1
|
Pan C, Zhaxi Y, Li H, Guan F, Pan J, Wa D, Song T, Zhao W. Effects of microbiota-testis interactions on the reproductive health of male ruminants: A review. Reprod Domest Anim 2024; 59:e14704. [PMID: 39126408 DOI: 10.1111/rda.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Ruminants are one of the world's economically important species, and their reproductive health is critical to the economic development of the livestock industry. In recent years, research on the relationship between microbiota and reproductive health has received much attention. Microbiota disruption affects the developmental health of the testes and epididymis, the male reproductive organs of the host, which in turn is related to sperm quality. Maintaining a stable microbiota protects the host from pathogens and increases breeding performance, which in turn promotes the economic development of animal husbandry. In addition, the effects and mechanisms of microbiota on reproduction were further explored. These findings support new approaches to improving and managing reproductive health in ruminants through the microbiota and facilitate further systematic exploration of microbiota-mediated reproductive impacts.
Collapse
Affiliation(s)
- Cheng Pan
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yangzong Zhaxi
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Haiyan Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Feng Guan
- School of Life Sciences, China Jiliang University, Hangzhou, China
| | - Junru Pan
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Da Wa
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Wangsheng Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
2
|
Sulc A, Czétány P, Máté G, Balló A, Semjén D, Szántó Á, Márk L. MALDI Imaging Mass Spectrometry Reveals Lipid Alterations in Physiological and Sertoli Cell-Only Syndrome Human Testicular Tissue Sections. Int J Mol Sci 2024; 25:8358. [PMID: 39125928 PMCID: PMC11313448 DOI: 10.3390/ijms25158358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Azoospermia, the absence of sperm cells in semen, affects around 15% of infertile males. Sertoli cell-only syndrome (SCOS) is the most common pathological lesion in the background of non-obstructive azoospermia and is characterised by the complete absence of germinal epithelium, with Sertoli cells exclusively present in the seminiferous tubules. Studies have shown a correlation between successful spermatogenesis and male fertility with lipid composition of spermatozoa, semen, seminal plasma or testis. The aim of this research was to discover the correlation between the Johnsen scoring system and phospholipid expressions in testicular cryosections of SCOS patients. MALDI imaging mass spectrometry is used to determine spatial distributions of molecular species, such as phospholipids. Phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingomyelins (SMs) are the most abundant phospholipids in mammalian cells and testis. SMs, the structural components of plasma membranes, are crucial for spermatogenesis and sperm function. Plasmalogens, are unique PCs in testis with strong antioxidative properties. This study, using imaging mass spectrometry, demonstrates the local distribution of phospholipids, particularly SMs, PCs, plasmalogens and PEs in human testicular samples with SCOS for the first time. This study found a strong relationship between the Johnsen scoring system and phospholipid expression levels in human testicular tissues. Future findings could enable routine diagnostic techniques during microTESE procedures for successful sperm extraction.
Collapse
Affiliation(s)
- Alexandra Sulc
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
| | - Péter Czétány
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Gábor Máté
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - András Balló
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Dávid Semjén
- Institute of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Imaging Centre for Life and Material Sciences, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE, Human Reproduction Research Group, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Paoli F, Cristofaro M, Roselli G, Sasso R, Musmeci S, Barbieri F, Sciandra C, Vanoni V, Menegotti L, Roversi PF, Anfora G, Mercati D, Dallai R. Ultrastructure of the Spermiogenesis in Halyomorpha halys (Hemiptera: Pentatomidae): X-Irradiation and New Insights on the Centriolar Region Organization. INSECTS 2024; 15:505. [PMID: 39057238 PMCID: PMC11276701 DOI: 10.3390/insects15070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Halyomorpha halys (Heteroptera: Pentatomidae) is an insect pest native to Asia that has spread over the last two decades to most of the North America, parts of South America, Europe and North Africa. Its impact is significant as it can feed on more than 300 host plants, rendering affected fruits and vegetable crops unsellable or of lower quality. Various chemical and biological methods have been used to control this pest, with varying degrees of success. The sterile insect technique (SIT) is a pest control method involving the sterilization of insects via ionizing radiation and their subsequent mass release into the field. In the present contribution, the spermiogenesis of H. halys was studied from an ultrastructural point of view in both irradiated and non-irradiated adult males. In both cases, we observed ultrastructural characteristics typical of hemipteran sperm cells: bridges connecting the mitochondrial derivatives and the axonemal microtubules, the absence of accessory bodies, and the presence of two or three crystalline inclusions within the mitochondrial derivatives, an acrosome composed of tightly packed tubules, and an atypical, plaque-shaped microtubular organizing center (MTOC) in the centriolar region. Moreover, in the same region, we seldom observed the presence of two centrioles in the spermatids, one of which disappeared at a later stage of maturation. This feature is a novelty for insect spermiogenesis. The cysts of irradiated adults were not all uniformly affected by the radiation. However, irradiated cysts sometimes exhibited a general disorganization of sperm arrangement, incomplete divisions of sperm cells resulting in multiple copies of the same organelle within the same cell, failure to reabsorb the cytoplasm, and the lack of axonemes. Finally, rod-shaped viruses or virus-like particles were observed in vasa deferentia independently of irradiation.
Collapse
Affiliation(s)
- Francesco Paoli
- CREA Research Centre for Plant Protecion and Certification, Via di Lanciola 12/a, 50125 Firenze, Italy; (F.P.); (F.B.); (C.S.)
| | - Massimo Cristofaro
- Biotechnology and Biological Control Agency (BBCA), Via A. Signorelli 105, 00123 Roma, Italy; (M.C.); (G.R.)
| | - Gerardo Roselli
- Biotechnology and Biological Control Agency (BBCA), Via A. Signorelli 105, 00123 Roma, Italy; (M.C.); (G.R.)
- Center Agricolture Food Enviroment, University of Trento, Via Edmund Mach 1, 38098 Trento, Italy;
| | - Raffaele Sasso
- SSPT-BIOTEC Laboratory, Italian National Agency for New Technologies, C.R. Casaccia, Via Anguillarese 301, 00123 Roma, Italy; (R.S.); (S.M.)
| | - Sergio Musmeci
- SSPT-BIOTEC Laboratory, Italian National Agency for New Technologies, C.R. Casaccia, Via Anguillarese 301, 00123 Roma, Italy; (R.S.); (S.M.)
| | - Francesco Barbieri
- CREA Research Centre for Plant Protecion and Certification, Via di Lanciola 12/a, 50125 Firenze, Italy; (F.P.); (F.B.); (C.S.)
| | - Chiara Sciandra
- CREA Research Centre for Plant Protecion and Certification, Via di Lanciola 12/a, 50125 Firenze, Italy; (F.P.); (F.B.); (C.S.)
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Valentina Vanoni
- Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (V.V.); (L.M.)
| | - Loris Menegotti
- Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (V.V.); (L.M.)
