1
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
2
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
3
|
Mandal K, Sangabathuni S, Haghniaz R, Kawakita S, Mecwan M, Nakayama A, Zhang X, Edalati M, Huang W, Lopez Hernandez A, Jucaud V, Dokmeci MR, Khademhosseini A. Oxygen-generating microparticles downregulate HIF-1α expression, increase cardiac contractility, and mitigate ischemic injury. Acta Biomater 2023; 159:211-225. [PMID: 36669549 PMCID: PMC9992239 DOI: 10.1016/j.actbio.2023.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Myocardial hypoxia is the low oxygen tension in the heart tissue implicated in many diseases, including ischemia, cardiac dysfunction, or after heart procurement for transplantation. Oxygen-generating microparticles have recently emerged as a potential strategy for supplying oxygen to sustain cell survival, growth, and tissue functionality in hypoxia. Here, we prepared oxygen-generating microparticles with poly D,L-lactic-co-glycolic acid, and calcium peroxide (CPO), which yielded a continuous morphology capable of sustained oxygen release for up to 24 h. We demonstrated that CPO microparticles increased primary rat cardiomyocyte metabolic activity while not affecting cell viability during hypoxia. Moreover, hypoxia-inducible factor (HIF)-1α, which is upregulated during hypoxia, can be downregulated by delivering oxygen using CPO microparticles. Single-cell traction force microscopy data demonstrated that the reduced energy generated by hypoxic cells could be restored using CPO microparticles. We engineered cardiac tissues that showed higher contractility in the presence of CPO microparticles compared to hypoxic cells. Finally, we observed reduced myocardial injuries in ex vivo rabbit hearts treated with CPO microparticles. In contrast, an acute early myocardial injury was observed for the hearts treated with control saline solution in hypoxia. In conclusion, CPO microparticles improved cell and tissue contractility and gene expression while reducing hypoxia-induced myocardial injuries in the heart. STATEMENT OF SIGNIFICANCE: Oxygen-releasing microparticles can reduce myocardial ischemia, allograft rejection, or irregular heartbeats after heart transplantation. Here we present biodegradable oxygen-releasing microparticles that are capable of sustained oxygen release for more than 24 hrs. We then studied the impact of sustained oxygen release from microparticles on gene expresseion and cardiac cell and tissue function. Previous studies have not measured cardiac tissue or cell mechanics during hypoxia, which is important for understanding proper cardiac function and beating. Using traction force microscopy and an engineered tissue-on-a-chip, we demonstrated that our oxygen-releasing microparticles improve cell and tissue contractility during hypoxia while downregulating the HIF-1α expression level. Finally, using the microparticles, we showed reduced myocardial injuries in rabbit heart tissue, confirming the potential of the particles to be used for organ transplantation or tissue engineering.
Collapse
Affiliation(s)
- Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA.
| | - Sivakoti Sangabathuni
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA; California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA; California NanoSystems Institute, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Aya Nakayama
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Xuexiang Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Masoud Edalati
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Wei Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA.
| |
Collapse
|
4
|
Liu X, Guo C, Zhang Q. Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress Chaperones 2023; 28:133-144. [PMID: 36652120 PMCID: PMC10050249 DOI: 10.1007/s12192-023-01321-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles that alter their morphology through fission (fragmentation) and fusion (elongation). These morphological changes correlate highly with mitochondrial functional adaptations to stressors, such as hypoxia, pressure overload, and inflammation, and are important in the setting of heart failure. Pathological mitochondrial remodeling, characterized by increased fission and reduced fusion, is associated with impaired mitochondrial respiration, increased mitochondrial oxidative stress, abnormal cytoplasmic calcium handling, and increased cardiomyocyte apoptosis. Considering the impact of the mitochondrial morphology on mitochondrial behavior and cardiomyocyte performance, altered mitochondrial dynamics could be expected to induce or exacerbate the pathogenesis and progression of heart failure. However, whether alterations in mitochondrial fission and fusion accelerate or retard the progression of heart failure has been the subject of intense debate. In this review, we first describe the physiological processes and regulatory mechanisms of mitochondrial fission and fusion. Then, we extensively discuss the pathological contributions of mitochondrial fission and fusion to heart failure. Lastly, we examine potential therapeutic approaches targeting mitochondrial fission/fusion to treat patients with heart failure.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chenchen Guo
- Neck, Shoulder, Waist and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiming Zhang
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
5
|
Chirico N, Kessler EL, Maas RGC, Fang J, Qin J, Dokter I, Daniels M, Šarić T, Neef K, Buikema JW, Lei Z, Doevendans PA, Sluijter JPG, van Mil A. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:531. [PMID: 36575473 PMCID: PMC9795728 DOI: 10.1186/s13287-022-03209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor β/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.
