1
|
Yang S, Cao S, Xu X, Li Q, Li J, Guo J, Wang F, Bao Y, Jiang Z, Zhang T, Wang L, Sun S. adducin 1 is essential for the survival of erythroid precursors via regulating p53 transcription in zebrafish. iScience 2023; 26:107516. [PMID: 37636049 PMCID: PMC10448115 DOI: 10.1016/j.isci.2023.107516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/13/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Adducin 1 (Add1) is known as a membrane cytoskeletal protein, but its nuclear function remains unclear. In this study, we generated add1-deficient zebrafish to investigate its role in hematopoiesis. Lack of add1 impaired both primitive and definitive hematopoiesis, preventing healthy erythrocyte development. RNA sequencing revealed activation of the p53 pathway in add1-depleted erythroblast cells, leading to apoptosis at the 14-somites stage and 24 hpf. Interestingly, partial rescue of the anemic phenotype and apoptosis was observed with p53 insufficiency. Mechanistically, ADD1 was found to regulate promoter activity. These findings demonstrate that Add1 plays a crucial role in zebrafish erythropoiesis, involving the p53-mediated apoptotic pathway, expanding its regulatory role beyond cytoskeletal functions.
Collapse
Affiliation(s)
- Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shanhu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuebing Xu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Quan Li
- Beijing Institutes of Life Science Chinese Academy of Sciences, Beijing 100101, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zean Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Solman M, Blokzijl-Franke S, Piques F, Yan C, Yang Q, Strullu M, Kamel SM, Ak P, Bakkers J, Langenau DM, Cavé H, den Hertog J. Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects. eLife 2022; 11:e73040. [PMID: 35535491 PMCID: PMC9119675 DOI: 10.7554/elife.73040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function mutations in the protein-tyrosine phosphatase SHP2 are the most frequently occurring mutations in sporadic juvenile myelomonocytic leukemia (JMML) and JMML-like myeloproliferative neoplasm (MPN) associated with Noonan syndrome (NS). Hematopoietic stem and progenitor cells (HSPCs) are the disease propagating cells of JMML. Here, we explored transcriptomes of HSPCs with SHP2 mutations derived from JMML patients and a novel NS zebrafish model. In addition to major NS traits, CRISPR/Cas9 knock-in Shp2D61G mutant zebrafish recapitulated a JMML-like MPN phenotype, including myeloid lineage hyperproliferation, ex vivo growth of myeloid colonies, and in vivo transplantability of HSPCs. Single-cell mRNA sequencing of HSPCs from Shp2D61G zebrafish embryos and bulk sequencing of HSPCs from JMML patients revealed an overlapping inflammatory gene expression pattern. Strikingly, an anti-inflammatory agent rescued JMML-like MPN in Shp2D61G zebrafish embryos. Our results indicate that a common inflammatory response was triggered in the HSPCs from sporadic JMML patients and syndromic NS zebrafish, which potentiated MPN and may represent a future target for JMML therapies.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | | | - Florian Piques
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Département de GénétiqueParisFrance
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Qiqi Yang
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Marion Strullu
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Service d’Onco-Hématologie PédiatriqueParisFrance
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | - Pakize Ak
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
- Department of Medical Physiology, Division of Heart and Lungs, UMC UtrechtUtrechtNetherlands
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Hospital Research InstituteCharlestownUnited States
- Massachusetts General Hospital Cancer CenterCharlestownUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Hélène Cavé
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de ParisParisFrance
- Assistance Publique des Hôpitaux de Paris AP-HP, Hôpital Robert Debré, Département de GénétiqueParisFrance
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and UMC UtrechtUtrechtNetherlands
- Institute of Biology Leiden, Leiden UniversityLeidenNetherlands
| |
Collapse
|
5
|
Cytotoxicity of Newly Synthesized Quinazoline-Sulfonamide Derivatives in Human Leukemia Cell Lines and Their Effect on Hematopoiesis in Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms23094720. [PMID: 35563111 PMCID: PMC9104550 DOI: 10.3390/ijms23094720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Many quinazoline derivatives with pharmacological properties, such as anticancer activity, have been synthesized. Fourteen quinazoline derivatives bearing a substituted sulfonamide moiety (4a-n) were previously synthesized and fully characterized. These compounds exerted antiproliferative activity against cell lines derived from solid tumors. Herein, the antileukemic activities of these compounds (4a-n) against two different leukemia cell lines (Jurkat acute T cell and THP-1 acute monocytic) were investigated. Our investigation included examining their activity in vivo in a zebrafish embryo model. Remarkably, compounds 4a and 4d were the most potent in suppressing cell proliferation, with an IC50 value range of 4-6.5 µM. Flow cytometry analysis indicated that both compounds halted cell progression at the G2/M phase and induced apoptosis in a dose-dependent manner. RT-PCR and Western blot analyses also showed that both compounds effectively induced apoptosis by upregulating the expression of proapoptotic factors while downregulating that of antiapoptotic factors. In vivo animal toxicity assays performed in zebrafish embryos indicated that compound 4d was more toxic than compound 4a, with compound 4d inducing multiple levels of teratogenic phenotypes in zebrafish embryos at a sublethal concentration. Moreover, both compounds perturbed the hematopoiesis process in developing zebrafish embryos. Collectively, our data suggest that compounds 4a and 4d have the potential to be used as antileukemic agents.