| | - Pio Federico Roversi
- National Reference Institute for Plant Protection, Via Bertero 22, 00156 Roma, Italy;
| | - Gianfranco Anfora
- Center Agricolture Food Enviroment, University of Trento, Via Edmund Mach 1, 38098 Trento, Italy;
| | - David Mercati
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
4
|
Hoque M, Li FQ, Weber WD, Chen JJ, Kim EN, Kuo PL, Visconti PE, Takemaru KI. The Cby3/ciBAR1 complex positions the annulus along the sperm flagellum during spermiogenesis. J Cell Biol 2024; 223:e202307147. [PMID: 38197861 PMCID: PMC10783431 DOI: 10.1083/jcb.202307147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Proper compartmentalization of the sperm flagellum is essential for fertility. The annulus is a septin-based ring that demarcates the midpiece (MP) and the principal piece (PP). It is assembled at the flagellar base, migrates caudally, and halts upon arriving at the PP. However, the mechanisms governing annulus positioning remain unknown. We report that a Chibby3 (Cby3)/Cby1-interacting BAR domain-containing 1 (ciBAR1) complex is required for this process. Ablation of either gene in mice results in male fertility defects, caused by kinked sperm flagella with the annulus mispositioned in the PP. Cby3 and ciBAR1 interact and colocalize to the annulus near the curved membrane invagination at the flagellar pocket. In the absence of Cby3, periannular membranes appear to be deformed, allowing the annulus to migrate over the fibrous sheath into the PP. Collectively, our results suggest that the Cby3/ciBAR1 complex regulates local membrane properties to position the annulus at the MP/PP junction.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - William David Weber
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Jie Chen
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Turner KA, Achinger L, Kong D, Kluczynski DF, Fishman EL, Phillips A, Saltzman B, Loncarek J, Harstine BR, Avidor-Reiss T. Abnormal centriolar biomarker ratios correlate with unexplained bull artificial insemination subfertility: a pilot study. Sci Rep 2023; 13:18338. [PMID: 37884598 PMCID: PMC10603076 DOI: 10.1038/s41598-023-45162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The mechanisms underlying male infertility are poorly understood. Most mammalian spermatozoa have two centrioles: the typical barrel-shaped proximal centriole (PC) and the atypical fan-like distal centriole (DC) connected to the axoneme (Ax). These structures are essential for fertility. However, the relationship between centriole quality and subfertility (reduced fertility) is not well established. Here, we tested the hypothesis that assessing sperm centriole quality can identify cattle subfertility. By comparing sperm from 25 fertile and 6 subfertile bulls, all with normal semen analyses, we found that unexplained subfertility and lower sire conception rates (pregnancy rate from artificial insemination in cattle) correlate with abnormal centriolar biomarker distribution. Fluorescence-based Ratiometric Analysis of Sperm Centrioles (FRAC) found only four fertile bulls (4/25, 16%) had positive FRAC tests (having one or more mean FRAC ratios outside of the distribution range in a group's high-quality sperm population), whereas all of the subfertile bulls (6/6, 100%) had positive FRAC tests (P = 0.00008). The most sensitive biomarker was acetylated tubulin, which had a novel labeling pattern between the DC and Ax. These data suggest that FRAC and acetylated tubulin labeling can identify bull subfertility that remains undetected by current methods and may provide insight into a novel mechanism of subfertility.
Collapse
Affiliation(s)
- Katerina A Turner
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Luke Achinger
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD, USA
| | - Derek F Kluczynski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Emily Lillian Fishman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Audrey Phillips
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Barbara Saltzman
- Department of Population Health, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
6
|
Moretti E, Noto D, Corsaro R, Collodel G. Focus on centrin in normal and altered human spermatozoa. Syst Biol Reprod Med 2023; 69:175-187. [PMID: 36892570 DOI: 10.1080/19396368.2023.2181115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
This review provides details on the role of centrin in human spermatozoa and in various forms of male infertility. Centrin is a calcium (Ca2+)-binding phosphoprotein that is located in the centrioles - which are typical structures of the sperm connecting piece and play a key role in centrosome dynamics during sperm morphogenesis - as well as in zygotes and early embryos during spindle assembly. In humans, three different centrin genes encoding three isoforms have been discovered. Centrin 1, the only one expressed in spermatozoa, seems to be lost inside the oocyte after fertilization. The sperm connecting piece is characterized by the presence of numerous proteins including centrin, that deserves particular attention because, in humans, it is enriched during maturation of the centrioles. In normal sperm, centrin 1 is visible as two distinct spots in the head-tail junction; however, in some defective spermatozoa, centrin 1 distribution is altered. Centrin has been studied in humans and animal models. Its mutations may lead to several structural alterations, such as serious defects in the connective piece and, subsequently, fertilization failure or incomplete embryonic development. However, the effects of these abnormalities on male fertility have not been fully studied. Because the presence and the function of centrin in the sperm connecting piece appears important for reproductive success, additional studies are needed to bring medical benefits in resolving some cases of idiopathic infertility.
Collapse
Affiliation(s)
- Elena Moretti
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Corsaro
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giulia Collodel
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Surendran S, Prasannan P, Jeyaram Y, Palanivel V, Pandian A, Ramasubbu R. Knowledge on ethnogynaecology of Indian Tribes- a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115880. [PMID: 36368564 DOI: 10.1016/j.jep.2022.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnogynaecology is an emerging branch of science dealing with the treatment of gynaecological ailments by tribals, local healers, and traditional practitioners. The ethnogynaecological importance of medicinal plants in India is a fertile area to conduct more scientific studies to evaluate their potentialities, to isolate bioactive compounds, and thereby to develop drugs for the common gynaecological health-related issues faced by women everywhere. OBJECTIVES The Indigenous medical knowledge systems of India have not been properly documented with special reference to ethnogynaecology. This review aims to document the knowledge of ethnogynaecology among tribals, villagers, and local people inhabiting different parts of India and the bioactive compounds responsible for the action. This review provides a vast record of medicinal plants and their parts used, types of formulations, dosage, and ethno-gynaecological usage. MATERIALS AND METHODS The detailed investigation of ethnobotanical and ethnogynaecological-related literature published between 1985 and 2021 by different scientific tools such as journals, books, and current electronic databases like Springer Link, SciFinder, Google Scholar, Web of Science, Wiley, ACS, Science Direct and Pubmed have been considered for the present study. The study included 300 articles published between 1985 and 2021 by scientific search using various standard databases. The tribals, vaidyas, traditional practitioners, indigenous medical healers, and local people of different regions in India have recognized the importance of ethnogynaecological uses of plants. The study on ethnogynaecology is limited to a few common but significant gynaecological issues including abortion, contraception, infertility, menstruation, leucorrhoea, and obstetrics. The phytocompound compounds isolated from various parts of the plants and responsibility for the gynaecological action were documented. RESULTS The major ethnogynaecological disorders recorded by various studies are leucorrhoea, abortion, contraceptives, infertility and related issues, and obstetrics including the irregular physiological process of menstruation. The ethnogynaecological and ethnobotanical information has been recorded from almost all the states of India; the highest number of records on ethnogynaecology was reported from the state of Madhya Pradesh. The most explored tribal populations to record ethnogynaecological knowledge belong to the following tribes: Bhil, Munda, Irula, Kani, Malayali, Meena, Paliyar, Muthuvar, Oraon, Narikuravar, Mannan, Malayarayan, and Malapandaram. Moreover, limited or no study has been attempted to prove the knowledge of ethnogynaecology of these tribes and the efficiency of their crude drugs against pharmacological actions. The paste prepared from various parts of the plants has been used widely as primary health care materials for abortion, obstetrics, menstruation, female infertility and male infertility. Phenols, glucoside, steroids and fatty acids reported with cytotoxic activities are connected to several gynaecological disorders whereas flavonoid, coumarin, sitosterol disrupt pregnancy. The phenolic compounds induced spontaneous abortion due to the major composition aristolochic acid, ceryl alcohol, β-sitosterol. Coreopsin, butin, isobutrin, monospermoside, palastrin, butrin. Mucunine, lecithin, prurieninine, gluthione and luteolin, Indicine, kaempferol, apigenin and quercetin effected therapeutic activity against leucorrhoea. Lignin, friedelin and beta-sitosterol are reported with abortifacient properties and therapeutic ability for leucorrhoea and menorrhagia. Tannins, mimusopsic acids, taraxerol and spinaserol effected fertility problems in women and tannins, saponins, flavonoids, steroids, terpenoids and alkaloids which effected infertility. CONCLUSION This review reported comprehensive data on ethnogynaecological knowledge published from available literature and evident that the indigenous medical system of Indian tribes has also contributed considerably to the healthcare system and drug development of India. The fresh plant parts were identified as effective materials against various gynaecological illnesses including infertility. The root is considered an excellent plant part against obstetrics followed by abortion, menstruation, and leucorrhoea. These studies need experimental proof as well as standardization to confirm their efficiency. Promoting the sustainable use and the equitable sharing of benefits to the knowledge provider is a pathway for harnessing the conservation of this knowledge.