Collapse
Affiliation(s)
- Nino Chirico
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise L. Kessler
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G. C. Maas
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juntao Fang
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiabin Qin
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Dokter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Daniels
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tomo Šarić
- grid.6190.e0000 0000 8580 3777Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491096.3Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jan-Willem Buikema
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Multicellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repair. Clin Sci (Lond) 2022; 136:1281-1301. [PMID: 35894060 DOI: 10.1042/cs20220216] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Cardiac transplantation of adipose-derived stem cells (ASC) modulates the post-myocardial infarction (post-MI) repair response. Biomolecules secreted or shuttled within extracellular vesicles, such as exosomes, may participate in the concerted response. We investigated the exosome´s microRNAs due to their capacity to fine-tune gene expression, potentially affecting the multicellular repair response. We profiled and quantified rat ASC-exosome miRNAs and used bioinformatics to select uncharacterized miRNAs downregulated in post-MI related to cardiac repair. We selected and validated miR-196a-5p and miR-425-5p as candidates for the concerted response in neonatal cardiomyocytes, cardiac fibroblasts, endothelial cells, and macrophages using a high-content screening platform. Both miRNAs prevented cardiomyocyte ischemia-induced mitochondrial dysfunction and reactive oxygen species production, increased angiogenesis, and polarized macrophages toward the anti-inflammatory M2 immunophenotype. Moreover, miR-196a-5p reduced and reversed myofibroblast activation and decreased collagen expression. Our data provide evidence that the exosome-derived miR-196a-5p and miR-425-5p influence biological processes critical to the concerted multicellular repair response post-MI.
Collapse
|
7
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
8
|
Duan D, Qin J, Wang X, Fan Y, Ji L, Feng M. OPA1 protected against IL-1β-induced chondrocyte dysfunction by alleviating mitochondrial dysfunction and oxidative stress through activation of Parkin-mediated mitophagy. Immunobiology 2022. [DOI: 10.1016/j.imbio.2022.152235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Bone Marrow Mesenchymal Stem Cells and Their Derived Extracellular Vesicles Attenuate Non-Alcoholic Steatohepatitis-Induced Cardiotoxicity via Modulating Cardiac Mechanisms. Life (Basel) 2022; 12:life12030355. [PMID: 35330106 PMCID: PMC8952775 DOI: 10.3390/life12030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular-disease (CVD)-related mortality has been fueled by the upsurge of non-alcoholic steatohepatitis (NASH). Mesenchymal stem cells (MSCs) were extensively studied for their reparative power in ameliorating different CVDs via direct and paracrine effects. Several reports pointed to the importance of bone marrow mesenchymal stem cells (BM-MSCs) as a reliable therapeutic approach for several CVDs. Nevertheless, their therapeutic potential has not yet been investigated in the cardiotoxic state that is induced by NASH. Thus, this study sought to investigate the molecular mechanisms associated with cardiotoxicity that accompany NASH. Besides, we aimed to comparatively study the therapeutic effects of bone-marrow mesenchymal-stem-cell-derived extracellular vesicles (BM-MSCs-EV) and BM-MSCs in a cardiotoxic model that is induced by NASH in rats. Rats were fed with high-fat diet (HFD) for 12 weeks. At the seventh week, BM-MSCs-EV were given a dose of 120 µg/kg i.v., twice a week for six weeks (12 doses per 6 weeks). Another group was treated with BM-MSCs at a dose of 1 × 106 cell i.v., per rat once every 2 weeks for 6 weeks (3 doses per 6 weeks). BM-MSCs-EV demonstrated superior cardioprotective effects through decreasing serum cardiotoxic markers, cardiac hypoxic state (HIF-1) and cardiac inflammation (NF-κB p65, TNF-α, IL-6). This was accompanied by increased vascular endothelial growth factor (VEGF) and improved cardiac histopathological alterations. Both BM-MSCs-EV and BM-MSCs restored the mitochondrial antioxidant state through the upregulation of UCP2 and MnSOD genes. Besides, mitochondrial Parkin-dependent and -independent mitophagies were regained through the upregulation of (Parkin, PINK1, ULK1, BNIP3L, FUNDC1) and (LC3B). These effects were mediated through the regulation of pAKT, PI3K, Hypoxia, VEGF and NF-κB signaling pathways by an array of secreted microRNAs (miRNAs). Our findings unravel the potential ameliorative effects of BM-MSCs-EV as a comparable new avenue for BM-MSCs for modulating cardiotoxicity that is induced by NASH.
