1
|
Dong XD, Zhang M, Teng QX, Lei ZN, Cai CY, Wang JQ, Wu ZX, Yang Y, Chen X, Guo H, Chen ZS. Mobocertinib antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells: In vitro and in vivo studies. Cancer Lett 2024; 607:217309. [PMID: 39481798 DOI: 10.1016/j.canlet.2024.217309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1 and ABCG2, strongly correlates with multidrug resistance (MDR), rendering cancer chemotherapy ineffective. Exploration and identification of novel inhibitors targeting ABCB1 and ABCG2 are necessary to overcome the related MDR. Mobocertinib is an approved EGFR/HER2 inhibitor for non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations. This study demonstrates that mobocertinib can potentially reverse ABCB1- and ABCG2-mediated MDR. Our findings indicate a strong interaction between mobocertinib and these two proteins, supported by its high binding affinity with ABCB1 and ABCG2 models. Through inhibiting the drug efflux function of ABCB1 and ABCG2, mobocertinib facilitates substrate drugs accumulation, thereby re-sensitizing substrate drugs in drug-resistant cancer cells. Additionally, mobocertinib inhibited the ATPase activity of ABCB1 and ABCG2 without changing the expression levels or subcellular localization. In the tumor-bearing mouse model, mobocertinib boosted the antitumor effect of paclitaxel and topotecan, resulting in tumor regression. In summary, our study uncovers a novel potential for repurposing mobocertinib as a dual inhibitor of ABCB1 and ABCG2, and suggests the combination of mobocertinib with substrate drugs as a strategy to counteract MDR.
Collapse
MESH Headings
- Humans
- Animals
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Drug Resistance, Neoplasm/drug effects
- Mice
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Topotecan/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Mice, Nude
- Mice, Inbred BALB C
- Paclitaxel/pharmacology
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Meng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Baoan, Shenzhen, Guangdong, 510000, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Huiqin Guo
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
2
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
3
|
Aslan B, Manyam G, Iles LR, Tantawy SI, Desikan SP, Wierda WG, Gandhi V. Transcriptomic and proteomic differences in BTK-WT and BTK-mutated CLL and their changes during therapy with pirtobrutinib. Blood Adv 2024; 8:4487-4501. [PMID: 38968154 PMCID: PMC11395759 DOI: 10.1182/bloodadvances.2023012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT Covalent Bruton tyrosine kinase inhibitors (cBTKis), which bind to the BTK C481 residue, are now primary therapeutics for chronic lymphocytic leukemia (CLL). Alterations at C481, primarily C481S, prevent cBTKi binding and lead to the emergence of resistant clones. Pirtobrutinib is a noncovalent BTKi that binds to both wild-type (WT) and C481S-mutated BTK and has shown efficacy in BTK-WT and -mutated CLL patient groups. To compare baseline clinical, transcriptomic, and proteomic characteristics and their changes during treatment in these 2 groups, we used 67 longitudinal peripheral blood samples obtained during the first 3 cycles of treatment with pirtobrutinib from 18 patients with CLL (11 BTK-mutated, 7 BTK-WT) enrolled in the BRUIN (pirtobrutinib in relapsed or refractory B-cell malignancies) trial. Eastern Cooperative Oncology Group performance status, age, and Rai stage were similar in both groups. At baseline, lymph nodes were larger in the BTK-mutated cohort. All patients achieved partial remission within 4 cycles of pirtobrutinib. Lactate dehydrogenase and β2-microglobulin levels decreased in both cohorts after 1 treatment cycle. Expression analysis demonstrated upregulation of 35 genes and downregulation of 6 in the BTK-mutated group. Gene set enrichment analysis revealed that the primary pathways enriched in BTK-mutated cells were involved in cell proliferation, metabolism, and stress response. Pathways associated with metabolism and proliferation were downregulated in both groups during pirtobrutinib treatment. Proteomic data corroborated transcriptomic findings. Our data identified inherent differences between BTK-mutated and -WT CLL and demonstrated molecular normalization of plasma and omics parameters with pirtobrutinib treatment in both groups.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mutation
- Middle Aged
- Transcriptome
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Proteomics/methods
- Female
- Male
- Aged
- Piperidines/therapeutic use
- Piperidines/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Aged, 80 and over
