1
|
Xie R, Yun J, Li C, Zhang S, Zhong A, Wu J, Cen Y, Li Z, Chen J. Identification of potential therapeutic target SPP1 and related RNA regulatory pathway in keloid based on bioinformatics analysis. Ann Med 2024; 56:2382949. [PMID: 39041063 PMCID: PMC11268233 DOI: 10.1080/07853890.2024.2382949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE To explore the complex mechanisms of keloid, new approaches have been developed by different strategies. However, conventional treatment did not significantly reduce the recurrence rate. This study aimed to identify new biomarkers and mechanisms for keloid progression through bioinformatics analyses. METHODS In our study, microarray datasets for keloid were downloaded from the GEO database. Differentially expressed genes (DEGs) were identified by R software. Multiple bioinformatics tools were used to identify hub genes, and reverse predict upstream miRNAs and lncRNA molecules of target hub genes. Finally, the total RNA-sequencing technique and miRNA microarray were combined to validate the identified genes. RESULTS Thirty-one DEGs were screened out and the upregulated hub gene SPP1 was finally identified, which was consistent with our RNA-sequencing analysis results and validation dataset. In addition, a ceRNA network of mRNA (SPP1)-miRNA (miR-181a-5p)-lncRNA (NEAT1, MALAT1, LINC00667, NORAD, XIST and MIR4458HG) was identified by the bioinformatics databases. The results of our miRNA microarray showed that miR-181a-5p was upregulated in keloid, also we found that the lncRNA NEAT1 could affect keloid progression by retrieving the relevant literature. CONCLUSIONS We speculate that SPP1 is a potential candidate biomarker and therapeutic target for patients with keloid, and NEAT1/miR-181a-5p/SPP1 might be the RNA regulatory pathway that regulates keloid formation.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiao Yun
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chenyu Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiwei Zhang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ai Zhong
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junliang Wu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Oh S, Yeo E, Shim J, Noh H, Park J, Lee KT, Kim SH, Lee D, Lee JH. Revealing the pathogenesis of keloids based on the status: Active vs inactive. Exp Dermatol 2024; 33:e15088. [PMID: 38685820 DOI: 10.1111/exd.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Recently, the pathomechanisms of keloids have been extensively researched using transcriptomic analysis, but most studies did not consider the activity of keloids. We aimed to profile the transcriptomics of keloids according to their clinical activity and location within the keloid lesion, compared with normal and mature scars. Tissue samples were collected (keloid based on its activity (active and inactive), mature scar from keloid patients and normal scar (NS) from non-keloid patients). To reduce possible bias, all keloids assessed in this study had no treatment history and their location was limited to the upper chest or back. Multiomics assessment was performed by using single-cell RNA sequencing and multiplex immunofluorescence. Increased mesenchymal fibroblasts (FBs) was the main feature in keloid patients. Noticeably, the proportion of pro-inflammatory FBs was significantly increased in active keloids compared to inactive ones. To explore the nature of proinflammatory FBs, trajectory analysis was conducted and CCN family associated with mechanical stretch exhibited higher expression in active keloids. For vascular endothelial cells (VECs), the proportion of tip and immature cells increased in keloids compared to NS, especially at the periphery of active keloids. Also, keloid VECs highly expressed genes with characteristics of mesenchymal activation compared to NS, especially those from the active keloid center. Multiomics analysis demonstrated the distinct expression profile of active keloids. Clinically, these findings may provide the future appropriate directions for development of treatment modalities of keloids. Prevention of keloids could be possible by the suppression of mesenchymal activation between FBs and VECs and modulation of proinflammatory FBs may be the key to the control of active keloids.