Collapse
|
10
|
Tanase DM, Apostol AG, Costea CF, Tarniceriu CC, Tudorancea I, Maranduca MA, Floria M, Serban IL. Oxidative Stress in Arterial Hypertension (HTN): The Nuclear Factor Erythroid Factor 2-Related Factor 2 (Nrf2) Pathway, Implications and Future Perspectives. Pharmaceutics 2022; 14:534. [PMID: 35335911 PMCID: PMC8949198 DOI: 10.3390/pharmaceutics14030534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Arterial hypertension (HTN) is one of the most prevalent entities globally, characterized by increased incidence and heterogeneous pathophysiology. Among possible etiologies, oxidative stress (OS) is currently extensively studied, with emerging evidence showing its involvement in endothelial dysfunction and in different cardiovascular diseases (CVD) such as HTN, as well as its potential as a therapeutic target. While there is a clear physiological equilibrium between reactive oxygen species (ROS) and antioxidants essential for many cellular functions, excessive levels of ROS lead to vascular cell impairment with decreased nitric oxide (NO) availability and vasoconstriction, which promotes HTN. On the other hand, transcription factors such as nuclear factor erythroid factor 2-related factor 2 (Nrf2) mediate antioxidant response pathways and maintain cellular reduction-oxidation homeostasis, exerting protective effects. In this review, we describe the relationship between OS and hypertension-induced endothelial dysfunction and the involvement and therapeutic potential of Nrf2 in HTN.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Alina Georgiana Apostol
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Neurology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital, 700483 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
| |
Collapse
|
11
|
Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial Dynamics, Mitophagy, and Mitochondria–Endoplasmic Reticulum Contact Sites Crosstalk Under Hypoxia. Front Cell Dev Biol 2022; 10:848214. [PMID: 35281107 PMCID: PMC8914053 DOI: 10.3389/fcell.2022.848214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double membrane organelles within eukaryotic cells, which act as cellular power houses, depending on the continuous availability of oxygen. Nevertheless, under hypoxia, metabolic disorders disturb the steady-state of mitochondrial network, which leads to dysfunction of mitochondria, producing a large amount of reactive oxygen species that cause further damage to cells. Compelling evidence suggests that the dysfunction of mitochondria under hypoxia is linked to a wide spectrum of human diseases, including obstructive sleep apnea, diabetes, cancer and cardiovascular disorders. The functional dichotomy of mitochondria instructs the necessity of a quality-control mechanism to ensure a requisite number of functional mitochondria that are present to fit cell needs. Mitochondrial dynamics plays a central role in monitoring the condition of mitochondrial quality. The fission–fusion cycle is regulated to attain a dynamic equilibrium under normal conditions, however, it is disrupted under hypoxia, resulting in mitochondrial fission and selective removal of impaired mitochondria by mitophagy. Current researches suggest that the molecular machinery underlying these well-orchestrated processes are coordinated at mitochondria–endoplasmic reticulum contact sites. Here, we establish a holistic understanding of how mitochondrial dynamics and mitophagy are regulated at mitochondria–endoplasmic reticulum contact sites under hypoxia.