Collapse
Affiliation(s)
- Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lakesla R. Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai Prasad Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Zhang M, Zeng X, She M, Dong X, Chen J, Xiong Q, Qiu G, Yang S, Li X, Ren G. FRAX486, a PAK inhibitor, overcomes ABCB1-mediated multidrug resistance in breast cancer cells. Braz J Med Biol Res 2024; 57:e13357. [PMID: 38958364 PMCID: PMC11221864 DOI: 10.1590/1414-431x2024e13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 07/04/2024] Open
Abstract
The overexpression of P-glycoprotein (P-gp/ABCB1) is a leading cause of multidrug resistance (MDR). Hence, it is crucial to discover effective pharmaceuticals that counteract ABCB1-mediated multidrug resistance. FRAX486 is a p21-activated kinase (PAK) inhibitor. The objective of this study was to investigate whether FRAX486 can reverse ABCB1-mediated multidrug resistance, while also exploring its mechanism of action. The CCK8 assay demonstrated that FRAX486 significantly reversed ABCB1-mediated multidrug resistance. Furthermore, western blotting and immunofluorescence experiments revealed that FRAX486 had no impact on expression level and intracellular localization of ABCB1. Notably, FRAX486 was found to enhance intracellular drug accumulation and reduce efflux, resulting in the reversal of multidrug resistance. Docking analysis also indicated a strong affinity between FRAX486 and ABCB1. This study highlights the ability of FRAX486 to reverse ABCB1-mediated multidrug resistance and provides valuable insights for its clinical application.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoqi Zeng
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Meiling She
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingduo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, USA
| | - Jun Chen
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Qingquan Xiong
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Guobin Qiu
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Shuyi Yang
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Guanghui Ren
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Dong XD, Lu Q, Li YD, Cai CY, Teng QX, Lei ZN, Wei ZH, Yin F, Zeng L, Chen ZS. RN486, a Bruton's Tyrosine Kinase inhibitor, antagonizes multidrug resistance in ABCG2-overexpressing cancer cells. J Transl Int Med 2024; 12:288-298. [PMID: 39081282 PMCID: PMC11284896 DOI: 10.2478/jtim-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Background and Objectives Overcoming ATP-binding cassette subfamily G member 2 (ABCG2)-mediated multidrug resistance (MDR) has attracted the attention of scientists because one of the critical factors resulting in MDR in cancer is the overexpression of ABCG2. RN486, a Bruton's Tyrosine Kinase (BTK) inhibitor, was discovered to potentially reverse ABCB1-mediated MDR. However, there is still uncertainty about whether RN486 has a reversal off-target impact on ABCG2-mediated MDR. Methods MTT assay was used to detect the reversal effect of RN486 on ABCG2-overexpressing cancer cells. The ABCG2 expression level and subcellular localization were examined by Western blotting and immunofluorescence. Drug accumulation and eflux assay and ATPase assay were performed to analyze the ABCG2 transporter function and ATPase activity. Molecular modeling predicted the binding between RN486 and ABCG2 protein. Results Non-toxic concentrations of RN486 remarkably increased the sensitivity of ABCG2-overexpressing cancer cells to conventional anticancer drugs mitoxantrone and topotecan. The reversal mechanistic studies showed that RN486 elevated the drug accumulation because of reducing the eflux of ABCG2 substrate drug in ABCG2-overexpressing cancer cells. In addition, the inhibitory efect of RN486 on ABCG2-associated ATPase activity was also verified. Molecular docking study implied a strong binding afinity between RN486 and ABCG2 transporter. Meanwhile, the ABCG2 subcellular localization was not altered by the treatment of RN486, but the expression level of ABCG2 was down-regulated. Conclusions Our studies propose that RN486 can antagonize ABCG2-mediated MDR in cancer cells via down-regulating the expression level of ABCG2 protein, reducing ATPase activity of ABCG2 transporter, and inhibiting the transporting function. RN486 could be potentially used in conjunction with chemotherapy to alleviate MDR mediated by ABCG2 in cancer.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qisi Lu
- Department of Hematology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou515500, Guangdong Province, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Biobank, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen518107, Guangdong Province, China