Collapse
Affiliation(s)
- Sejin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Feng J, Li Y, Zhang Y, Sun S, Sun J, Xu Q, Ji X, Liu Y, Wan Q. Endothelium-specific deletion of p62 causes organ fibrosis and cardiac dysfunction. J Transl Med 2024; 22:161. [PMID: 38365674 PMCID: PMC10870664 DOI: 10.1186/s12967-024-04946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The autophagy adapter SQSTM1/p62 is crucial for maintaining homeostasis in various organs and cells due to its protein-protein interaction domains and involvement in diverse physiological and pathological processes. Vascular endothelium cells play a unique role in vascular biology and contribute to vascular health. METHODS Using the Cre-loxP system, we generated mice with endothelium cell-specific knockout of p62 mediated by Tek (Tek receptor tyrosine kinase)-cre to investigate the essential role of p62 in the endothelium. In vitro, we employed protein mass spectrometry and IPA to identify differentially expressed proteins upon knockdown of p62. Immunoprecipitation assays were conducted to demonstrate the interaction between p62 and FN1 or LAMC2 in human umbilical vein endothelium cells (HUVECs). Additionally, we identified the degradation pathway of FN1 and LAMC2 using the autophagy inhibitor 3-methyladenine (3-MA) or proteasome inhibitor MG132. Finally, the results of immunoprecipitation demonstrated that the interaction between p62 and LAMC2 was abolished in the PB1 truncation group of p62, while the interaction between p62 and FN1 was abolished in the UBA truncation group of p62. RESULTS Our findings revealed that p62 Endo mice exhibited heart, lung, and kidney fibrosis compared to littermate controls, accompanied by severe cardiac dysfunction. Immunoprecipitation assays provided evidence of p62 acting as an autophagy adapter in the autophagy-lysosome pathway for FN1 and LAMC2 degradation respectively through PB1 and UBA domain with these proteins rather than proteasome system. CONCLUSIONS Our study demonstrates that defects in p62 within endothelium cells induce multi-organ fibrosis and cardiac dysfunction in mice. Our findings indicate that FN1 and LAMC2, as markers of (EndoMT), have detrimental effects on HUVECs and elucidate the autophagy-lysosome degradation mechanism of FN1 and LAMC2.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan Central Hospital, Shandong University, Jinan, 250021, Shandong, China
- Qingdao Central Hospital, Shandong University, Qingdao, 266042, Shandong, China
| | - Yan Li
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan Central Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Quanlin Xu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Jinan Central Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Robinson CJ, Thiagarajan L, Maynard R, Aruketty M, Herrera J, Dingle L, Reid A, Wong J, Cao H, Dooley J, Liston A, Müllhaupt D, Hiebert P, Hiebert H, Kurinna S. Release of miR-29 Target Laminin C2 Improves Skin Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:195-208. [PMID: 37981221 DOI: 10.1016/j.ajpath.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell-matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization.
Collapse
Affiliation(s)
- Connor J Robinson
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lalitha Thiagarajan
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca Maynard
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Maneesha Aruketty
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jeremy Herrera
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lewis Dingle
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam Reid
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond-McIndoe Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Heng Cao
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James Dooley
- Center for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium; Department of Microbiology and Immunology, Katholieke Universiteit-University of Leuven, Leuven, Belgium; Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Adrian Liston
- Center for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium; Department of Microbiology and Immunology, Katholieke Universiteit-University of Leuven, Leuven, Belgium; Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Daniela Müllhaupt
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zürich (ETH) Zurich, Zurich, Switzerland
| | - Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zürich (ETH) Zurich, Zurich, Switzerland
| | - Hayley Hiebert
- Department of Biology, Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule Zürich (ETH) Zurich, Zurich, Switzerland
| | - Svitlana Kurinna
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
5
|
Zhu YO, MacDonnell S, Kaplan T, Liu C, Ali Y, Rangel SM, Wipperman MF, Belback M, Sun DS, Ren Z, Zhou XA, Halasz G, Morton L, Kundu RV. Defining a Unique Gene Expression Profile in Mature and Developing Keloids. JID INNOVATIONS 2023; 3:100211. [PMID: 37564104 PMCID: PMC10410242 DOI: 10.1016/j.xjidi.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 08/12/2023] Open
Abstract
Keloids are benign, fibroproliferative dermal tumors that typically form owing to abnormal wound healing. The current standard of care is generally ineffective and does not prevent recurrence. To characterize keloid scars and better understand the mechanism of their formation, we performed transcriptomic profiling of keloid biopsies from a total of 25 subjects of diverse racial and ethnic origins, 15 of whom provided a paired nonlesional sample, a longitudinal sample, or both. The transcriptomic signature of nonlesional skin biopsies from subjects with keloids resembled that of control skin at baseline but shifted to closely match that of keloid skin after dermal trauma. Peripheral keloid skin and rebiopsied surrounding normal skin both showed upregulation of epithelial-mesenchymal transition markers, extracellular matrix organization, and collagen genes. These keloid signatures strongly overlapped those from healthy wound healing studies, usually with greater perturbations, reinforcing our understanding of keloids as dysregulated and exuberant wound healing. In addition, 219 genes uniquely regulated in keloids but not in normal injured or uninjured skin were also identified. This study provides insights into mature and developing keloid signatures that can act as a basis for further validation and target identification in the search for transformative keloid treatments.