Collapse
|
12
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C, Patergnani S. The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. BIOLOGY 2022; 11:biology11020300. [PMID: 35205167 PMCID: PMC8869508 DOI: 10.3390/biology11020300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The regulation of hypoxia has recently emerged as having a central impact in mitochondrial function and dysfunction in various diseases, including the major disorders threatening worldwide: cardiovascular diseases and cancer. Despite the studies in this matter, its effective role in protection and disease progression even though its direct molecular mechanism in both disorders is still to be elucidated. This review aims to cover the current knowledge about the effect of hypoxia on mitochondrial function and dysfunction, and inflammation, in cardiovascular diseases and cancer, and reports further therapeutic strategies based on the modulation of hypoxic pathways. Abstract Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Mariasole Perrone
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Asrat E. Kahsay
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mario Della Sala
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, Ospedale Mater Salutis di Legnago, 37045 Verona, Italy;
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Correspondence: (C.G.); (S.P.)
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (E.B.); (G.M.); (M.P.); (A.E.K.); (M.D.S.); (P.P.)
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48022 Cotignola, Italy
- Correspondence: (C.G.); (S.P.)
| |
Collapse
|
13
|
Yang M, He Y, Deng S, Xiao L, Tian M, Xin Y, Lu C, Zhao F, Gong Y. Mitochondrial Quality Control: A Pathophysiological Mechanism and Therapeutic Target for Stroke. Front Mol Neurosci 2022; 14:786099. [PMID: 35153669 PMCID: PMC8832032 DOI: 10.3389/fnmol.2021.786099] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke is a devastating disease with high mortality and disability rates. Previous research has established that mitochondria, as major regulators, are both influenced by stroke, and further regulated the development of poststroke injury. Mitochondria are involved in several biological processes such as energy generation, calcium homeostasis, immune response, apoptosis regulation, and reactive oxygen species (ROS) generation. Meanwhile, mitochondria can evolve into various quality control systems, including mitochondrial dynamics (fission and fusion) and mitophagy, to maintain the homeostasis of the mitochondrial network. Various activities of mitochondrial fission and fusion are associated with mitochondrial integrity and neurological injury after stroke. Additionally, proper mitophagy seems to be neuroprotective for its effect on eliminating the damaged mitochondria, while excessive mitophagy disturbs energy generation and mitochondria-associated signal pathways. The balance between mitochondrial dynamics and mitophagy is more crucial than the absolute level of each process. A neurovascular unit (NVU) is a multidimensional system by which cells release multiple mediators and regulate diverse signaling pathways across the whole neurovascular network in a way with a high dynamic interaction. The turbulence of mitochondrial quality control (MQC) could lead to NVU dysfunctions, including neuron death, neuroglial activation, blood–brain barrier (BBB) disruption, and neuroinflammation. However, the exact changes and effects of MQC on the NVU after stroke have yet to be fully illustrated. In this review, we will discuss the updated mechanisms of MQC and the pathophysiology of mitochondrial dynamics and mitophagy after stroke. We highlight the regulation of MQC as a potential therapeutic target for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chaocheng Lu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Feng Zhao,
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Ye Gong,
| |
Collapse
|
14
|
SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5876841. [PMID: 34603599 PMCID: PMC8486530 DOI: 10.1155/2021/5876841] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Myocardial fibrosis represents the primary pathological change associated with diabetic cardiomyopathy and heart failure, and it leads to decreased myocardial compliance with impaired cardiac diastolic and systolic function. Quercetin, an active ingredient in various medicinal plants, exerts therapeutic effects against cardiovascular diseases. Here, we investigate whether SIRT5- and IDH2-related desuccinylation is involved in the underlying mechanism of myocardial fibrosis in heart failure while exploring related therapeutic drugs for mitochondrial quality surveillance. Mouse models of myocardial fibrosis and heart failure, established by transverse aortic constriction (TAC), were administered with quercetin (50 mg/kg) daily for 4 weeks. HL-1 cells were pretreated with quercetin and treated with high glucose (30 mM) in vitro. Cardiac function, western blotting, quantitative PCR, enzyme-linked immunosorbent assay, and immunofluorescence analysis were employed to analyze mitochondrial quality surveillance, oxidative stress, and inflammatory response in myocardial cells, whereas IDH2 succinylation levels were detected using immunoprecipitation. Myocardial fibrosis and heart failure incidence increased after TAC, with abnormal cardiac ejection function. Following high-glucose treatment, HL-1 cell activity was inhibited, causing excess production of reactive oxygen species and inhibition of mitochondrial respiratory complex I/III activity and mitochondrial antioxidant enzyme activity, as well as increased oxidative stress and inflammatory response, imbalanced mitochondrial quality surveillance and homeostasis, and increased apoptosis. Quercetin inhibited myocardial fibrosis and improved cardiac function by increasing mitochondrial energy metabolism and regulating mitochondrial fusion/fission and mitochondrial biosynthesis while inhibiting the inflammatory response and oxidative stress injury. Additionally, TAC inhibited SIRT5 expression at the mitochondrial level and increased IDH2 succinylation. However, quercetin promoted the desuccinylation of IDH2 by increasing SIRT5 expression. Moreover, treatment with si-SIRT5 abolished the protective effect of quercetin on cell viability. Hence, quercetin may promote the desuccinylation of IDH2 through SIRT5, maintain mitochondrial homeostasis, protect mouse cardiomyocytes under inflammatory conditions, and improve myocardial fibrosis, thereby reducing the incidence of heart failure.