Collapse
Affiliation(s)
- Saranya Surendran
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India
| | - Priya Prasannan
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India
| | - Yasotha Jeyaram
- Department of Botany, PRIST Deemed University, Thanjavur, Tamil Nadu, India
| | - Venkatesh Palanivel
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India
| | - Arjun Pandian
- Department of Biotechnology, PRIST Deemed University, Thanjavur, Tamil Nadu, India; Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Raju Ramasubbu
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India.
| |
Collapse
|
8
|
Avidor-Reiss T, Achinger L, Uzbekov R. The Centriole's Role in Miscarriages. Front Cell Dev Biol 2022; 10:864692. [PMID: 35300410 PMCID: PMC8922021 DOI: 10.3389/fcell.2022.864692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Centrioles are subcellular organelles essential for normal cell function and development; they form the cell’s centrosome (a major cytoplasmic microtubule organization center) and cilium (a sensory and motile hair-like cellular extension). Centrioles with evolutionarily conserved characteristics are found in most animal cell types but are absent in egg cells and exhibit unexpectedly high structural, compositional, and functional diversity in sperm cells. As a result, the centriole’s precise role in fertility and early embryo development is unclear. The centrioles are found in the spermatozoan neck, a strategic location connecting two central functional units: the tail, which propels the sperm to the egg and the head, which holds the paternal genetic material. The spermatozoan neck is an ideal site for evolutionary innovation as it can control tail movement pre-fertilization and the male pronucleus’ behavior post-fertilization. We propose that human, bovine, and most other mammals–which exhibit ancestral centriole-dependent reproduction and two spermatozoan centrioles, where one canonical centriole is maintained, and one atypical centriole is formed–adapted extensive species-specific centriolar features. As a result, these centrioles have a high post-fertilization malfunction rate, resulting in aneuploidy, and miscarriages. In contrast, house mice evolved centriole-independent reproduction, losing the spermatozoan centrioles and overcoming a mechanism that causes miscarriages.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Luke Achinger
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Rustem Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Amargant F, Pujol A, Ferrer-Vaquer A, Durban M, Martínez M, Vassena R, Vernos I. The human sperm basal body is a complex centrosome important for embryo preimplantation development. Mol Hum Reprod 2021; 27:6377343. [PMID: 34581808 PMCID: PMC8561016 DOI: 10.1093/molehr/gaab062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The mechanism of conversion of the human sperm basal body to a centrosome after fertilization, and its role in supporting human early embryogenesis, has not been directly addressed so far. Using proteomics and immunofluorescence studies, we show here that the human zygote inherits a basal body enriched with centrosomal proteins from the sperm, establishing the first functional centrosome of the new organism. Injection of human sperm tails containing the basal body into human oocytes followed by parthenogenetic activation, showed that the centrosome contributes to the robustness of the early cell divisions, increasing the probability of parthenotes reaching the compaction stage. In the absence of the sperm-derived centrosome, pericentriolar material (PCM) components stored in the oocyte can form de novo structures after genome activation, suggesting a tight PCM expression control in zygotes. Our results reveal that the sperm basal body is a complex organelle which converts to a centrosome after fertilization, ensuring the early steps of embryogenesis and successful compaction. However, more experiments are needed to elucidate the exact molecular mechanisms of centrosome inheritance in humans.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN-Eugin Group, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aïda Pujol
- Centro de Infertilidad y Reproducción Humana (CIRH)-Eugin Group, Barcelona, Spain
| | | | | | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
10
|
Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J 2021; 478:3791-3805. [PMID: 34709374 PMCID: PMC8589329 DOI: 10.1042/bcj20210412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Meiosis facilitates diversity across individuals and serves as a major driver of evolution. However, understanding how meiosis begins is complicated by fundamental differences that exist between sexes and species. Fundamental meiotic research is further hampered by a current lack of human meiotic cells lines. Consequently, much of what we know relies on data from model organisms. However, contextualising findings from yeast, worms, flies and mice can be challenging, due to marked differences in both nomenclature and the relative timing of meiosis. In this review, we set out to combine current knowledge of signalling and transcriptional pathways that control meiosis initiation across the sexes in a variety of organisms. Furthermore, we highlight the emerging links between meiosis initiation and oncogenesis, which might explain the frequent re-expression of normally silent meiotic genes in a variety of human cancers.
Collapse
|
11
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|
12
|
Liu G, Xing X, Zhang H, Zhu W, Lin G, Lu G, Li W. Patients with acephalic spermatozoa syndrome linked to novel TSGA10/PMFBP1 variants have favorable pregnancy outcomes from intracytoplasmic sperm injection. Clin Genet 2021; 100:334-339. [PMID: 34089195 DOI: 10.1111/cge.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022]
Abstract
Acephalic spermatozoa syndrome is a rare form of teratozoospermia characterized by headless spermatozoa. Previous studies have found that variants in SUN5, PMFBP1, TSGA10, BRDT, and SPATC1L are associated with this phenotype. Many researchers have suggested that variants in TSGA10 without a proximal centriole might influence early embryonic development. This retrospective cohort study included 12 infertile men with severe acephalic spermatozoa in China. We identified six heterozygous variants and four homozygous variants in TSGA10/PMFBP1 in seven patients by whole-exome sequencing (WES). Acephalic spermatozoa defects due to different genetic variations may affect only spermatozoa morphology but do not reduce the chances of fertilization, affect embryo quality at early stages or impair intracytoplasmic sperm injection (ICSI) outcomes. Patients with TSGA10/PMFBP1 variations were all expected to have good prognoses with ICSI.
Collapse
Affiliation(s)
- Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhang
- Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Wenbing Zhu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Ge Lin
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China.,Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Guangxiu Lu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China.,Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,Scientific Research Department, Hunan Guangxiu Hi-tech Life Technology Co., Ltd, Changsha, China
| | - Weina Li
- Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,Scientific Research Department, Hunan Guangxiu Hi-tech Life Technology Co., Ltd, Changsha, China
| |
Collapse
|
13
|
Pandruvada S, Royfman R, Shah TA, Sindhwani P, Dupree JM, Schon S, Avidor-Reiss T. Lack of trusted diagnostic tools for undetermined male infertility. J Assist Reprod Genet 2021; 38:265-276. [PMID: 33389378 PMCID: PMC7884538 DOI: 10.1007/s10815-020-02037-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Semen analysis is the cornerstone of evaluating male infertility, but it is imperfect and insufficient to diagnose male infertility. As a result, about 20% of infertile males have undetermined infertility, a term encompassing male infertility with an unknown underlying cause. Undetermined male infertility includes two categories: (i) idiopathic male infertility-infertile males with abnormal semen analyses with an unknown cause for that abnormality and (ii) unexplained male infertility-males with "normal" semen analyses who are unable to impregnate due to unknown causes. The treatment of males with undetermined infertility is limited due to a lack of understanding the frequency of general sperm defects (e.g., number, motility, shape, viability). Furthermore, there is a lack of trusted, quantitative, and predictive diagnostic tests that look inside the sperm to quantify defects such as DNA damage, RNA abnormalities, centriole dysfunction, or reactive oxygen species to discover the underlying cause. To better treat undetermined male infertility, further research is needed on the frequency of sperm defects and reliable diagnostic tools that assess intracellular sperm components must be developed. The purpose of this review is to uniquely create a paradigm of thought regarding categories of male infertility based on intracellular and extracellular features of semen and sperm, explore the prevalence of the various categories of male factor infertility, call attention to the lack of standardization and universal application of advanced sperm testing techniques beyond semen analysis, and clarify the limitations of standard semen analysis. We also call attention to the variability in definitions and consider the benefits towards undetermined male infertility if these gaps in research are filled.
Collapse
Affiliation(s)
- Swati Pandruvada
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Rachel Royfman
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Tariq A. Shah
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| | - James M. Dupree
- Department of Urology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48019 USA
| | - Samantha Schon
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43607 USA
| |
Collapse
|
14
|
Diagnosis and Treatment of Male Infertility-Related Fertilization Failure. J Clin Med 2020; 9:jcm9123899. [PMID: 33271815 PMCID: PMC7761017 DOI: 10.3390/jcm9123899] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Infertility affects approximately 15% of reproductive-aged couples worldwide, of which up to 30% of the cases are caused by male factors alone. The origin of male infertility is mostly attributed to sperm abnormalities, of which many are caused by genetic defects. The development of intracytoplasmic sperm injection (ICSI) has helped to circumvent most male infertility conditions. However, there is still a challenging group of infertile males whose sperm, although having normal sperm parameters, are unable to activate the oocyte, even after ICSI treatment. While ICSI generally allows fertilization rates of 70 to 80%, total fertilization failure (FF) still occurs in 1 to 3% of ICSI cycles. Phospholipase C zeta (PLCζ) has been demonstrated to be a critical sperm oocyte activating factor (SOAF) and the absence, reduced, or altered forms of PLCζ have been shown to cause male infertility-related FF. The purpose of this review is to (i) summarize the current knowledge on PLCζ as the critical sperm factor for successful fertilization, as well as to discuss the existence of alternative sperm-induced oocyte activation mechanisms, (ii) describe the diagnostic tests available to determine the cause of FF, and (iii) summarize the beneficial effect of assisted oocyte activation (AOA) to overcome FF.
