1
|
Zhang GL, Porter MJ, Awol AK, Orsburn BC, Canner SW, Gray JJ, O'Meally RN, Cole RN, Schnaar RL. The Human Ganglioside Interactome in Live Cells Revealed Using Clickable Photoaffinity Ganglioside Probes. J Am Chem Soc 2024; 146:17801-17816. [PMID: 38887845 DOI: 10.1021/jacs.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Mitchell J Porter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Abduselam K Awol
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Samuel W Canner
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Robert N O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Start Me Up: How Can Surrounding Gangliosides Affect Sodium-Potassium ATPase Activity and Steer towards Pathological Ion Imbalance in Neurons? Biomedicines 2022; 10:biomedicines10071518. [PMID: 35884824 PMCID: PMC9313118 DOI: 10.3390/biomedicines10071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Gangliosides, amphiphilic glycosphingolipids, tend to associate laterally with other membrane constituents and undergo extensive interactions with membrane proteins in cis or trans configurations. Studies of human diseases resulting from mutations in the ganglioside biosynthesis pathway and research on transgenic mice with the same mutations implicate gangliosides in the pathogenesis of epilepsy. Gangliosides are reported to affect the activity of the Na+/K+-ATPase, the ubiquitously expressed plasma membrane pump responsible for the stabilization of the resting membrane potential by hyperpolarization, firing up the action potential and ion homeostasis. Impaired Na+/K+-ATPase activity has also been hypothesized to cause seizures by several mechanisms. In this review we present different epileptic phenotypes that are caused by impaired activity of Na+/K+-ATPase or changed membrane ganglioside composition. We further discuss how gangliosides may influence Na+/K+-ATPase activity by acting as lipid sorting machinery providing the optimal stage for Na+/K+-ATPase function. By establishing a distinct lipid environment, together with other membrane lipids, gangliosides possibly modulate Na+/K+-ATPase activity and aid in “starting up” and “turning off” this vital pump. Therefore, structural changes of neuronal membranes caused by altered ganglioside composition can be a contributing factor leading to aberrant Na+/K+-ATPase activity and ion imbalance priming neurons for pathological firing.
Collapse
|
4
|
Biernatowska A, Wójtowicz K, Trombik T, Sikorski AF, Czogalla A. MPP1 Determines the Mobility of Flotillins and Controls the Confinement of Raft-Associated Molecules. Cells 2022; 11:cells11030311. [PMID: 35159121 PMCID: PMC8834348 DOI: 10.3390/cells11030311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/02/2023] Open
Abstract
MPP1 (membrane palmitoylated protein 1) belongs to the MAGUK (membrane-associated guanylate kinase homologs) scaffolding protein family. These proteins organize molecules into complexes, thereby maintaining the structural heterogeneity of the plasma membrane (PM). Our previous results indicated that direct, high-affinity interactions between MPP1 and flotillins (raft marker proteins) display dominant PM-modulating capacity in erythroid cells. In this study, with high-resolution structured illuminated imaging, we investigated how these complexes are organized within erythroid cells on the nanometer scale. Furthermore, using other spectroscopic techniques, namely fluorescence recovery after photobleaching (FRAP) and spot-variation fluorescence correlation spectroscopy (svFCS), we revealed that MPP1 acts as a key raft-capturing molecule, regulating temporal immobilization of flotillin-based nanoclusters, and controls local concentration and confinement of sphingomyelin and Thy-1 in raft nanodomains. Our data enabled us to uncover molecular principles governing the key involvement of MPP1-flotillin complexes in the dynamic nanoscale organization of PM of erythroid cells.
Collapse
Affiliation(s)
- Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.B.); (A.C.); Tel.: +48-71-375-6417 (A.B.); +48-71-375-6356 (A.C.)
| | - Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland;
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland;
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wrocław, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.B.); (A.C.); Tel.: +48-71-375-6417 (A.B.); +48-71-375-6356 (A.C.)