| | - Zeng-Hui Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Fan Yin
- Department of Statistics, University of California at Irvine, Irvine, CA 92697, USA
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Biobank, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen518107, Guangdong Province, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
6
|
Zhang C, Huang MN, Shan JQ, Hu ZJ, Li ZW, Liu JY. Pemigatinib, a selective FGFR inhibitor overcomes ABCB1-mediated multidrug resistance in cancer cells. Biochem Biophys Res Commun 2024; 691:149314. [PMID: 38039831 DOI: 10.1016/j.bbrc.2023.149314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
P: -glycoprotein (P-gp/ABCB1) overexpression is one of the primary causes of multidrug resistance (MDR). Therefore, it is crucial to discover effective pharmaceuticals to combat multidrug resistance mediated by ABCB1. Pemigatinib is a selective the fibroblast growth factor receptor (FGFR) inhibitor that is used to treat a variety of solid tumors, Clinical Trials for Urothelial Carcinoma (NCT02872714) completed its research on Pemigatinib. This study aimed to determine whether Pemigatinib can reverse ABCB1-mediated multidrug resistance, as well as its mechanism of action. Pemigatinib substantially reversed ABCB1-mediated multidrug resistance, as determined by a CCK8 assay, and immunofluorescence experiments revealed that Pemigatinib had no effect on the intracellular localization of ABCB1. Pemigatinib was discovered to increase intracellular drug accumulation, thereby reversing multidrug resistance. In addition, Docking analysis revealed that Pemigatinib and ABCB1 have a high affinity for one another. This study concludes that Pemigatinib is capable of reversing the multidrug resistance mediated by ABCB1, offering ideas and references for the clinical application of Pemigatinib.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Urology Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Min-Na Huang
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine, 134 Research Park Dr, Columbia, MO, 65211, USA
| | - Jun-Qi Shan
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zun-Jie Hu
- Department of Urology Surgery, The Affiliated Taian City Central Hospital of Qingdao University, No. 29 Longtan Road, Taian, Shandong, 271000, PR China
| | - Zi-Wei Li
- Department of Experimental Center, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing, Jinan, Shandong, 250355, PR China.
| | - Jian-Ying Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Shandong First Medical University, No. 38 Wuyingshan Road, Tianqiao, Jinan, Shandong, 250031, PR China.
| |
Collapse
|
7
|
Zhang M, Huang MN, Dong XD, Cui QB, Yan Y, She ML, Feng WG, Zhao XS, Wang DT. Overexpression of ABCB1 confers resistance to FLT3 inhibitor FN-1501 in cancer cells: in vitro and in vivo characterization. Am J Cancer Res 2023; 13:6026-6037. [PMID: 38187048 PMCID: PMC10767331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
FN-1501 is a potent FLT3 inhibitor with antitumor activity. A phase 1 trial of FN-1501 monotherapy in patients with advanced solid tumors and R/R AML is in progress. Since one of the primary causes of multidrug resistance (MDR) is the overexpression of ATP-binding cassette superfamily B member 1 (ABCB1), the objective of this study was to investigate the potential relationship between FN-1501 and the ABCB1 transporter. We found ABCB1 overexpressing-cancer cells conferred FN-1501 resistance, which could be reversed by an ABCB1 inhibitor. Molecular docking study revealed that FN-1501 docked the ligand binding site with an affinity score of -9.77 kcal/mol, denoting a strong interaction between FN-1501 and ABCB1. Additionally, the ABCB1 ATPase assay indicated that FN-1501 could significantly stimulate ABCB1 ATPase activity. Furthermore, we observed a similar trend of ABCB1-facilated FN-1501 resistance in tumor-bearing mice model. In sum, we demonstrate that FN-1501 is a substrate of ABCB1 transporter from both in vivo and in vitro studies. Therefore, our findings provide new insight on the mechanism of chemoresistance due to ABCB1 overexpression.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical UniversityNo. 1333 Xinhu Road, Baoan, Shenzhen 510000, Guangdong, China
| | - Min-Na Huang
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine134 Research Park Dr, Columbia, MO 65211, USA
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s UniversityQueens, NY 11439, USA
| | - Qing-Bin Cui
- Department of Cancer Biology, University of Toledo College of Medicine and Life SciencesToledo, OH 43606, USA