Collapse
|
15
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
16
|
Vandenbrouck Y, Pineau C, Lane L. The Functionally Unannotated Proteome of Human Male Tissues: A Shared Resource to Uncover New Protein Functions Associated with Reproductive Biology. J Proteome Res 2020; 19:4782-4794. [PMID: 33064489 DOI: 10.1021/acs.jproteome.0c00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the context of the Human Proteome Project, we built an inventory of 412 functionally unannotated human proteins for which experimental evidence at the protein level exists (uPE1) and which are highly expressed in tissues involved in human male reproduction. We implemented a strategy combining literature mining, bioinformatics tools to collate annotation and experimental information from specific molecular public resources, and efficient visualization tools to put these unknown proteins into their biological context (protein complexes, tissue and subcellular location, expression pattern). The gathered knowledge allowed pinpointing five uPE1 for which a function has recently been proposed and which should be updated in protein knowledge bases. Furthermore, this bioinformatics strategy allowed to build new functional hypotheses for five other uPE1s in link with phenotypic traits that are specific to male reproductive function such as ciliogenesis/flagellum formation in germ cells (CCDC112 and TEX9), chromatin remodeling (C3orf62) and spermatozoon maturation (CCDC183). We also discussed the enigmatic case of MAGEB proteins, a poorly documented cancer/testis antigen subtype. Tools used and computational outputs produced during this study are freely accessible via ProteoRE (http://www.proteore.org), a Galaxy-based instance, for reuse purposes. We propose these five uPE1s should be investigated in priority by expert laboratories and hope that this inventory and shared resources will stimulate the interest of the community of reproductive biology.
Collapse
Affiliation(s)
- Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, F-38000 Grenoble, France
| | - Charles Pineau
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35042 Rennes cedex, France
| | - Lydie Lane
- SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Ng DCH, Richards DK, Mills RJ, Ho UY, Perks HL, Tucker CR, Voges HK, Pagan JK, Hudson JE. Centrosome Reduction Promotes Terminal Differentiation of Human Cardiomyocytes. Stem Cell Reports 2020; 15:817-826. [PMID: 32946803 PMCID: PMC7561510 DOI: 10.1016/j.stemcr.2020.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Centrosome reduction and redistribution of pericentriolar material (PCM) coincides with cardiomyocyte transitions to a post-mitotic and matured state. However, it is unclear whether centrosome changes are a cause or consequence of terminal differentiation. We validated that centrosomes were intact and functional in proliferative human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), consistent with their immature phenotype. We generated acentrosomal hPSC-CMs, through pharmacological inhibition of centriole duplication, and showed that centrosome loss was sufficient to promote post-mitotic transitions and aspects of cardiomyocyte maturation. As Hippo kinases are activated during post-natal cardiac maturation, we pharmacologically activated the Hippo pathway using C19, which was sufficient to trigger centrosome disassembly and relocalization of PCM components to perinuclear membranes. This was due to specific activation of Hippo kinases, as direct inhibition of YAP-TEAD interactions with verteporfin had no effect on centrosome organization. This suggests that Hippo kinase-centrosome remodeling may play a direct role in cardiac maturation. Centrosomes are intact and functional in immature human cardiomyocytes Centrosome loss promotes maturation of human cardiomyocytes Centrosomes are returned with cell cycle reinitiation in post-natal cardiomyocytes Hippo kinases promote disassembly and redistribution of centrosomal proteins
Collapse
Affiliation(s)
- Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, Saint Lucia, QLD, Australia.
| | - Dominic K Richards
- School of Biomedical Sciences, University of Queensland, Saint Lucia, QLD, Australia
| | - Richard J Mills
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Uda Y Ho
- School of Biomedical Sciences, University of Queensland, Saint Lucia, QLD, Australia
| | - Hannah L Perks
- School of Biomedical Sciences, University of Queensland, Saint Lucia, QLD, Australia
| | - Callum R Tucker
- School of Biomedical Sciences, University of Queensland, Saint Lucia, QLD, Australia
| | - Holly K Voges
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Julia K Pagan
- School of Biomedical Sciences, University of Queensland, Saint Lucia, QLD, Australia
| | - James E Hudson
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Riparbelli MG, Persico V, Dallai R, Callaini G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020; 9:E744. [PMID: 32197383 PMCID: PMC7140630 DOI: 10.3390/cells9030744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.
Collapse
Affiliation(s)
- Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
19
|
Nie H, Tang Y, Qin W. Beyond Acephalic Spermatozoa: The Complexity of Intracytoplasmic Sperm Injection Outcomes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6279795. [PMID: 32104701 PMCID: PMC7035536 DOI: 10.1155/2020/6279795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
This review analyses the genetic mechanisms of acephalic spermatozoa (AS) defects, which are associated with primary infertility in men. Several target genes of headless sperms have been identified but intracytoplasmic sperm injection (ICSI) outcomes are complex. Based on electron microscopic observations, broken points of the sperm neck are AS defects that are based on various genes that can be classified into three subtypes: HOOK1, SUN5, and PMFBP1 genes of subtype II; TSGA10 and BRDT genes of subgroup III, while the genetic mechanism(s) and aetiology of AS defects of subtype I have not been described and remain to be explored. Interestingly, all AS sperm of subtype II achieved better ICSI outcomes than other subtypes, resulting in clinical pregnancies and live births. For subtype III, the failure of clinical pregnancy can be explained by the defects of paternal centrioles that arrest embryonic development; for subtype I, this was due to a lack of a distal centriole. Consequently, the embryo quality and potential ICSI results of AS defects can be predicted by the subtypes of AS defects. However, this conclusion with regard to ICSI outcomes based on subtypes still needs further research, while the existence of quality of oocyte and implantation failure in women cannot be ignored.
Collapse
Affiliation(s)
- Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| |
Collapse
|
20
|
Mortimer D. The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mol Hum Reprod 2019; 24:567-592. [PMID: 30215807 DOI: 10.1093/molehr/gay040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Internet, magazine articles, and even biomedical journal articles, are full of cartoons of spermatozoa that bear minimal resemblance to real spermatozoa, especially human spermatozoa, and this had led to many misconceptions about what spermatozoa look like and how they are constituted. This review summarizes the historical and current state of knowledge of mammalian sperm ultrastructure, with particular emphasis on and relevance to human spermatozoa, combining information obtained from a variety of electron microscopic (EM) techniques. Available information on the composition and configuration of the various ultrastructural components of the spermatozoon has been related to their mechanistic purpose and roles in the primary aspects of sperm function and fertilization: motility, hyperactivation, capacitation, the acrosome reaction and sperm-oocyte fusion.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada
| |
Collapse
|
21
|
Gu NH, Zhao WL, Wang GS, Sun F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod Biol Endocrinol 2019; 17:66. [PMID: 31416446 PMCID: PMC6696699 DOI: 10.1186/s12958-019-0510-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/02/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Sperm morphology mainly refers to the shape of the head, the length of the flagellar segments, including the midpiece, principal piece and end piece, and the size of the accessory structures, including axonemes, outer dense fibers (ODFs), mitochondrial sheath (MS) and fibrous sheath (FS). Across species, there is considerable diversity in morphology. An established theory posits that the length of the sperm flagellum, especially the length of the midpiece, is a critical factor influencing sperm metabolism and velocity. However, our understanding of the relationships between sperm ultrastructures and the sperm flagellar length is incomplete. METHODS The morphologies of sperm from 10 mammalian species, human, mouse, rat, dog, rabbit, goat, pig, bull, guinea pig and golden hamster, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to the SEM and TME images, the length of sperm heads and flagellar segments, the cross-sectional areas of the accessory structures and flagella and the width of sperm heads were measured using Image J software. The variation tendencies (referred to as slope) of the accessory structures along flagella were calculated by the linear regression method. Mitochondrial functions were measured using commercial kits. The velocities of sperm were measured using CASA software. RESULTS The three-dimensional morphologies of sperm from 10 species and the slopes of internal accessory structures along flagella were obtained. The width of the axoneme tapered slightly from the base to the tip of the sperm flagellum, and slopes of the axonemes correlated negatively with the variability in flagellar length across species. Additionally, the cross-sectional areas of the ODFs and/or the MS were positively correlated with the lengths of the midpiece, principal piece, and total flagellum, as well as with sperm velocities. Mitochondrial volumes were positively correlated with ATP content and sperm swimming velocities. CONCLUSIONS Our results not only show the relationship between sperm internal structures, flagellar length and sperm physiology but also provide sizes of mitochondria and ODFs as new targets with which to study the regulation of sperm length and velocity.
