliferation, migration and invasion by directly targeting ZEB1. miR‑454/ZEB1‑based targeted therapy may be a potential strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhe Song
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Wei Li
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Liang Wang
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Nan Jia
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Baosheng Chen
- Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
38
|
Lu C, Xie Z, Peng Q. MiRNA-107 enhances chemosensitivity to paclitaxel by targeting antiapoptotic factor Bcl-w in non small cell lung cancer. Am J Cancer Res 2017; 7:1863-1873. [PMID: 28979809 PMCID: PMC5622221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023] Open
Abstract
The aim of this study is to elucidate whether and how miR-107 participates in the modulation of paclitaxel sensitivity in non small cell lung cancer (NSCLC). By qRT-PCR, we found that miR-107 is significantly down-regulated in paclitaxel-resistant A549/Taxol cells compared with corresponding paclitaxel-sensitive counterparts. Overexpression of miR-107 suppresses paclitaxel resistance of A549/Taxol cells through directly inhibiting Bcl-w. Overexpression of miR-107 promotes apoptosis and inhibits proliferation and mobility of A549/Taxol cells under treatment with paclitaxel in vitro. Moreover, miR-107 inhibits in vivo paclitaxel resistance in xenograft model. MiR-107/Bcl-w axis regulates paclitaxel chemoresistance through PI3K-Akt pathway. Our results suggest that up-regulation of miR-107 resensitizes paclitaxel-resistant NSCLC cells by targeting Bcl-w, which reveals a potential mechanism of miR-107 in reversing drug resistance.
Collapse
Affiliation(s)
- Chaojing Lu
- Department of Thoracic Surgery, Changhai HospitalShanghai, China
| | - Zhibing Xie
- Department of Respiratory Medicine, Xiaogan Central Hospital, Wuhan University of Science and TechnologyXiaogan, China
| | - Qingzhen Peng
- Department of Respiratory Medicine, Xiaogan Central Hospital, Wuhan University of Science and TechnologyXiaogan, China
| |
Collapse
|
39
|
Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol 2017; 816:138-145. [PMID: 28842125 DOI: 10.1016/j.ejphar.2017.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death throughout the world. The increase in new patients every year leads to a demand for the identification of valid and novel prognostic and diagnostic biomarkers for the prevention and treatment of cardiovascular diseases. MicroRNAs (miRNAs) are critical endogenous small noncoding RNAs that negatively modulate gene expression by regulating its translation. miRNAs are implicated in most physiological processes of the heart and in the pathological progression of cardiovascular diseases. miR-214 is a deregulated miRNA in many pathological conditions, and it contributes to the pathogenesis of multiple human disorders, including cancer and cardiovascular diseases. miR-214 has dual functions in different cardiac pathological circumstances. However, it is considered as a promising marker in the prognosis, diagnosis and treatment of cardiovascular diseases. In this review, we discuss the role of miR-214 in various cardiac disease conditions, including ischaemic heart diseases, cardiac hypertrophy, pulmonary arterial hypertension (PAH), angiogenesis following vascular injury and heart failure.
Collapse
Affiliation(s)
- Yanfang Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
40
|
Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 2017; 130:567-580. [PMID: 28500171 DOI: 10.1182/blood-2016-11-751099] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.