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical UniversityNo. 1333 Xinhu Road, Baoan, Shenzhen 510000, Guangdong, China
| | - Mei-Ling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical UniversityNo. 1333 Xinhu Road, Baoan, Shenzhen 510000, Guangdong, China
| | - Wei-Guo Feng
- School of Life Science and Technology, Weifang Medical UniversityNo. 7166 Baotong Street, Weicheng, Weifang 261053, Shandong, China
| | - Xiao-Shan Zhao
- School of Traditional Chinese Medicine, Southern Medical UniversityNo. 1023 Satai South Road, Baiyun, Guangzhou 510000, Guangdong, China
| | - Dong-Tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital of Southern Medical UniversityNo. 1333 Xinhu Road, Baoan, Shenzhen 510000, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical UniversityNo. 1023 Satai South Road, Baiyun, Guangzhou 510000, Guangdong, China
| |
Collapse
|
8
|
Mir SA, Madkhali Y, Firoz A, Al Othaim A, Alturaiki W, Almalki SG, Algarni A, Alsagaby SA. Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton's Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules 2023; 28:3287. [PMID: 37110523 PMCID: PMC10144307 DOI: 10.3390/molecules28083287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable neoplasm of B-lymphocytes, which accounts for about one-third of all leukemias. Ocimum sanctum, an herbaceous perennial, is considered as one of the important sources of drugs for the treatment of various diseases, including cancers and autoimmune diseases. The present study was designed to screen various phytochemicals of O. sanctum for discovering their potential to inhibit Bruton's tyrosine kinase (BTK), a well-known drug target of CLL. Various phytochemicals of O. sanctum were screened for their potential to inhibit BTK using several in silico protocols. First, the molecular docking approach was used to calculate the docking scores of the selected phytochemicals. Then, the selected top-ranked phytochemicals were screened for their physicochemical characteristics using ADME analysis. Finally, the stability of the selected compounds in their corresponding docking complexes with BTK was analysed using molecular dynamics simulations. Primarily, our observations revealed that, out of the 46 phytochemicals of O. sanctum, six compounds possessed significantly better docking scores (ranging from -9.2 kcal/mol to -10 kcal/mol). Their docking scores were comparable to those of the control inhibitors, acalabrutinib (-10.3 kcal/mol), and ibrutinib (-11.3 kcal/mol). However, after ADME analysis of these top-ranked six compounds, only three compounds (Molludistin, Rosmarinic acid, and Vitexin) possessed drug likeliness characteristics. During the MD analysis, the three compounds Molludistin, Rosmarinic acid, and Vitexin were found to remain stable in the binding pocket in their corresponding docking complexes with BTK. Therefore, among the 46 phytochemicals of O. sanctum tested in this study, the three compounds, Molludistin, Rosmarinic acid, and Vitexin are the best inhibitors of BTK. However, these findings need to be confirmed by biological experiments in the laboratory.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
9
|
Dong XD, Zhang M, Cai CY, Teng QX, Wang JQ, Fu YG, Cui Q, Patel K, Wang DT, Chen ZS. Overexpression of ABCB1 Associated With the Resistance to the KRAS-G12C Specific Inhibitor ARS-1620 in Cancer Cells. Front Pharmacol 2022; 13:843829. [PMID: 35281897 PMCID: PMC8905313 DOI: 10.3389/fphar.2022.843829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The KRAS-G12C inhibitor ARS-1620, is a novel specific covalent inhibitor of KRAS-G12C, possessing a strong targeting inhibitory effect on KRAS-G12C mutant tumors. Overexpression of ATP-binding cassette super-family B member 1 (ABCB1/P-gp) is one of the pivotal factors contributing to multidrug resistance (MDR), and its association with KRAS mutations has been extensively studied. However, the investigations about the connection between the inhibitors of mutant KRAS and the level of ABC transporters are still missing. In this study, we investigated the potential drug resistance mechanism of ARS-1620 associated with ABCB1. The desensitization effect of ARS-1620 was remarkably intensified in both drug-induced ABCB1-overexpressing cancer cells and ABCB1-transfected cells as confirmed by cell viability assay results. This desensitization of ARS-1620 could be completely reversed when co-treated with an ABCB1 reversal agent. In mechanism-based studies, [3H] -paclitaxel accumulation assay revealed that ARS-1620 could be competitively pumped out by ABCB1. Additionally, it was found that ARS-1620 remarkably stimulated ATPase activity of ABCB1, and the HPLC drug accumulation assay displayed that ARS-1620 was actively transported out of ABCB1-overexpressing cancer cells. ARS-1620 acquired a high docking score in computer molecular docking analysis, implying ARS-1620 could intensely interact with ABCB1 transporters. Taken all together, these data indicated that ARS-1620 is a substrate for ABCB1, and the potential influence of ARS-1620-related cancer therapy on ABCB1-overexpressing cancer cells should be considered in future clinical applications.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yi-Ge Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