Collapse
|
6
|
Ma J, Mahmud N, Bosland MC, Ross SR. DDX41 is needed for pre- and postnatal hematopoietic stem cell differentiation in mice. Stem Cell Reports 2022; 17:879-893. [PMID: 35303436 PMCID: PMC9023775 DOI: 10.1016/j.stemcr.2022.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
DDX41 is a tumor suppressor frequently mutated in human myeloid neoplasms, but whether it affects hematopoiesis is unknown. Using a knockout mouse, we demonstrate that DDX41 is required for mouse hematopoietic stem and progenitor cell (HSPC) survival and differentiation, particularly of myeloid lineage cells. Transplantation of Ddx41 knockout fetal liver and adult bone marrow (BM) cells was unable to rescue mice from lethal irradiation, and knockout stem cells were also defective in colony formation assays. RNA-seq analysis of Lin-/cKit+/Sca1+Ddx41 knockout cells from fetal liver demonstrated that the expression of many genes associated with hematopoietic differentiation were altered. Furthermore, differential splicing of genes involved in key biological processes was observed. Our data reveal a critical role for DDX41 in HSPC differentiation and myeloid progenitor development, likely through regulating gene expression programs and splicing.
Collapse
Affiliation(s)
- Jing Ma
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, 835 South Wolcott Avenue, E705 MSB (MC 790), Chicago, IL 60612, USA
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, 835 South Wolcott Avenue, E705 MSB (MC 790), Chicago, IL 60612, USA.
| |
Collapse
|
7
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
8
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
9
|
Manca R, Glomski C, Pica A. Hematopoietic stem cells debut in embryonic lymphomyeloid tissues of elasmobranchs. Eur J Histochem 2019; 63:3060. [PMID: 31577110 PMCID: PMC6778817 DOI: 10.4081/ejh.2019.3060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
The evolutionary initiation of the appearance in lymphomyeloid tissue of the hemopoietic stem cell in the earliest (most primitive) vertebrate model, i.e. the elasmobranch (chondroichthyan) Torpedo marmorata Risso, has been studied. The three consecutive developmental stages of torpedo embryos were obtained by cesarean section from a total of six pregnant torpedoes. Lymphomyeloid tissue was identified in the Leydig organ and epigonal tissue. The sections were treated with monoclonal anti-CD34 and anti-CD38 antibodies to detect hematopoietic stem cells. At stage I (2-cm-long embryos with external gills) and at stage II (3-4 cm-long embryos with a discoidal shape and internal gills), some lymphoid-like cells that do not demonstrate any immunolabeling for these antibodies are present. Neither CD34+ nor CD38+ cells are identifiable in lymphomyeloid tissue of stage I and stage II embryos, while a CD34+CD38- cell was identified in the external yolk sac of stage II embryo. The stage III (10-11-cm-long embryos), the lymphomyeloid tissue contained four cell populations, respectively CD34+CD38-, CD34+CD38+, CD34-CD38+, and CD34-CD38- cells. The spleen and lymphomyeloid tissue are the principal sites for the development of hematopoietic progenitors in embryonic Torpedo marmorata Risso. The results demonstrated that the CD34 expression on hematopoietic progenitor cells and its extraembryonic origin is conserved throughout the vertebrate evolutionary scale.
Collapse
Affiliation(s)
- Rosa Manca
- Department of Biology, University of Naples Federico II.
| | | | | |
Collapse
|