Collapse
|
41
|
Gao Y, Feng B, Lu L, Han S, Chu X, Chen L, Wang R. MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. Oncotarget 2017; 8:60624-60639. [PMID: 28947999 PMCID: PMC5601167 DOI: 10.18632/oncotarget.17364] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
E2F transcription factor 3 (E2F3) is oncogenic in tumorigenesis. Alterations in E2F3 functions correspond with poor prognosis in various cancers, underscoring their status for the clinical cancer phenotype. Latest reports discovered intricate networks between microRNAs (miRNAs) and E2F3 in regulating the balance of these events, including proliferation, apoptosis, metastasis, as well as drug resistance. miRNAs are non-coding small RNAs which negatively regulate gene expressions post-transcriptionally mainly through 3′-UTR binding of target mRNAs. Increasing evidence shows that E2F3 can be activated/inhibited by numerous miRNAs whose dysregulation has been implicated in malignancy. In turn, miRNAs themselves can be transcriptionally regulated by E2F3, thus forming a negative feedback loop. These findings add a new challenging layer of complexity to E2F3 network. Current understanding of the reciprocal link between E2F3 and miRNAs in human cancers were summarized, which could help to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
42
|
McCaskill JL, Ressel S, Alber A, Redford J, Power UF, Schwarze J, Dutia BM, Buck AH. Broad-Spectrum Inhibition of Respiratory Virus Infection by MicroRNA Mimics Targeting p38 MAPK Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624201 PMCID: PMC5415959 DOI: 10.1016/j.omtn.2017.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of antiviral therapeutics target conserved viral proteins, however, this approach confers selective pressure on the virus and increases the probability of antiviral drug resistance. An alternative therapeutic strategy is to target the host-encoded factors that are required for virus infection, thus minimizing the opportunity for viral mutations that escape drug activity. MicroRNAs (miRNAs) are small noncoding RNAs that play diverse roles in normal and disease biology, and they generally operate through the post-transcriptional regulation of mRNA targets. We have previously identified cellular miRNAs that have antiviral activity against a broad range of herpesvirus infections, and here we extend the antiviral profile of a number of these miRNAs against influenza and respiratory syncytial virus. From these screening experiments, we identified broad-spectrum antiviral miRNAs that caused >75% viral suppression in all strains tested, and we examined their mechanism of action using reverse-phase protein array analysis. Targets of lead candidates, miR-124, miR-24, and miR-744, were identified within the p38 mitogen-activated protein kinase (MAPK) signaling pathway, and this work identified MAPK-activated protein kinase 2 as a broad-spectrum antiviral target required for both influenza and respiratory syncytial virus (RSV) infection.
Collapse
Affiliation(s)
- Jana L McCaskill
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah Ressel
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andreas Alber
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Jane Redford
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ultan F Power
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Jürgen Schwarze
- MRC-Centre for Inflammation Research, University of Edinburgh, The Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
43
|
Cao W, Shi P, Ge JJ. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc Disord 2017; 17:88. [PMID: 28335740 PMCID: PMC5364650 DOI: 10.1186/s12872-017-0520-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cardiac fibrosis play a key role in the atrial fibrillation pathogenesis but the underlying potential molecular mechanism is still understood. However, potential mechanisms for miR-21 upregulation and its role in cardiac fibrosis remain unclear. The controls cell proliferation and processes fundamental to disease progression. Methods In this study, immunohistochemistry, real-time RT-PCR, cell transfection, cell cycle, cell proliferation and Western blot were used, respectively. Results Here we have been demonstrated that the tumor suppressor cell adhesion molecule 1 (CADM1) is the potential target of miR-21. Our study revealed that miR-21 regulation of CADM1 expression, which was decreased in cardiac fibroblasts and fibrosis tissue. The cardiac fibroblasts transfected with miR-21 mimic promoted miR-21 overexpression enhanced STAT3 expression and decreased CADM1 expression. Nevertheless, the cardiac fibroblasts transfected with miR-21 inhibitor obtained the opposite expression result. Furthermore, downexpression of miR-21 suppressed cardiac fibroblast proliferation. Conclusions These results suggested that miR-21 overexpression promotes cardiac fibrosis via STAT3 signaling pathway by decrease CADM1 expression, indicating miR-21 as an important signaling molecule for cardiac fibrotic remodeling and AF.