Collapse
|
15
|
Liu J, Song X, Yan Y, Liu B. Role of GTPase-Dependent Mitochondrial Dynamins in Heart Diseases. Front Cardiovasc Med 2021; 8:720085. [PMID: 34660720 PMCID: PMC8514750 DOI: 10.3389/fcvm.2021.720085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Heart function maintenance requires a large amount of energy, which is supplied by the mitochondria. In addition to providing energy to cardiomyocytes, mitochondria also play an important role in maintaining cell function and homeostasis. Although adult cardiomyocyte mitochondria appear as independent, low-static organelles, morphological changes have been observed in cardiomyocyte mitochondria under stress or pathological conditions. Indeed, cardiac mitochondrial fission and fusion are involved in the occurrence and development of heart diseases. As mitochondrial fission and fusion are primarily regulated by mitochondrial dynamins in a GTPase-dependent manner, GTPase-dependent mitochondrial fusion (MFN1, MFN2, and OPA1) and fission (DRP1) proteins, which are abundant in the adult heart, can also be regulated in heart diseases. In fact, these dynamic proteins have been shown to play important roles in specific diseases, including ischemia-reperfusion injury, heart failure, and metabolic cardiomyopathy. This article reviews the role of GTPase-dependent mitochondrial fusion and fission protein-mediated mitochondrial dynamics in the occurrence and development of heart diseases.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Qiu LZ, Zhou W, Yue LX, Wang YH, Hao FR, Li PY, Gao Y. Repeated Aconitine Treatment Induced the Remodeling of Mitochondrial Function via AMPK-OPA1-ATP5A1 Pathway. Front Pharmacol 2021; 12:646121. [PMID: 34177570 PMCID: PMC8224173 DOI: 10.3389/fphar.2021.646121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Aconitine is attracting increasing attention for its unique positive inotropic effect on the cardiovascular system, but underlying molecular mechanisms are still not fully understood. The cardiotonic effect always requires abundant energy supplement, which is mainly related to mitochondrial function. And OPA1 has been documented to play a critical role in mitochondrial morphology and energy metabolism in cardiomyocytes. Hence, this study was designed to investigate the potential role of OPA1-mediated regulation of energy metabolism in the positive inotropic effect caused by repeated aconitine treatment and the possible mechanism involved. Our results showed that repeated treatment with low-doses (0-10 μM) of aconitine for 7 days did not induce detectable cytotoxicity and enhanced myocardial contraction in Neonatal Rat Ventricular Myocytes (NRVMs). Also, we first identified that no more than 5 μM of aconitine triggered an obvious perturbation of mitochondrial homeostasis in cardiomyocytes by accelerating mitochondrial fusion, biogenesis, and Parkin-mediated mitophagy, followed by the increase in mitochondrial function and the cellular ATP content, both of which were identified to be related to the upregulation of ATP synthase α-subunit (ATP5A1). Besides, with compound C (CC), an inhibitor of AMPK, could reverse aconitine-increased the content of phosphor-AMPK, OPA1, and ATP5A1, and the following mitochondrial function. In conclusion, this study first demonstrated that repeated aconitine treatment could cause the remodeling of mitochondrial function via the AMPK-OPA1-ATP5A1 pathway and provide a possible explanation for the energy metabolism associated with cardiotonic effect induced by medicinal plants containing aconitine.