Collapse
Affiliation(s)
- Yuan O. Zhu
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | | | | | - Chien Liu
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Yasmeen Ali
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie M. Rangel
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Madeleine Belback
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong Alan Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabor Halasz
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Lori Morton
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Roopal V. Kundu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
李 政, 田 保, 梁 海. [Keloid nomogram prediction model based on weighted gene co-expression network analysis and machine learning]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:725-735. [PMID: 37666763 PMCID: PMC10477384 DOI: 10.7507/1001-5515.202212048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/02/2023] [Indexed: 09/06/2023]
Abstract
Keloids are benign skin tumors resulting from the excessive proliferation of connective tissue in wound skin. Precise prediction of keloid risk in trauma patients and timely early diagnosis are of paramount importance for in-depth keloid management and control of its progression. This study analyzed four keloid datasets in the high-throughput gene expression omnibus (GEO) database, identified diagnostic markers for keloids, and established a nomogram prediction model. Initially, 37 core protein-encoding genes were selected through weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the centrality algorithm of the protein-protein interaction network. Subsequently, two machine learning algorithms including the least absolute shrinkage and selection operator (LASSO) and the support vector machine-recursive feature elimination (SVM-RFE) were used to further screen out four diagnostic markers with the highest predictive power for keloids, which included hepatocyte growth factor (HGF), syndecan-4 (SDC4), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), and Rho family guanosine triphophatase 3 (RND3). Potential biological pathways involved were explored through gene set enrichment analysis (GSEA) of single-gene. Finally, univariate and multivariate logistic regression analyses of diagnostic markers were performed, and a nomogram prediction model was constructed. Internal and external validations revealed that the calibration curve of this model closely approximates the ideal curve, the decision curve is superior to other strategies, and the area under the receiver operating characteristic curve is higher than the control model (with optimal cutoff value of 0.588). This indicates that the model possesses high calibration, clinical benefit rate, and predictive power, and is promising to provide effective early means for clinical diagnosis.
Collapse
Affiliation(s)
- 政宇 李
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 保华 田
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 海霞 梁
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
7
|
Zhang M, Chen H, Qian H, Wang C. Characterization of the skin keloid microenvironment. Cell Commun Signal 2023; 21:207. [PMID: 37587491 PMCID: PMC10428592 DOI: 10.1186/s12964-023-01214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Keloids are a fibroproliferative skin disorder that develops in people of all ages. Keloids exhibit some cancer-like behaviors, with similar genetic and epigenetic modifications in the keloid microenvironment. The keloid microenvironment is composed of keratinocytes, fibroblasts, myofibroblasts, vascular endothelial cells, immune cells, stem cells and collagen fibers. Recent advances in the study of keloids have led to novel insights into cellular communication among components of the keloid microenvironment as well as potential therapeutic targets for treating keloids. In this review, we summarized the nature of genetic and epigenetic regulation in keloid-derived fibroblasts, epithelial-to-mesenchymal transition of keratinocytes, immune cell infiltration into keloids, the differentiation of keloid-derived stem cells, endothelial-to-mesenchymal transition of vascular endothelial cells, extracellular matrix synthesis and remodeling, and uncontrolled angiogenesis in keloids with the aim of identifying new targets for therapeutic benefit. Video Abstract.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hailong Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huan Qian
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Chen Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