Collapse
Affiliation(s)
- Ni-Hao Gu
- 0000 0004 0368 8293grid.16821.3cInternational Peace Maternity and Child Health Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, 200030 China
- 0000 0004 0368 8293grid.16821.3cShanghai Municipal Key Clinical Speciality, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wen-Long Zhao
- 0000 0004 0368 8293grid.16821.3cInternational Peace Maternity and Child Health Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, 200030 China
- 0000 0004 0368 8293grid.16821.3cShanghai Municipal Key Clinical Speciality, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Gui-Shuan Wang
- 0000 0000 9530 8833grid.260483.bInstitute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| | - Fei Sun
- 0000 0004 0368 8293grid.16821.3cInternational Peace Maternity and Child Health Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai, 200030 China
- Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, 200030 China
- 0000 0004 0368 8293grid.16821.3cShanghai Municipal Key Clinical Speciality, Shanghai Jiao Tong University, Shanghai, 200030 China
- 0000 0000 9530 8833grid.260483.bInstitute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| |
Collapse
|
22
|
Jo KH, Jaiswal A, Khanal S, Fishman EL, Curry AN, Avidor-Reiss T. Poc1B and Sas-6 Function Together during the Atypical Centriole Formation in Drosophila melanogaster. Cells 2019; 8:cells8080841. [PMID: 31387336 PMCID: PMC6721650 DOI: 10.3390/cells8080841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Insects and mammals have atypical centrioles in their sperm. However, it is unclear how these atypical centrioles form. Drosophila melanogaster sperm has one typical centriole called the giant centriole (GC) and one atypical centriole called the proximal centriole-like structure (PCL). During early sperm development, centriole duplication factors such as Ana2 and Sas-6 are recruited to the GC base to initiate PCL formation. The centriolar protein, Poc1B, is also recruited at this initiation stage, but its precise role during PCL formation is unclear. Here, we show that Poc1B recruitment was dependent on Sas-6, that Poc1B had effects on cellular and PCL Sas-6, and that Poc1B and Sas-6 were colocalized in the PCL/centriole core. These findings suggest that Sas-6 and Poc1B interact during PCL formation. Co-overexpression of Ana2 and Sas-6 induced the formation of ectopic particles that contained endogenous Poc1 proteins and were composed of PCL-like structures. These structures were disrupted in Poc1 mutant flies, suggesting that Poc1 proteins stabilize the PCL-like structures. Lastly, Poc1B and Sas-6 co-overexpression also induced the formation of PCL-like structures, suggesting that they can function together during the formation of the PCL. Overall, our findings suggest that Poc1B and Sas-6 function together during PCL formation.
Collapse
Affiliation(s)
- Kyoung H Jo
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Emily L Fishman
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Alaina N Curry
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA.
| |
Collapse
|
23
|
Moretti E, Collodel G, Salvatici MC, Belmonte G, Signorini C. New insights into sperm with total globozoospermia: Increased fatty acid oxidation and centrin1 alteration. Syst Biol Reprod Med 2019; 65:390-399. [DOI: 10.1080/19396368.2019.1626934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elena Moretti
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giulia Collodel
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maria Cristina Salvatici
- Centro di Microscopie Elettroniche “Laura Bonzi”, ICCOM, Consiglio Nazionale delle Ricerche (CNR), Firenze, Italy
| | - Giuseppe Belmonte
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
24
|
Dallai R, Mercati D, Lino-Neto J, Dias G, Folly C, Lupetti P. The peculiar structure of the flagellar axoneme in Coccinellidae (Insecta-Coleoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:50-61. [PMID: 30445115 DOI: 10.1016/j.asd.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The ultrastructure of the complex organisation of the spermatozoa in Harmonia axyridis and Adalia decempunctata (Coccinellidae) was studied, with particular emphasis on the origin of the anterior shifting of the axonemal structure, which becomes parallel to the nucleus in the sperm flagellum. In studying the spermiogenesis, a centriolar remodelling was observed with the long centriole, present in the early spermatids, transformed in the spermatozoa into an exceptionally long and narrowed basal body (about 0.16 × 3.5-4.0 μm long) displaying a 9 + 0 microtubular pattern in the proximal part and a 9 + 2 pattern in the following part; this is a characteristic not observed in any other pterygotan insect. The sperm also have a very long acrosome surrounded by a dense layer of material extending along the whole basal body. These two uncommon features were discussed in the light of sperm movement.
Collapse
Affiliation(s)
- Romano Dallai
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - David Mercati
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - José Lino-Neto
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Glenda Dias
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Camilla Folly
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Pietro Lupetti
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
25
|
The Centriolar Adjunct⁻Appearance and Disassembly in Spermiogenesis and the Potential Impact on Fertility. Cells 2019; 8:cells8020180. [PMID: 30791486 PMCID: PMC6406449 DOI: 10.3390/cells8020180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/01/2023] Open
Abstract
During spermiogenesis, the proximal centriole forms a special microtubular structure: the centriolar adjunct. This structure appears at the spermatid stage, which is characterized by a condensed chromatin nucleus. We showed that the centriolar adjunct disappears completely in mature porcine spermatozoa. In humans, the centriolar adjunct remnants are present in a fraction of mature spermatids. For the first time, the structure of the centriolar adjunct in the cell, and its consequent impact on fertility, were examined. Ultrastructural analysis using transmission electron microscopy was performed on near 2000 spermatozoa per person, in two patients with idiopathic male sterility (IMS) and five healthy fertile donors. We measured the average length of the “proximal centriole + centriolar adjunct” complex in sections, where it had parallel orientation in the section plane, and found that it was significantly longer in the spermatozoa of IMS patients than in the spermatozoa of healthy donors. This difference was independent of chromatin condensation deficiency, which was also observed in the spermatozoa of IMS patients. We suggest that zygote arrest may be related to an incompletely disassembled centriolar adjunct in a mature spermatozoon. Therefore, centriolar adjunct length can be potentially used as a complementary criterion for the immaturity of spermatozoa in the diagnostics of IMS patients.
Collapse
|
26
|
Abstract
'Does the geometric design of centrioles imply their function? Several principles of construction of a microscopically small device for locating the directions of signal sources in microscopic dimensions: it appears that the simplest and smallest device that is compatible with the scrambling influence of thermal fluctuations, as are demonstrated by Brownian motion, is a pair of cylinders oriented at right angles to each other. Centrioles locate the direction of hypothetical signals inside cells' (Albrecht-Buehler G, Cell Motil, 1:237-245; 1981).Despite a century of devoted efforts (articles on the centrosome always begin like this) its role remains vague and nebulous: does the centrosome suffer from bad press? Likely it does, it has an unfair image problem. It is dispensable in mitosis, but a fly zygote, artificially deprived of centrosomes, cannot start its development; its sophisticated architecture (200 protein types, highly conserved during evolution) constitutes an enigmatic puzzle; centrosome reduction in gametogenesis is a challenging brainteaser; its duplication cycle (only one centrosome per cell) is more complicated than chromosomes. Its striking geometric design (two ninefold symmetric orthogonal centrioles) shows an interesting correspondence with the requirements of a cellular compass: a reference system organizer based on a pair of orthogonal goniometers; through its two orthogonal centrioles, the centrosome may play the role of a cell geometry organizer: it can establish a finely tuned geometry, inherited and shared by all cells. Indeed, a geometrical and informational primary role for the centrosome has been ascertained in Caenorhabditis elegans zygote: the sperm centrosome locates its polarity factors. The centrosome, through its aster of microtubules, possesses all the characteristics necessary to operate as a biophysical geometric compass: it could recognize cargoes equipped with topogenic sequences and drive them precisely to where they are addressed (as hypothesized by Albrecht-Buehler nearly 40 years ago). Recently, this geometric role of the centrosome has been rediscovered by two important findings; in the Kupffer's vesicle (the laterality organ of zebrafish), chiral cilia orientation and rotational movement have been described: primary cilia, in left and right halves of the Kupffer's vesicle, are symmetrically oriented relative to the midline and rotate in reverse direction. In mice node (laterality organ) left and right perinodal cells can distinguish flow directionality through their primary cilia: primary cilium, ninefold symmetric, is strictly connected to the centrosome that is located immediately under it (basal body). Kupffer's vesicle histology and mirror behaviour of mice perinodal cells suggest primary cilia are enantiomeric geometric organelles. What is the meaning of the geometric design of centrioles and centrosomes? Does it imply their function?