10
|
Fan Z, Li Y, Xia L, Wu Y. Knockout of Bruton's tyrosine kinase in macrophages attenuates diabetic nephropathy in streptozotocin-induced mice. Am J Transl Res 2021; 13:12352-12363. [PMID: 34956457 PMCID: PMC8661227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
As a cytoplasmic tyrosine kinase in the Tec family, Bruton's tyrosine kinase (Btk) participates in various biological processes, including cell growth, differentiation, and apoptosis. Although recent studies have indicated that Btk is involved in pro-inflammatory cytokine production, the underlying impact of Btk on the development and pathogenesis of diabetic nephropathy (DN) has not been elucidated. The aim of this study was to determine whether Btk knockout (KO) could reduce inflammation and kidney injury in DN. First, diabetic mice models were established via an intraperitoneal injection of streptozotocin. Thereafter, the underlying mechanism was explored by comparing Btk flox/flox Lyz-Cre mice to wild-type (C57BL/6N) mice. Albuminuria was significantly reduced, and kidney injuries were attenuated in Btk conditional deletion diabetic mice. More importantly, these changes were demonstrated to be associated with decreased levels of pro-inflammatory cytokines owing to the downregulation of the MAPK and NF-κB signaling pathways. Collectively, these findings indicate that Btk plays a critical role in the regulation of kidney inflammation and provides a prospective therapeutic strategy for the treatment of DN.
Collapse
Affiliation(s)
- Zhe Fan
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Yuanyuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Lingling Xia
- Department of Infective Disease, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
11
|
Wang JQ, Cui Q, Lei ZN, Teng QX, Ji N, Lin L, Liu Z, Chen ZS. Insights on the structure-function relationship of human multidrug resistance protein 7 (MRP7/ABCC10) from molecular dynamics simulations and docking studies. MedComm (Beijing) 2021; 2:221-235. [PMID: 34766143 PMCID: PMC8491190 DOI: 10.1002/mco2.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters superfamily mediates multidrug resistance in cancer by extruding structurally distinct chemotherapeutic agents, causing failure in chemotherapy. Among the 49 ABC transporters, multidrug resistance protein 7 (MRP7 or ABCC10) is relatively new and has been identified as the efflux pump of multiple anticancer agents including Vinca alkaloids and taxanes. Herein, we construct and validate a homology model for human MRP7 based on the cryo-EM structures of MRP1. Structure-function relationship of MRP7 was obtained from molecular dynamics simulations and docking studies and was in accordance with previous studies of ABC transporters. The motion patterns correlated with efflux mechanism were discussed. Additionally, predicted substrate- and modulator-binding sites of MRP7 were described for the first time, which provided rational insights in understanding the drug binding and functional regulation in MRP7. Our findings will benefit the high-throughput virtual screening and development of MRP7 modulators in the future.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA.,School of Public Health Guangzhou Medical University Guangzhou China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Ning Ji
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| | - Lusheng Lin
- Cell Research Center Shenzhen Bolun Institute of Biotechnology Shenzhen China
| | - Zhijun Liu
- Department of Medical Microbiology Weifang Medical University Weifang China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences College of Pharmacy and Health Sciences St. John's University Queens New York USA
| |
Collapse
|
12
|