Collapse
Affiliation(s)
- Li-Zhen Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi-Hao Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei-Ran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng-Yan Li
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Yue Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
17
|
Pang Y, Zhu Z, Wen Z, Lu J, Lin H, Tang M, Xu Z, Lu J. HIGD‑1B inhibits hypoxia‑induced mitochondrial fragmentation by regulating OPA1 cleavage in cardiomyocytes. Mol Med Rep 2021; 24:549. [PMID: 34080026 PMCID: PMC8185509 DOI: 10.3892/mmr.2021.12188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The dynamic regulation of mitochondrial morphology is key for eukaryotic cells to manage physiological challenges. Therefore, it is important to understand the molecular basis of mitochondrial dynamic regulation. The aim of the present study was to explore the role of HIG1 hypoxia inducible domain family member 1B (HIGD‑1B) in hypoxia‑induced mitochondrial fragmentation. Protein expression was determined via western blotting. Immunofluorescence assays were performed to detect the subcellular location of HIGD‑1B. Cell Counting Kit‑8 assays and flow cytometry were carried out to measure cell viability and apoptosis, respectively. Protein interactions were evaluated by co‑immunoprecipitation. In the present study, it was found that HIGD‑1B serves a role in cell survival by maintaining the integrity of the mitochondria under hypoxic conditions. Knockdown of HIGD‑1B promoted mitochondrial fragmentation, while overexpression of HIGD‑1B increased survival by preventing activation of caspase‑3 and ‑9. HIGD‑1B expression was associated with cell viability and apoptosis in cardiomyocytes. Furthermore, HIGD‑1B delayed the cleavage process of optic atrophy 1 (OPA1) and stabilized mitochondrial morphology by interacting with OPA1. Collectively, the results from the present study identified a role for HIGD‑1B as an inhibitor of the mitochondrial fission in cardiomyocytes.
Collapse
Affiliation(s)
- Yan Pang
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Zhide Zhu
- Academic Affairs Section, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Zhihao Wen
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Junshen Lu
- Academic Affairs Section, Guangxi University of Traditional Chinese Medicine Attached Chinese Medicine School, Nanning, Guangxi 530001, P.R. China
| | - Hao Lin
- Department of Geriatrics, Danzhou Traditional Chinese Medicine Hospital, Danzhou, Hainan 571700, P.R. China
| | - Meiling Tang
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Zhiliang Xu
- Academic Affairs Section, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Jianqi Lu
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| |
Collapse
|
18
|
Hu Y, Xu Y, Chen W, Qiu Z. Stomatin-Like Protein-2: A Potential Target to Treat Mitochondrial Cardiomyopathy. Heart Lung Circ 2021; 30:1449-1455. [PMID: 34088631 DOI: 10.1016/j.hlc.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022]
Abstract
Stomatin-like protein-2 (SLP-2) is a mitochondrial-associated protein that is abundant in cardiomyocytes. Many reports have shown that SLP-2 plays an important role in mitochondria. The treatment of mitochondrial cardiomyopathy (MCM) needs further improvement, so the relationship between SLP-2 and MCM is worth exploring. This study reviewed some protective mechanisms of SLP-2 on mitochondria. Published studies have shown that SLP-2 protects mitochondria by stabilising the function of optic atrophy 1 (OPA1), promoting mitofusin (Mfn) 2 expression, interacting with prohibitins and cardiolipin, forming SLP-2-PARL-YME1L (SPY) complex, and stabilising respiratory chain complexes, suggesting that SLP-2 is a new potential target for the treatment of MCM. However, the specific mechanism of SLP-2 needs to be confirmed by further research.