| |
Collapse
|
5
|
Ilic K, Lin X, Malci A, Stojanović M, Puljko B, Rožman M, Vukelić Ž, Heffer M, Montag D, Schnaar RL, Kalanj-Bognar S, Herrera-Molina R, Mlinac-Jerkovic K. Plasma Membrane Calcium ATPase-Neuroplastin Complexes Are Selectively Stabilized in GM1-Containing Lipid Rafts. Int J Mol Sci 2021; 22:ijms222413590. [PMID: 34948386 PMCID: PMC8708829 DOI: 10.3390/ijms222413590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- BRAIN Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King’s College London, London SE5 9NU, UK
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Ayse Malci
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Mario Stojanović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia;
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
| | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Rodrigo Herrera-Molina
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8307993, Chile
- Center for Behavioral Brain Sciences, 39120 Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
6
|
Mlinac-Jerkovic K, Ilic K, Zjalić M, Mandić D, Debeljak Ž, Balog M, Damjanović V, Maček Hrvat N, Habek N, Kalanj-Bognar S, Schnaar RL, Heffer M. Who's in, who's out? Re-evaluation of lipid raft residents. J Neurochem 2021; 158:657-672. [PMID: 34081780 PMCID: PMC8363533 DOI: 10.1111/jnc.15446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Lipid rafts, membrane microdomains enriched with (glyco)sphingolipids, cholesterol, and select proteins, act as cellular signalosomes. Various methods have been used to separate lipid rafts from bulk (non‐raft) membranes, but most often, non‐ionic detergent Triton X‐100 has been used in their isolation. However, Triton X‐100 is a reported disruptor of lipid rafts. Histological evidence confirmed raft disruption by Triton X‐100, but remarkably revealed raft stability to treatment with a related polyethylene oxide detergent, Brij O20. We report isolation of detergent‐resistant membranes from mouse brain using Brij O20 and its use to determine the distribution of major mammalian brain gangliosides, GM1, GD1a, GD1b and GT1b. A different distribution of gangliosides—classically used as a raft marker—was discovered using Brij O20 versus Triton X‐100. Immunohistochemistry and imaging mass spectrometry confirm the results. Use of Brij O20 results in a distinctive membrane distribution of gangliosides that is not all lipid raft associated, but depends on the ganglioside structure. This is the first report of a significant proportion of gangliosides outside raft domains. We also determined the distribution of proteins functionally related to neuroplasticity and known to be affected by ganglioside environment, glutamate receptor subunit 2, amyloid precursor protein and neuroplastin and report the lipid raft populations of these proteins in mouse brain tissue. This work will enable more accurate lipid raft analysis with respect to glycosphingolipid and membrane protein composition and lead to improved resolution of lipid–protein interactions within biological membranes.
Collapse
Affiliation(s)
- Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Department of Pharmacology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Vladimir Damjanović
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikola Habek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
7
|
Balog M, Blažetić S, Ivić V, Labak I, Krajnik B, Marin R, Canerina-Amaro A, de Pablo DP, Bardak A, Gaspar R, Szűcs KF, Vari SG, Heffer M. Disarranged neuroplastin environment upon aging and chronic stress recovery in female Sprague Dawley rats. Eur J Neurosci 2021; 55:2474-2490. [PMID: 33909305 PMCID: PMC9290558 DOI: 10.1111/ejn.15256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Chronic stress produces long-term metabolic changes throughout the superfamily of nuclear receptors, potentially causing various pathologies. Sex hormones modulate the stress response and generate a sex-specific age-dependent metabolic imprint, especially distinct in the reproductive senescence of females. We monitored chronic stress recovery in two age groups of female Sprague Dawley rats to determine whether stress and/or aging structurally changed the glycolipid microenvironment, a milieu playing an important role in cognitive functions. Old females experienced memory impairment even at basal conditions, which was additionally amplified by stress. On the other hand, the memory of young females was not disrupted. Stress recovery was followed by a microglial decrease and an increase in astrocyte count in the hippocampal immune system. Since dysfunction of the brain immune system could contribute to disturbed synaptogenesis, we analyzed neuroplastin expression and the lipid environment. Neuroplastin microenvironments were explored by analyzing immunofluorescent stainings using a newly developed Python script method. Stress reorganized glycolipid microenvironment in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) hippocampal regions of old females but in a very different fashion, thus affecting neuroplasticity. The postulation of four possible neuroplastin environments pointed to the GD1a ganglioside enrichment during reproductive senescence of stressed females, as well as its high dispersion in both regions and to GD1a and GM1 loss in the CA1 region. A specific lipid environment might influence neuroplastin functionality and underlie synaptic dysfunction triggered by a combination of aging and chronic stress.
Collapse
Affiliation(s)
- Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Bartosz Krajnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Bardak
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Wu T, Xu W, Chen H, Li S, Dou R, Shen H, Liu X, Liu X, Hong Y, He J. Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and their effects on focal cerebral ischemia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1016-1029. [PMID: 32845287 DOI: 10.1093/abbs/gmaa082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have reported an increasing incidence of ischemic stroke, particularly in younger age groups. Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) are the most common stem cells acquired from the teeth of adults, even elderly people. However, there are no detailed reports on whether DPSCs or PDLSCs are suitable for the treatment of ischemic stroke. In this study, the in vitro differentiation of DPSCs and PDLSCs into neuron-like cells was evaluated. Then, we established a rat model of cerebral ischemia. DPSCs or PDLSCs were administered to animals, and the therapeutic effects of these two types of cells were investigated. The results showed that PDLSCs had a higher differentiation rate than DPSCs. Immunofluorescence studies showed that the expression of the neuronal differentiation marker Thy-1 was higher in PDLSCs than in DPSCs, and other gene markers of neuronal differentiation showed corresponding trends, which were confirmed by western blot analysis. In this process, the Notch and Wnt signaling pathways were inhibited and activated, respectively. Finally, rats with transient occlusion of the right middle cerebral artery were used as a model to assess the therapeutic effect of PDLSCs and DPSCs on ischemia. The results showed that rats in the PDLSC-treated group emitted significantly greater red fluorescence signal than the DPSC-treated group. PDLSC transplantation promoted the recovery of neurological function more effectively than DPSC transplantation. Hence, PDLSCs represent an autogenous source of adult mesenchymal stem cells with desirable biological properties and may be an ideal candidate for clinical applications.