Collapse
|
27
|
Avidor-Reiss T, Turner K. The Evolution of Centriole Structure: Heterochrony, Neoteny, and Hypermorphosis. Results Probl Cell Differ 2019; 67:3-15. [PMID: 31435789 DOI: 10.1007/978-3-030-23173-6_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrioles are subcellular organelles that were present in the last eukaryotic common ancestor, where the centriole's ancestral role was to form cilia. Centrioles have maintained a remarkably conserved structure in eukaryotes that have cilia, while groups that lack cilia have lost their centrioles, highlighting the structure-function relationship that exists between the centriole and the cilium. In contrast, animal sperm cells, a ciliated cell, exhibit remarkable structural diversity in the centriole. Understanding how this structural diversity evolved may provide insight into centriole assembly and function, as well as their unique role in sperm. Here, we apply concepts used in the study of the evolution of animal morphology to gain insight into the evolution of centriole structure. We propose that centrioles with an atypical structure form because of changes in the timing of centriole assembly events, which can be described as centriolar "heterochrony." Atypical centrioles of insects and mammals appear to have evolved through different types of heterochrony. Here, we discuss two particular types of heterochrony: neoteny and hypermorphosis. The centriole assembly of insect sperm cells exhibits the retention of "juvenile" centriole structure, which can be described as centriolar "neoteny." Mammalian sperm cells have an extended centriole assembly program through the addition of novel steps such as centrosome reduction and centriole remodeling to form atypical centrioles, a form of centriole "hypermorphosis." Overall, centriole heterochrony appears to be a common mechanism for the development of the atypical centriole during the evolution of centriole assembly of various animals' sperm.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
28
|
Amargant F, García D, Barragán M, Vassena R, Vernos I. Functional Analysis of Human Pathological Semen Samples in an Oocyte Cytoplasmic Ex Vivo System. Sci Rep 2018; 8:15348. [PMID: 30337543 PMCID: PMC6194145 DOI: 10.1038/s41598-018-33468-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 11/08/2022] Open
Abstract
Human fertilization and embryo development involve a wide range of critical processes that determine the successful development of a new organism. Although Assisted Reproduction Technologies (ART) may help solve infertility problems associated to severe male factor, the live birth rate is still low. A high proportion of ART failures occurs before implantation. Understanding the causes for these failures has been difficult due to technical and ethical limitations. Diagnostic procedures on human spermatozoa in particular have been limited to morphology and swimming behaviours while other functional requirements during early development have not been addressed due to the lack of suitable assays. Here, we have established a quantitative system based on the use of Xenopus egg extracts and human spermatozoa. This system provides novel possibilities for the functional characterization of human spermatozoa. Using clinical data we show that indeed this approach offers a set of complementary data for the functional evaluation of spermatozoa from patients.
Collapse
Grants
- 2014 DI 065 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 2014 DI 065 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 4363 Ministerio de Ciencia y Tecnología (Ministry of Science and Technology)
- Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- Ministerio de Ciencia y Tecnología (Ministry of Science and Technology)
Collapse
Affiliation(s)
- Farners Amargant
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Clínica EUGIN, Travessera de les Corts 322, Barcelona, 08029, Spain
| | - Désirée García
- Fundació EUGIN, Travessera de les Corts 314, Barcelona, 08029, Spain
| | | | - Rita Vassena
- Clínica EUGIN, Travessera de les Corts 322, Barcelona, 08029, Spain.
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
29
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
30
|
Simerly C, Manil-Ségalen M, Castro C, Hartnett C, Kong D, Verlhac MH, Loncarek J, Schatten G. Separation and Loss of Centrioles From Primordidal Germ Cells To Mature Oocytes In The Mouse. Sci Rep 2018; 8:12791. [PMID: 30143724 PMCID: PMC6109097 DOI: 10.1038/s41598-018-31222-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Oocytes, including from mammals, lack centrioles, but neither the mechanism by which mature eggs lose their centrioles nor the exact stage at which centrioles are destroyed during oogenesis is known. To answer questions raised by centriole disappearance during oogenesis, using a transgenic mouse expressing GFP-centrin-2 (GFP CETN2), we traced their presence from e11.5 primordial germ cells (PGCs) through oogenesis and their ultimate dissolution in mature oocytes. We show tightly coupled CETN2 doublets in PGCs, oogonia, and pre-pubertal oocytes. Beginning with follicular recruitment of incompetent germinal vesicle (GV) oocytes, through full oocyte maturation, the CETN2 doublets separate within the pericentriolar material (PCM) and a rise in single CETN2 pairs is identified, mostly at meiotic metaphase-I and -II spindle poles. Partial CETN2 foci dissolution occurs even as other centriole markers, like Cep135, a protein necessary for centriole duplication, are maintained at the PCM. Furthermore, live imaging demonstrates that the link between the two centrioles breaks as meiosis resumes and that centriole association with the PCM is progressively lost. Microtubule inhibition shows that centriole dissolution is uncoupled from microtubule dynamics. Thus, centriole doublets, present in early G2-arrested meiotic prophase oocytes, begin partial reduction during follicular recruitment and meiotic resumption, later than previously thought.
Collapse
Affiliation(s)
- Calvin Simerly
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Marion Manil-Ségalen
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Carlos Castro
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Carrie Hartnett
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB) Collège de France, CNRS, INSERM, PSL Research University, Equipe labellisée FRM, Paris, France
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Gerald Schatten
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
31
|
Barvitenko N, Lawen A, Aslam M, Pantaleo A, Saldanha C, Skverchinskaya E, Regolini M, Tuszynski JA. Integration of intracellular signaling: Biological analogues of wires, processors and memories organized by a centrosome 3D reference system. Biosystems 2018; 173:191-206. [PMID: 30142359 DOI: 10.1016/j.biosystems.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myriads of signaling pathways in a single cell function to achieve the highest spatio-temporal integration. Data are accumulating on the role of electromechanical soliton-like waves in signal transduction processes. Theoretical studies strongly suggest feasibility of both classical and quantum computing involving microtubules. AIM A theoretical study of the role of the complex composed of the plasma membrane and the microtubule-based cytoskeleton as a system that transmits, stores and processes information. METHODS Theoretical analysis presented here refers to (i) the Penrose-Hameroff theory of consciousness (Orchestrated Objective Reduction; Orch OR), (ii) the description of the centrosome as a reference system for construction of the 3D map of the cell proposed by Regolini, (iii) the Heimburg-Jackson model of the nerve pulse propagation along axons' lipid bilayer as soliton-like electro-mechanical waves. RESULTS AND CONCLUSION The ideas presented in this paper provide a qualitative model for the decision-making processes in a living cell undergoing a differentiation process. OUTLOOK This paper paves the way for the real-time live-cell observation of information processing by microtubule-based cytoskeleton and cell fate decision making.
Collapse
Affiliation(s)
| | - Alfons Lawen
- Monash University, School of Biomedical Sciences, Department of Biochemistry and Molecular Biology, VIC, 3800, Australia
| | - Muhammad Aslam
- Medical Clininc I, Cardiology/Angiology, University Hospital, Justus-Liebig-University, Giessen, Germany
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Carlota Saldanha
- Instituto de Medicina Molecular, Instituto de Bioquimica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Marco Regolini
- Department of Bioengineering and Mathematical Modeling, AudioLogic, Milan, Italy
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy.
| |
Collapse
|
32
|
Moretti E, Gambera L, Stendardi A, Belmonte G, Salvatici MC, Collodel G. Characterisation of three systematic sperm tail defects and their influence on ICSI outcome. Andrologia 2018; 50:e13128. [PMID: 30132935 DOI: 10.1111/and.13128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/22/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
This study characterized three cases of systematic sperm tail defects using electron microscopy and immunolocalisation of centrin 1 and tubulin and explored their impact on ICSI outcome. Structural sperm tail defects of possible genetic origin were suspected as the eosin test revealed a sperm viability of >70% despite severe asthenozoospermia or the absence of motility. In Patient 1, 80%-85% of axoneme cross sections was incomplete. The fluorescent signal of tubulin was weak along the entire tail; the signal of centrin 1 was normal. After ICSI, a female healthy baby was born. Patient 2 showed spermatozoa with tails reduced in length at different levels, axonemal and periaxonemal alterations and fragility of head-tail junction. Centrin 1 was altered in 80% of sperm. After ICSI, no embryos were obtained. Patient 3 showed tails reduced in length at light and fluorescence microscopy; ultrastructural study revealed a condition of dysplasia of fibrous sheath with heterogeneity of tails' length. The signal for centrin 1 was altered in 50% of spermatozoa; two embryos were transferred without pregnancy. The correct diagnosis of sperm pathology is important in case of systematic sperm defects as it enables the clinician to improve patient's management and to provide an adequate genetic counselling.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Giuseppe Belmonte
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maria Cristina Salvatici
- Centro di Microscopie Elettroniche "Laura Bonzi", ICCOM, Consiglio Nazionale delle Ricerche (CNR), Firenze, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Uzbekov R, Garanina A, Bressac C. Centrioles without microtubules: a new morphological type of centriole. Biol Open 2018; 7:bio036012. [PMID: 29997243 PMCID: PMC6124565 DOI: 10.1242/bio.036012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
The centrosome is the organizing center of microtubules in the cell, the basis for the origin of cilia and flagella and a site for the concentration of a regulatory proteins multitude. The centrosome comprises two centrioles surrounded by pericentriolar material. Centrioles in the cells of different organisms can contain nine triplets, doublets or singlets of microtubules. Here, we show that in somatic cells of male wasp larvae Anisopteromalus calandrae, centrioles do not contain microtubules and are composed of nine electron-dense prongs, which together form a cogwheel structure. These microtubule-free centrioles can be the platform for procentriole formation and form microtubule-free cilia-like structures. In nymph and imago cells centrioles have a microtubule triplet structure. Our study describes how centriole structure differs in a development-stage-dependent and a cell-type-dependent manner. The discovery of a centriole without microtubules casts a new light on the centriole formation process and the evolution of this organelle.