Collapse
Affiliation(s)
- Yuntao Hu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
19
|
Bevacizumab-Induced Mitochondrial Dysfunction, Endoplasmic Reticulum Stress, and ERK Inactivation Contribute to Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5548130. [PMID: 33859777 PMCID: PMC8009725 DOI: 10.1155/2021/5548130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022]
Abstract
The molecular mechanisms underlying the cardiotoxicity associated with bevacizumab, a first-line immunotherapeutic agent used to treat lung cancer, are not fully understood. Here, we examined intracellular signal transduction in cardiomyocytes after exposure to different doses of bevacizumab in vitro. Our results demonstrated that bevacizumab significantly and dose-dependently reduces cardiomyocyte viability and increases cell apoptosis. Bevacizumab treatment also led to mitochondrial dysfunction in cardiomyocytes, as evidenced by the decreased ATP production, increased ROS production, attenuated antioxidative enzyme levels, and reduced respiratory complex function. In addition, bevacizumab induced intracellular calcium overload, ER stress, and caspase-12 activation. Finally, bevacizumab treatment inhibited the ERK signaling pathway, which, in turn, significantly reduced cardiomyocyte viability and contributed to mitochondrial dysfunction. Together, our results demonstrate that bevacizumab-mediated cardiotoxicity is associated with mitochondrial dysfunction, ER stress, and ERK pathway inactivation. These findings may provide potential treatment targets to attenuate myocardial injury during lung cancer immunotherapy.
Collapse
|
20
|
Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021; 12:177. [PMID: 33712058 PMCID: PMC7953594 DOI: 10.1186/s13287-021-02252-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Current methods to differentiate cardiomyocytes from human pluripotent stem cells (PSCs) inadequately recapitulate complete development and result in PSC-derived cardiomyocytes (PSC-CMs) with an immature or fetal-like phenotype. Embryonic and fetal development are highly dynamic periods during which the developing embryo or fetus is exposed to changing nutrient, oxygen, and hormone levels until birth. It is becoming increasingly apparent that these metabolic changes initiate developmental processes to mature cardiomyocytes. Mitochondria are central to these changes, responding to these metabolic changes and transitioning from small, fragmented mitochondria to large organelles capable of producing enough ATP to support the contractile function of the heart. These changes in mitochondria may not simply be a response to cardiomyocyte maturation; the metabolic signals that occur throughout development may actually be central to the maturation process in cardiomyocytes. Here, we review methods to enhance maturation of PSC-CMs and highlight evidence from development indicating the key roles that mitochondria play during cardiomyocyte maturation. We evaluate metabolic transitions that occur during development and how these affect molecular nutrient sensors, discuss how regulation of nutrient sensing pathways affect mitochondrial dynamics and function, and explore how changes in mitochondrial function can affect metabolite production, the cell cycle, and epigenetics to influence maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Chang X, Zhao Z, Zhang W, Liu D, Ma C, Zhang T, Meng Q, Yan P, Zou L, Zhang M. Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620677. [PMID: 33552385 PMCID: PMC7847351 DOI: 10.1155/2021/6620677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs.
Collapse
Affiliation(s)
- Xing Chang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhenyu Zhao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| | - Wenjin Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Dong Liu
- China Academy of Chinese Medical Sciences, Institute of the History of Chinese Medicine and Medical Literature, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Centre, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyan Meng
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Peizheng Yan
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Longqiong Zou
- Chongqing Sanxia Yunhai Pharmaceutical Co., Ltd., Chongqing, China
| | - Ming Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
22
|
Li A, Gao M, Jiang W, Qin Y, Gong G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 2020; 8:584800. [PMID: 33392184 PMCID: PMC7773778 DOI: 10.3389/fcell.2020.584800] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the powerhouse organelles of cells; they participate in ATP generation, calcium homeostasis, oxidative stress response, and apoptosis. Thus, maintenance of mitochondrial function is critical for cellular functions. As highly dynamic organelles, the function of mitochondria is dynamically regulated by their fusion and fission in many cell types, which regulate mitochondrial morphology, number, distribution, metabolism, and biogenesis in cells. Mature rod-shaped cardiomyocytes contain thousands of end-to-end contacted spheroid mitochondria. The movement of mitochondria in these cells is limited, which hinders the impetus for research into mitochondrial dynamics in adult cardiomyocytes. In this review, we discuss the most recent progress in mitochondrial dynamics in mature (adult) cardiomyocytes and the relationship thereof with heart diseases.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|