8
|
Liu D, Zhang Y, Zhen L, Xu R, Ji Z, Ye Z. Activation of the NFκB signaling pathway in IL6+CSF3+ vascular endothelial cells promotes the formation of keloids. Front Bioeng Biotechnol 2022; 10:917726. [PMID: 36082167 PMCID: PMC9445273 DOI: 10.3389/fbioe.2022.917726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Keloid is a disease caused by abnormal proliferation of skin fibres, the causative mechanism of which remains unclear. Method: In this study, endothelial cells of keloids were studied using scRNAseq combined with bulk-RNAseq data from keloids. The master regulators driving keloid development were identified by transcription factor enrichment analysis. The pattern of changes in vascular endothelial cells during keloid development was explored by inferring endothelial cell differentiation trajectories. Deconvolution of bulkRNAseq by CIBERSORTX verified the pattern of keloidogenesis. Immunohistochemistry for verification of the lesion process in keloid endothelial cells. Results: The endothelial cells of keloids consist of four main cell populations (MMP1+ Endo0, FOS + JUN + Endo1, IL6+CSF3+Endo2, CXCL12 + Endo3). Endo3 is an endothelial progenitor cell, Endo1 is an endothelial cell in the resting state, Endo2 is an endothelial cell in the activated state and Endo0 is an endothelial cell in the terminally differentiated state. Activation of the NFΚB signaling pathway is a typical feature of Endo2 and represents the early skin state of keloids. Conclusion: We have identified patterns of vascular endothelial cell lesions during keloidogenesis and development, and have found that activation of the NFΚB signaling pathway is an essential feature of keloid formation. These findings are expected to contribute to the understanding of the pathogenesis of keloids and to the development of new targeted therapeutic agents for the lesional characteristics of vascular endothelial cells.
Collapse
Affiliation(s)
- Delin Liu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yidi Zhang
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Lisha Zhen
- School of Statistics, Renmin University of China, Beijing, China
- Beijing Sankuai Online Technology Co.,Ltd, Dhaka, Bangladesh
| | - Rong Xu
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhenling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhenling Ji, ; Zheng Ye,
| | - Zheng Ye
- Department of Endcrinology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- *Correspondence: Zhenling Ji, ; Zheng Ye,
| |
Collapse
|
9
|
Angiogenic gene characterization and vessel permeability of dermal microvascular endothelial cells isolated from burn hypertrophic scar. Sci Rep 2022; 12:12222. [PMID: 35851095 PMCID: PMC9293893 DOI: 10.1038/s41598-022-16376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic scar (HTS) formation is a common challenge for patients after burn injury. Dermal microvascular endothelial cells (DMVECs) are an understudied cell type in HTS. An increase in angiogenesis and microvessel density can be observed in HTS. Endothelial dysfunction may play a role in scar development. This study aims to generate a functional and expression profile of HTS DMVECs. We hypothesize that transcript and protein-level responses in HTS DMVECs differ from those in normal skin (NS). HTSs were created in red Duroc pigs. DMVECs were isolated using magnetic-activated cell sorting with ulex europaeus agglutinin 1 (UEA-1) lectin. Separate transwell inserts were used to form monolayers of HTS DMVECs and NS DMVECs. Cell injury was induced and permeability was assessed. Gene expression in HTS DMVECS versus NS DMVECs was measured. Select differentially expressed genes were further investigated. HTS had an increased area density of dermal microvasculature compared to NS. HTS DMVECs were 17.59% less permeable than normal DMVECs (p < 0.05). After injury, NS DMVECs were 28.4% and HTS DMVECs were 18.8% more permeable than uninjured controls (28.4 ± 4.8 vs 18.8 ± 2.8; p = 0.11). PCR array identified 31 differentially expressed genes between HTS and NS DMVECs, of which 10 were upregulated and 21 were downregulated. qRT-PCR and ELISA studies were in accordance with the array. DMVECs expressed a mixed profile of factors that can contribute to and inhibit scar formation. HTS DMVECs have both a discordant response to cellular insults and baseline differences in function, supporting their proposed role in scar pathology. Further investigation of DMVECs is warranted to elucidate their contribution to HTS pathogenesis.