Collapse
Affiliation(s)
- Wei Cao
- Department of Cardiology, The first Hospital of Anhui Medical University, Hefei, 230031, China.,Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Peng Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jian-Jun Ge
- Department of Cardiology, The first Hospital of Anhui Medical University, Hefei, 230031, China. .,Department of Cardiology, The first Hospital of Anhui Medical University, Ji-Xi Road, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
44
|
Therapeutics Targeting FGF Signaling Network in Human Diseases. Trends Pharmacol Sci 2016; 37:1081-1096. [DOI: 10.1016/j.tips.2016.10.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
|
45
|
Zhang X, Xu J, Jiang T, Liu G, Wang D, Lu Y. MicroRNA-195 suppresses colorectal cancer cells proliferation via targeting FGF2 and regulating Wnt/β-catenin pathway. Am J Cancer Res 2016; 6:2631-2640. [PMID: 27904776 PMCID: PMC5126278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent cancer with high mortality worldwide. This study was aimed to explore the functional effects of microRNA-195 (miR-195) on CRC cells and the underling mechanism involved. quantitative PCR (qPCR) was performed to monitor the expression of miR-195 in CRC tissues and cell lines. SW480 and SW620 cells were transfected with either miR-195 mimic or antisense oligonucleotides (ASO) of miR-195. Then cell viability, cell cycle and the expressions of CyclinB1, CyclinD1 and Cyclin-Dependent Kinase 2 (CDK2) were respectively detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide (MTT), flow cytometry, qPCR and Western blot. A target of miR-195 was predicted and verified in vitro by using TargetScan and microRNA database, Dual-Luciferase reporter assay, qPCR and Western blot. Further, the functions of the target on cell viability and cell cycle were detected by transfection with its expression vector. Moreover, the expressions of Wnt/β-catenin pathway proteins were detected by qPCR and Western blot. Results show that MiR-195 was decreased during CRC, and miR-195 overexpression inhibited cell viability, arrested cells in G2/M phase, and down-regulated CyclinB1, CyclinD1 and CDK2 (P < 0.05 or P < 0.01). Fibroblast growth factor 2 (FGF2) was a direct target of miR-195 and alleviated the inhibitive effects of miR-195 on cell viability and cell cycle progression (P < 0.05 or P < 0.01). Further, miR-195 specifically regulated Wnt/β-catenin pathway proteins (P < 0.01). All these findings suggest that miR-195 suppressed CRC cells proliferation via targeting FGF2 and blocking Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266555, China
| | - Ji Xu
- Air Force AM Evaluation and Training Center of QingdaoQingdao 266071, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao UniversityQingdao 266555, China
| | - Guangwei Liu
- Department of Outpatient, The Affiliated Hospital of Qingdao UniversityQingdao 266555, China
| | - Dongsheng Wang
- Department of General Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266555, China
| | - Yun Lu
- Department of General Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266555, China
| |
Collapse
|
46
|
Batistela MS, Josviak ND, Sulzbach CD, de Souza RLR. An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer's and Parkinson's Diseases. Int J Neurosci 2016; 127:547-558. [PMID: 27381850 DOI: 10.1080/00207454.2016.1209754] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circulating cell-free microRNAs (miRNAs) are stable in many biological fluids and their expression profiles can suffer changes under different physiological and pathological conditions. In the last few years, miRNAs have been proposed as putative noninvasive biomarkers in diagnosis, prognosis and response to treatment for several diseases, including neurodegenerative disorders as Alzheimer's disease (AD) and Parkinson's disease (PD). Cognitive and/or motor impairments are usually considered for establishing clinical diagnosis, and at this stage, the majority of the neurons may already be lost making difficult attempts of novel therapies. In this review, we intend to survey the circulating cell-free miRNAs found as dysregulated in cerebrospinal fluid, serum and plasma samples in AD and PD patients, and show how those miRNAs can be useful for early and differential diagnosis. Beyond that, we highlighted the miRNAs that are possibly related to common molecular mechanisms in the neurodegeneration process, as well those miRNAs related to specific disease pathways.
Collapse
|
47
|
ZHANG XIAOWEN, TAO TAO, LIU CHUNHUI, GUAN HAN, HUANG YEQING, XU BIN, CHEN MING. Downregulation of miR-195 promotes prostate cancer progression by targeting HMGA1. Oncol Rep 2016; 36:376-82. [DOI: 10.3892/or.2016.4797] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
|
48
|
Parafioriti A, Bason C, Armiraglio E, Calciano L, Daolio PA, Berardocco M, Di Bernardo A, Colosimo A, Luksch R, Berardi AC. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue. Int J Mol Sci 2016; 17:ijms17050656. [PMID: 27144561 PMCID: PMC4881482 DOI: 10.3390/ijms17050656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism responsible for Ewing’s Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.