Collapse
Affiliation(s)
- Rustem Uzbekov
- Department of Microscopy, University of Tours, Tours 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | | | - Christophe Bressac
- Institute of Research on Insect Biology, IMIP research team UMR CNRS 7261, University of AQ1 Tours, Tours 37200, France
| |
Collapse
|
34
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
35
|
Fishman EL, Jo K, Nguyen QPH, Kong D, Royfman R, Cekic AR, Khanal S, Miller AL, Simerly C, Schatten G, Loncarek J, Mennella V, Avidor-Reiss T. A novel atypical sperm centriole is functional during human fertilization. Nat Commun 2018; 9:2210. [PMID: 29880810 PMCID: PMC5992222 DOI: 10.1038/s41467-018-04678-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
The inheritance of the centrosome during human fertilization remains mysterious. Here we show that the sperm centrosome contains, in addition to the known typical barrel-shaped centriole (the proximal centriole, PC), a surrounding matrix (pericentriolar material, PCM), and an atypical centriole (distal centriole, DC) composed of splayed microtubules surrounding previously undescribed rods of centriole luminal proteins. The sperm centrosome is remodeled by both reduction and enrichment of specific proteins and the formation of these rods during spermatogenesis. In vivo and in vitro investigations show that the flagellum-attached, atypical DC is capable of recruiting PCM, forming a daughter centriole, and localizing to the spindle pole during mitosis. Altogether, we show that the DC is compositionally and structurally remodeled into an atypical centriole, which functions as the zygote's second centriole. These findings now provide novel avenues for diagnostics and therapeutic strategies for male infertility, and insights into early embryo developmental defects.
Collapse
Affiliation(s)
- Emily L Fishman
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Kyoung Jo
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Quynh P H Nguyen
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Rachel Royfman
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Anthony R Cekic
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Ave, Ann Arbor, MI, 48109, USA
| | - Calvin Simerly
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Gerald Schatten
- Departments of Cell Biology; Obstetrics, Gynecology and Reproductive Sciences; and Bioengineering, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Vito Mennella
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801W. Bancroft, Toledo, OH, 43607, USA.
| |
Collapse
|
36
|
Inoue D, Wittbrodt J, Gruss OJ. Loss and Rebirth of the Animal Microtubule Organizing Center: How Maternal Expression of Centrosomal Proteins Cooperates with the Sperm Centriole in Zygotic Centrosome Reformation. Bioessays 2018. [PMID: 29522658 DOI: 10.1002/bies.201700135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Centrosomes are the main microtubule organizing centers in animal cells. In particular during embryogenesis, they ensure faithful spindle formation and proper cell divisions. As metazoan centrosomes are eliminated during oogenesis, they have to be reassembled upon fertilization. Most metazoans use the sperm centrioles as templates for new centrosome biogenesis while the egg's cytoplasm re-prepares all components for on-going centrosome duplication in rapidly dividing embryonic cells. We discuss our knowledge and the experimental challenges to analyze zygotic centrosome reformation, which requires genetic experiments to enable scrutinizing respective male and female contributions. Male and female knockout animals and mRNA injection to mimic maternal expression of centrosomal proteins could point a way to the systematic molecular dissection of the process. The most recent data suggest that timely expression of centrosome components in oocytes is the key to zygotic centrosome reformation that uses male sperm as coordinators for de novo centrosome production.
Collapse
Affiliation(s)
- Daigo Inoue
- Dr. D. Inoue, Prof. Dr. J. Wittbrodt, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- Dr. D. Inoue, Prof. Dr. J. Wittbrodt, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Oliver J Gruss
- Prof. Dr. O. J. Gruss, Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str.13, 53115 Bonn, Germany
| |
Collapse
|
37
|
Dallai R, Mercati D, Lino-Neto J, Dias G, Lupetti P. Evidence of a procentriole during spermiogenesis in the coccinellid insect Adalia decempunctata (L): An ultrastructural study. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:815-823. [PMID: 29092794 DOI: 10.1016/j.asd.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
We studied spermatogenesis and spermiogenesis in Adalia decempunctata (L), a beetle of the Coccinellidae family. The spermatocyte exhibits two centrioles which elongate to form a pair of primary cilia. A novel structure, appearing in cross sections as a dense droplet, is observed near the long centriole during spermiogenesis, and is soon accompanied by a procentriole (PCL). PCL structure consists of singlet microtubules, a central tubule and an incomplete cartwheel. The PCL persists until the end of spermiogenesis, when it vanishes together with the dense droplet. The sperm has an exceptionally long basal body and the nucleus is disposed parallel to the flagellar components, a peculiar trait shared by other species of the coccinellid group. The presence of a procentriole suggested by the use of antibodies is discussed.
Collapse
Affiliation(s)
- Romano Dallai
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - David Mercati
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - José Lino-Neto
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Glenda Dias
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, CEP, 35400-000, Ouro Preto, MG, Brazil.
| | - Pietro Lupetti
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
38
|
Fishman EL, Jo K, Ha A, Royfman R, Zinn A, Krishnamurthy M, Avidor-Reiss T. Atypical centrioles are present in Tribolium sperm. Open Biol 2017; 7:160334. [PMID: 28298310 PMCID: PMC5376708 DOI: 10.1098/rsob.160334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Typical centrioles are made of microtubules organized in ninefold symmetry. Most animal somatic cells have two centrioles for normal cell division and function. These centrioles originate from the zygote, but because the oocyte does not provide any centrioles, it is surprising that the zygotes of many animals are thought to inherit only one centriole from the sperm. Recently, in the sperm of Drosophila melanogaster, we discovered a second centriolar structure, the proximal centriole-like structure (PCL), which functions in the zygote. Whether the sperm of other insects has a second centriolar structure is unknown. Here, we characterized spermiogenesis in the red flour beetle, Tribolium castaneum Electron microscopy suggests that Tribolium has one microtubule-based centriole at the tip of the axoneme and a structure similar to the PCL, which lacks microtubules and lies in a cytoplasmic invagination of the nucleus. Immunostaining against the orthologue of the centriole/PCL protein, Ana1, also recognizes two centrioles near the nucleus during spermiogenesis: one that is microtubule-based at the tip of the axoneme, suggesting it is the centriole; and another that is more proximal and appears during early spermiogenesis, suggesting it is the PCL. Together, these findings suggest that Tribolium sperm has one microtubule-based centriole and one microtubule-lacking centriole.