Collapse
|
10
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
11
|
Li X, Zhu Z, Xu Y, Xu S. The Downregulated Lipo-Related Gene Expression Pattern in Keloid Indicates Fat Graft Is a Potential Clinical Option for Keloid. Front Med (Lausanne) 2022; 9:846895. [PMID: 35677827 PMCID: PMC9168263 DOI: 10.3389/fmed.2022.846895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Keloids are a common complication of wounds, often manifesting with continuous hyperplasia and aggressive growth. Keloids also have a high recurrence rate and are largely resistant to treatment, making them clinically incurable, highlighting the need to translate basic research into clinical practice. Materials and Methods We used GSE158395 and GSE92566 as discovery datasets to identify specific enriched hub genes and lncRNAs associated with keloid development and progression. This data was then used to identify the competing endogenous RNAs (ceRNAs) in these pathways by using a bidirectional selection method. Then, all hub genes and lncRNAs in ceRNAs were validated using GSE90051, GSE178562, and GSE175866, which describe the transcriptional profiles of keloid tissues, fibroblasts from pathological scars, and keloid fibroblast subpopulations, respectively. The keloid tissues were measured with qPCR. Results Both fat-associated biological processes and fat cell differentiation were enriched in the downregulated gene set. Further evaluation revealed that all 11 hub genes were lipo-related, and most of these were differentially expressed in all three validation datasets. We then identified a clear ceRNA network within the data comprising six hub genes and four lncRNAs. Evaluations of the validation datasets confirmed that all six of these hub genes and two of the four lncRNAs were downregulated in keloid tissues; two hub genes and one lncRNA were downregulated in fibroblasts from pathological scars; and five hub genes and one lncRNA were significantly downregulated in mesenchymal subpopulation. Three genes had statistical difference and eight genes showed downregulated trend through qPCR of the keloid tissue. Conclusion Our results suggest that keloid development relies on the downregulation of lipo-related genes and pre-adipocytes in diseased tissues and may be one of the key mechanisms underlying fat grafting-mediated treatment of pathological scarring.
Collapse
Affiliation(s)
| | | | - Yangbin Xu
- Yangbin Xu ; orcid.org/0000-0002-2587-9619
| | - Shuqia Xu
- *Correspondence: Shuqia Xu ; orcid.org/0000-0003-1004-4202
| |
Collapse
|
12
|
Zheng W, Lin G, Wang Z. Bioinformatics study on different gene expression profiles of fibroblasts and vascular endothelial cells in keloids. Medicine (Baltimore) 2021; 100:e27777. [PMID: 34964740 PMCID: PMC8615345 DOI: 10.1097/md.0000000000027777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
Keloid is a benign fibroproliferative skin tumor. The respective functions of fibroblasts and vascular endothelial cells in keloid have not been fully studied. The purpose of this study is to identify the respective roles and key genes of fibroblasts and vascular endothelial cells in keloids, which can be used as new targets for diagnosis or treatment.The microarray datasets of keloid fibroblasts and vascular endothelial cells were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis. The search tool for retrieval of interacting genes and Cytoscape were used to construct protein-protein interaction (PPI) networks and analyze gene modules. The hub genes were screened out, and the relevant interaction networks and biological process analysis were carried out.In fibroblasts, the DEGs were significantly enriched in collagen fibril organization, extracellular matrix organization and ECM-receptor interaction. The PPI network was constructed, and the most significant module was selected, which is mainly enriched in ECM-receptor interaction. In vascular endothelial cells, the DEGs were significantly enriched in cytokine activity, growth factor activity and transforming growth factor-β (TGF-β) signaling pathway. Module analysis was mainly enriched in TGF-β signaling pathway. Hub genes were screened out separately.In summary, the DEGs and hub genes discovered in this study may help us understand the molecular mechanisms of keloid, and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Weihan Zheng
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Guojian Lin
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, PR China
| | - Zhizhou Wang
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
13
|