Collapse
Affiliation(s)
- Antonina Parafioriti
- Unità Operativa Complessa (U.O.C.) Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy.
| | - Caterina Bason
- Dipartimento di Medicina, Sezione di Medicina Interna B, Università di Verona, Verona 37134, Italy.
| | - Elisabetta Armiraglio
- Unità Operativa Complessa (U.O.C.) Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy.
| | - Lucia Calciano
- Dipartimento di Sanità Pubblica e Medicina di Comunità, Sezione di Epidemiologia e Statistica Medica, Università di Verona, Verona 37134, Italy.
| | - Primo Andrea Daolio
- Unità Operativa Complessa (U.O.C.) Chirurgia Ortopedica Oncologica, Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy.
| | - Martina Berardocco
- Unità Operativa Complessa (U.O.C.) Immunoematologia-Medicina Trasfusionale e Laboratorio di Ematologia, Laboratorio di Ricerca "Cellule Staminali" Azienda Unità Sanitaria Locale (AUSL)-Ospedale Santo Spirito, Pescara 65125, Italy.
| | - Andrea Di Bernardo
- Unità Operativa Complessa (U.O.C.) Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy.
| | - Alessia Colosimo
- Facoltà di Medicina Veterinaria, Università di Teramo, Teramo 64100, Italy.
| | - Roberto Luksch
- Dipartimento di Oncologia Pediatrica, Fondazione-Istituto di Ricovero e Cura a Carattere Scientifico-(IRCCS) Istituto Nazionale dei Tumori, Milano 20133, Italy.
| | - Anna C Berardi
- Unità Operativa Complessa (U.O.C.) Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy.
- Unità Operativa Complessa (U.O.C.) Immunoematologia-Medicina Trasfusionale e Laboratorio di Ematologia, Laboratorio di Ricerca "Cellule Staminali" Azienda Unità Sanitaria Locale (AUSL)-Ospedale Santo Spirito, Pescara 65125, Italy.
| |
Collapse
|
49
|
Jin M, Wu Y, Wang J, Chen J, Huang Y, Rao J, Feng C. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling. Biochem Biophys Res Commun 2016; 474:76-82. [PMID: 27103442 DOI: 10.1016/j.bbrc.2016.04.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 01/14/2023]
Abstract
Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study, we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation.
Collapse
Affiliation(s)
- Min Jin
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009, China.
| | - Yutao Wu
- School of Medicine, Zhejiang University, 288# Yuhangtang Rd, Hangzhou, Zhejiang, 310003, China
| | - Jing Wang
- School of Medicine, Zhejiang University, 288# Yuhangtang Rd, Hangzhou, Zhejiang, 310003, China
| | - Jian Chen
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009, China
| | - Yiting Huang
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009, China
| | - Jinpeng Rao
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009, China
| | - Chun Feng
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
50
|
Cai X, Janku F, Zhan Q, Fan JB. Accessing Genetic Information with Liquid Biopsies. Trends Genet 2016; 31:564-575. [PMID: 26450339 DOI: 10.1016/j.tig.2015.06.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
Abstract
Recent scientific advances in understanding circulating tumor cells, cell-free DNA/RNA, and exosomes in blood have laid a solid foundation for the development of routine molecular 'liquid biopsies'. This approach provides non-invasive access to genetic information--somatic mutations, epigenetic changes, and differential expression--about the physiological conditions of our body and diseases. It opens a valuable avenue for future genetic studies and human disease diagnosis, including prenatal and neurodegenerative disease diagnosis, as well as for cancer screening and monitoring. With the rapid development of highly sensitive and accurate technologies such as next-generation sequencing, molecular 'liquid biopsies' will quickly become a central piece in the future of precision medicine.
Collapse
Affiliation(s)
- Xuyu Cai
- Oncology, Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Filip Janku
- The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Jian-Bing Fan
- Oncology, Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA.
| |
Collapse
|