Collapse
Affiliation(s)
- E L Fishman
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Kyoung Jo
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Andrew Ha
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Rachel Royfman
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | - Ashtyn Zinn
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43607, USA
| |
Collapse
|
39
|
Riparbelli MG, Gottardo M, Callaini G. Parthenogenesis in Insects: The Centriole Renaissance. Results Probl Cell Differ 2017; 63:435-479. [PMID: 28779329 DOI: 10.1007/978-3-319-60855-6_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
40
|
Vieillard J, Paschaki M, Duteyrat JL, Augière C, Cortier E, Lapart JA, Thomas J, Durand B. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J Cell Biol 2016; 214:875-89. [PMID: 27646273 PMCID: PMC5037411 DOI: 10.1083/jcb.201603086] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023] Open
Abstract
Ciliary transition zone (TZ) assembly is complex and incompletely understood. Vieillard et al. show that Drosophila Cby and Dila cooperate to assemble the TZ and membrane cap, which, together with microtubule remodeling by kinesin-13, is required for axoneme formation in male germ cells. The ciliary transition zone (TZ) is a complex structure found at the cilia base. Defects in TZ assembly are associated with human ciliopathies. In most eukaryotes, three protein complexes (CEP290, NPHP, and MKS) cooperate to build the TZ. We show that in Drosophila melanogaster, mild TZ defects are observed in the absence of MKS components. In contrast, Cby and Azi1 cooperate to build the TZ by acting upstream of Cep290 and MKS components. Without Cby and Azi1, centrioles fail to form the TZ, precluding sensory cilia assembly, and no ciliary membrane cap associated with sperm ciliogenesis is made. This ciliary cap is critical to recruit the tubulin-depolymerizing kinesin Klp59D, required for regulation of axonemal growth. Our results show that Drosophila TZ assembly in sensory neurons and male germ cells involves cooperative actions of Cby and Dila. They further reveal that temporal control of membrane cap assembly by TZ components and microtubule elongation by kinesin-13 is required for axoneme formation in male germ cells.
Collapse
Affiliation(s)
- Jennifer Vieillard
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Marie Paschaki
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Jean-Luc Duteyrat
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Céline Augière
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Elisabeth Cortier
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Jean-André Lapart
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Joëlle Thomas
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| |
Collapse
|
41
|
Schatten G, Stearns T. Sperm Centrosomes: Kiss Your Asterless Goodbye, for Fertility's Sake. Curr Biol 2016; 25:R1178-81. [PMID: 26702655 DOI: 10.1016/j.cub.2015.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Centrosomes are reduced to their cores in sperm. Emerging molecular explanations for centrosome construction have now helped to elucidate the mechanism of their destruction in sperm. Since centrosome inaccuracies cause aneuploidies responsible for cancers, birth defects and infertility, this new insight into centrosome behavior has broad implications.
Collapse
Affiliation(s)
- Gerald Schatten
- Departments of Ob-Gyn-Repro Sci, Cell Biology & Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Tim Stearns
- Departments of Biology & Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Jana SC, Bettencourt-Dias M, Durand B, Megraw TL. Drosophila melanogaster as a model for basal body research. Cilia 2016; 5:22. [PMID: 27382461 PMCID: PMC4932733 DOI: 10.1186/s13630-016-0041-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, número 6, 2780-156 Oeiras, Portugal
| | | | - Bénédicte Durand
- Institut NeuroMyogène, CNRS UMR-5310 INSERM-U1217, Université Claude Bernard Lyon-1, Lyon, Villeurbanne, France
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
43
|
Cavazza T, Peset I, Vernos I. From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus. J Cell Sci 2016; 129:2538-47. [PMID: 27179073 DOI: 10.1242/jcs.183624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bipolar spindle assembly in the vertebrate oocyte relies on a self-organization chromosome-dependent pathway. Upon fertilization, the male gamete provides a centrosome, and the first and subsequent embryonic divisions occur in the presence of duplicated centrosomes that act as dominant microtubule organizing centres (MTOCs). The transition from meiosis to embryonic mitosis involves a necessary adaptation to integrate the dominant chromosome-dependent pathway with the centrosomes to form the bipolar spindle. Here, we took advantage of the Xenopus laevis egg extract system to mimic in vitro the assembly of the first embryonic spindle and investigate the respective contributions of the centrosome and the chromosome-dependent pathway to the kinetics of the spindle bipolarization. We found that centrosomes control the transition from the meiotic to the mitotic spindle assembly mechanism. By defining the kinetics of spindle bipolarization, the centrosomes ensure their own positioning to each spindle pole and thereby their essential correct inheritance to the two first daughter cells of the embryo for the development of a healthy organism.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabel Peset
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
44
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
45
|
Abstract
In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens.
Collapse
Affiliation(s)
- Anastassiia Vertii
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Hui-Fang Hung
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Heidi Hehnly
- />Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY USA
| | - Stephen Doxsey
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
46
|
Soley JT. A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme. Anim Reprod Sci 2016; 169:14-23. [PMID: 26907939 DOI: 10.1016/j.anireprosci.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/01/2022]
Abstract
This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm.
Collapse
Affiliation(s)
- John T Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
47
|
Fu J, Lipinszki Z, Rangone H, Min M, Mykura C, Chao-Chu J, Schneider S, Dzhindzhev NS, Gottardo M, Riparbelli MG, Callaini G, Glover DM. Conserved molecular interactions in centriole-to-centrosome conversion. Nat Cell Biol 2016; 18:87-99. [PMID: 26595382 PMCID: PMC4719191 DOI: 10.1038/ncb3274] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Abstract
Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.
Collapse
Affiliation(s)
- Jingyan Fu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Hélène Rangone
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Mingwei Min
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Charlotte Mykura
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jennifer Chao-Chu
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sandra Schneider
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | | | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | - David M. Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
48
|
Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M. Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle. PLANT PHYSIOLOGY 2015; 169:2730-43. [PMID: 26450704 PMCID: PMC4677889 DOI: 10.1104/pp.15.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 05/02/2023]
Abstract
The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages. Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions. We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.
Collapse
Affiliation(s)
- David Lopez
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Takashi Hamaji
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Janette Kropat
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Peter De Hoff
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Marco Morselli
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Liudmilla Rubbi
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sorel Fitz-Gibbon
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sean D Gallaher
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sabeeha S Merchant
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - James Umen
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Matteo Pellegrini
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| |
Collapse
|
49
|
Gottardo M, Callaini G, Riparbelli MG. Structural characterization of procentrioles in Drosophila spermatids. Cytoskeleton (Hoboken) 2015; 72:576-84. [PMID: 26492851 DOI: 10.1002/cm.21260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022]
Abstract
Male gametogenesis in insects is unusual in that the centrioles do not duplicate during the second meiosis and the differentiating spermatids inherit only one centriole. Here it is showed that a distinct procentriole is assembled close to the proximal region of the centriole in early S13 spermatids at the onion stage, confirming previous reports of a proximal centriole-like structure at the proximal end of the spermatid centriole. However, the procentrioles of Drosophila spermatids do not behave like true procentrioles, but their development is blocked at an early stage before the assembly of a complete A-tubule set. Therefore, they may represent early frozen stages of procentriole assembly that do not develop further and eventually disappear in late spermatids.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, via a. Moro 4, Siena, 53100, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, via a. Moro 4, Siena, 53100, Italy
| | | |
Collapse
|
50
|
Khire A, Vizuet AA, Davila E, Avidor-Reiss T. Asterless Reduction during Spermiogenesis Is Regulated by Plk4 and Is Essential for Zygote Development in Drosophila. Curr Biol 2015; 25:2956-63. [PMID: 26480844 DOI: 10.1016/j.cub.2015.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/24/2015] [Accepted: 09/18/2015] [Indexed: 11/17/2022]
Abstract
Centrosome reduction is the decrease in centrosomal components during spermatid differentiation (spermiogenesis). It is one of several dramatic subcellular reorganizations that lead to spermatozoa formation common to a wide range of animals. However, the mechanism underlying centrosome reduction is unknown and its functions are unclear. Here, we show that in Drosophila melanogaster spermiogenesis, the quantity of centrosomal proteins is dramatically reduced; for example, Asterless (Asl) is reduced ∼500-fold and is barely detected in spermatozoa. Asl reduction is regulated through a subset of its domains by the master regulator of centriole duplication Plk4 and by the ubiquitin ligase that targets Plk4 for degradation: Slimb. When Asl reduction is attenuated by Asl overexpression, plk4 mutations, Plk4 RNAi, or Slimb overexpression, Asl levels are higher in spermatozoa, resulting in embryos with reduced viability. Significantly, overexpressing Plk4 and Asl simultaneously, or combining plk4 and slimb mutations, balances their opposing effects on Asl reduction, restoring seemingly normal fertility. This suggests that increased Asl levels cause the observed reduced fertility and not other pleotropic effects. Attenuation of Asl reduction also causes delayed development and a failure to form astral microtubules in the zygote. Together, we provide the first insight into a molecular mechanism that regulates centrosome reduction and the first direct evidence that centrosome reduction is essential for post-fertilization development.
Collapse
Affiliation(s)
- Atul Khire
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA
| | - Alberto A Vizuet
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA
| | - Enrique Davila
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|