Collapse
Affiliation(s)
- Tingting Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Wanting Xu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Hanlin Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Shasha Li
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Rengang Dou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Hongtao Shen
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xue Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xiaoyu Liu
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230001, China
| |
Collapse
|
9
|
Baeza-Kallee N, Bergès R, Soubéran A, Colin C, Denicolaï E, Appay R, Tchoghandjian A, Figarella-Branger D. Glycolipids Recognized by A2B5 Antibody Promote Proliferation, Migration, and Clonogenicity in Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11091267. [PMID: 31466399 PMCID: PMC6769647 DOI: 10.3390/cancers11091267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
A2B5+ cells isolated from human glioblastomas exhibit cancer stem cell properties. The A2B5 epitope belongs to the sialoganglioside family and is synthetized by the ST8 alpha-N-acetyl-neuraminidase α-2,8-sialyltransferase 3 (ST8SIA3) enzyme. Glycolipids represent attractive targets for solid tumors; therefore, the aim of this study was to decipher A2B5 function in glioblastomas. To this end, we developed cell lines expressing various levels of A2B5 either by genetically manipulating ST8SIA3 or by using neuraminidase. The overexpression of ST8SIA3 in low-A2B5-expressing cells resulted in a dramatic increase of A2B5 immunoreactivity. ST8SIA3 overexpression increased cell proliferation, migration, and clonogenicity in vitro and tumor growth when cells were intracranially grafted. Conversely, lentiviral ST8SIA3 inactivation in low-A2B5-expressing cells resulted in reduced proliferation, migration, and clonogenicity in vitro and extended mouse survival. Furthermore, in the shST8SIA3 cells, we found an active apoptotic phenotype. In high-A2B5-expressing cancer stem cells, lentiviral delivery of shST8SIA3 stopped cell growth. Neuraminidase treatment, which modifies the A2B5 epitope, impaired cell survival, proliferation, self-renewal, and migration. Our findings prove the crucial role of the A2B5 epitope in the promotion of proliferation, migration, clonogenicity, and tumorigenesis, pointing at A2B5 as an attractive therapeutic target for glioblastomas.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Aurélie Soubéran
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Carole Colin
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Emilie Denicolaï
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Romain Appay
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France
| | | | - Dominique Figarella-Branger
- Aix Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
- Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, AP-HM, Marseille, France.
| |
Collapse
|
10
|
Leyton L, Díaz J, Martínez S, Palacios E, Pérez LA, Pérez RD. Thy-1/CD90 a Bidirectional and Lateral Signaling Scaffold. Front Cell Dev Biol 2019; 7:132. [PMID: 31428610 PMCID: PMC6689999 DOI: 10.3389/fcell.2019.00132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/04/2019] [Indexed: 01/18/2023] Open
Abstract
Thy-1/CD90 is a glycoprotein attached to the outer face of the plasma membrane with various functions, which depend on the context of specific physiological or pathological conditions. Many of these reported functions for Thy-1/CD90 arose from studies by our group, which identified the first ligand/receptor for Thy-1/CD90 as an integrin. This finding initiated studies directed toward unveiling the molecular mechanisms that operate downstream of Thy-1/CD90 activation, and its possible interaction with proteins in the membrane plane to regulate their function. The association of Thy-1/CD90 with a number of cell surface molecules allows the formation of extra/intracellular multiprotein complexes composed of various ligands and receptors, extracellular matrix proteins, intracellular signaling proteins, and the cytoskeleton. The complexes sense changes that occur inside and outside the cells, with Thy-1/CD90 at the core of this extracellular molecular platform. Molecular platforms are scaffold-containing microdomains where key proteins associate to prominently influence cellular processes and behavior. Each component, by itself, is less effective, but when together with various scaffold proteins to form a platform, the components become more specific and efficient to convey the messages. This review article discusses the experimental evidence that supports the role of Thy-1/CD90 as a membrane-associated platform (ThyMAP).
Collapse
Affiliation(s)
- Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samuel Martínez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Esteban Palacios
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Laboratorio de Microbiología Celular, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Leonardo A Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramón D Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|