Dong X, Zhang M, Chen Y, Li C, Wang Y, Jin X. A comparison expression analysis of CXCR4, CXCL9 and Caspase-9 in dermal vascular endothelial cells between keloids and normal skin on chemotaxis and apoptosis. J Plast Surg Hand Surg 2021; 56:93-102. [PMID: 34110956 DOI: 10.1080/2000656x.2021.1934843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This present study was designed to explore key biological characteristics and biomarkers associated with dermal vascular endothelial cells of keloids. GSE121618 dataset was downloaded in the Gene Expression Omnibus (GEO) Database, including the KECs group and NVECs group. Through GEO2R, we have screened the differentially expressed genes (DEGs) and performed gene ontology (GO), Gene Set Enrichment Analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, we constructed a protein-protein interaction (PPI) network and analyzed hub genes via the Search Tool for the Retrieval of Interacting Genes (STRING) Online Database and Cytoscape software. Furthermore, experiments were performed to validate the expression of selected genes, including H&E staining, immunohistochemical staining, Western blot, and RT-qPCR. A total of 1040 DEGs were selected with GEO2R online tools. Most of the enriched pathways and processes focus on cell migration, tube development, chemotaxis, cell motility, and regulation of apoptosis. With the assistance of STRING and Cytoscape, hub genes were selected. In our validation experiments of RT-qPCR, the mRNA expression of selected genes has significant differences between different groups in tissue and cell experiments. As was shown in immunohistochemical staining, the proteins of CXCR4, CXCL9, and Caspase-9 had higher expression levels in tissue samples of the Keloid group than the Normal skin group. Western blot and RT-qPCR in dermal vascular endothelial cell experiments were consistent with the aforementioned results. This study has provided a deeper analysis of the pathogenesis of dermal vascular endothelial cells in keloids. Genes of CXCR4, CXCL9, and Caspase-9 may influence the processes of inflammatory responses and vascular endothelial cell apoptosis to exert crucial effects in the development of keloids. Abbreviations: GEO: gene expression omnibus; DEGs: differentially expressed genes; KVECs: keloid vascular endothelial cells; NVECs: normal skin vascular endothelial cells; GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; PPI: protein protein interaction; BP: biological process; CC: cellular component; MF: molecular function; GSEA: gene set enrichment analysis; STRING: search tool for the retrieval of interacting genes; MCODE: molecular complex detection.
Collapse
Affiliation(s)
- Xinhang Dong
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuanjing Chen
- The Eighteenth Department of Plastic Surgery, Plastic Surgery Hospital, Beijing, China
| | - Chengcheng Li
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiaolei Jin
- The Sixteenth Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
14
|
Koivuluoma S, Tervasmäki A, Kauppila S, Winqvist R, Kumpula T, Kuismin O, Moilanen J, Pylkäs K. Exome sequencing identifies a recurrent variant in SERPINA3 associating with hereditary susceptibility to breast cancer. Eur J Cancer 2020; 143:46-51. [PMID: 33279852 DOI: 10.1016/j.ejca.2020.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Breast cancer is strongly influenced by hereditary risk factors. Yet, the known susceptibility genes and genomic loci explain only about half of the familial component of the disease. To identify novel breast cancer predisposing gene defects, here we have performed massive parallel sequencing for Northern Finnish breast cancer cases. METHODS Ninety-eight breast cancer cases with indication of hereditary disease susceptibility were exome sequenced. Data filtering strategy focused on predictably deleterious rare variants that were still enriched in the sequenced cohort. Findings were confirmed with additional, geographically matched breast cancer cohorts. RESULTS A recurrent heterozygous splice acceptor variant, c.918-1G>C, in SERPINA3, was identified, and it was significantly enriched both in the hereditary (6/201, 3.0%, p = 0.006, OR 5.1, 95% CI 1.7-14.8) and unselected breast cancer cohort (26/1569, 1.7%, p = 0.009, OR 2.8, 95% CI 1.3-6.2). SERPINA3 c.918-1G>C carriers were also significantly more likely to have a rare tumor subtype, medullary breast cancer, than the non-carriers (4/26, 15.4%, p = 0.000014, OR 42.9, 95% CI 11.7-157.1). CONCLUSION These findings demonstrate that c.918-1G>C germline variant in SERPINA3 gene, encoding a member of the serine protease inhibitor class, is a novel breast cancer predisposing allele.
Collapse
Affiliation(s)
- Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Timo Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|