Wang JQ, Wu ZX, Yang Y, Li JS, Yang DH, Fan YF, Chen ZS. Establishment and Characterization of a Novel Multidrug Resistant Human Ovarian Cancer Cell Line With Heterogenous MRP7 Overexpression. Front Oncol 2021; 11:731260. [PMID: 34631561 PMCID: PMC8498192 DOI: 10.3389/fonc.2021.731260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer is one of the leading female malignancies which accounts for the highest mortality rate among gynecologic cancers. Surgical cytoreduction followed by chemotherapy is the mainstay of treatment. However, patients with recurrent ovarian cancer are likely to exhibit resistance to chemotherapy due to reduced sensitivity to chemotherapeutic drugs. Adenosine triphosphate (ATP)-binding cassette (ABC) transporters have been extensively studied as multidrug resistance (MDR) mediators since they are responsible for the efflux of various anticancer drugs. Multidrug resistance protein 7 (MRP7, or ABCC10) was discovered in 2001 and revealed to transport chemotherapeutic drugs. Till now, only limited knowledge was obtained regarding its roles in ovarian cancer. In this study, we established an MRP7-overexpressing ovarian cancer cell line SKOV3/MRP7 via transfecting recombinant MRP7 plasmids. The SKOV3/MRP7 cell line was resistant to multiple anticancer drugs including paclitaxel, docetaxel, vincristine and vinorelbine with a maximum of 8-fold resistance. Biological function of MRP7 protein was further determined by efflux-accumulation assays. Additionally, MTT results showed that the drug resistance of the SKOV3/MRP7 cells was reversed by cepharanthine, a known inhibitor of MRP7. Moreover, we also found that the overexpression of MRP7 enhanced the migration and epithelial-mesenchymal transition (EMT) induction. In conclusion, we established an in vitro model of MDR in ovarian cancer and suggested MRP7 overexpression as the leading mechanism of chemoresistance in this cell line. Our results demonstrated the potential relationship between MRP7 and ovarian cancer MDR.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jin-Sui Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
13
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
14
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
15
|
Wang JQ, Wang B, Ma LY, Shi Z, Liu HM, Liu Z, Chen ZS. Enhancement of anticancer drug sensitivity in multidrug resistance cells overexpressing ATP-binding cassette (ABC) transporter ABCC10 by CP55, a synthetic derivative of 5-cyano-6-phenylpyrimidin. Exp Cell Res 2021; 405:112728. [PMID: 34246653 DOI: 10.1016/j.yexcr.2021.112728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
ATP-binding cassette (ABC) transporter C10 (ABCC10), also named multidrug resistance protein 7 (MRP7), is a member of ABC transporter superfamily and has been revealed to transport a wide range of chemotherapeutic agents including taxanes, epothilone B, Vinca alkaloids, and anthracyclines. In our previous study, a 5-cyano-6-phenylpyrimidin derivative CP55 was synthesized and found significantly reversal effect of multidrug resistance (MDR) mediated by ABCB1. In this study, we found CP55 also efficiently reversed MDR mediated by ABCC10. Our in vitro study showed that co-treatment with CP55 significantly increased the efficacy of ABCC10-substrate anticancer drugs in MDR cells overexpressing ABCC10. Furthermore, we showed that treatment with CP55 increased the intracellular accumulation of [3H]-labeled anticancer drugs and in-turn decreasing drug efflux by inhibiting the transport activity, without altering ABCC10 protein ex-pression level or cellular localization. Potential CP55-ABCC10 interactions were predicted via docking analysis using human ABCC10 homology model and obtained high docking score. Therefore, CP55 represents a promising therapeutic agent in the combinational treatment of chemo-resistant cancer related to ABCC10.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, 261053, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
16
|
Wang JQ, Wang B, Teng QX, Lei ZN, Li YD, Shi Z, Ma LY, Liu HM, Liu Z, Chen ZS. CMP25, a synthetic new agent, targets multidrug resistance-associated protein 7 (MRP7/ABCC10). Biochem Pharmacol 2021; 190:114652. [PMID: 34126072 DOI: 10.1016/j.bcp.2021.114652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
Multidrug resistance-associated protein 7 (MRP7) is an important member of ABC transporter superfamily and has been revealed to mediate the cross-membrane translocation of a wide range of chemotherapeutic agents including taxanes, epothilones, Vinca alkaloids, Anthracyclines and Epipodophyllotoxins.In our previous study, a 1,2,3-triazole-pyrimidine hybridCMP25was synthesized and found able to efficiently reverse multidrug resistance (MDR) mediated by P-glycoprotein. In this study, we evaluated the efficacy of compound CMP25in reversing MDR mediated by MRP7in vitro. The results showed that CMP25significantly sensitized MRP7-overexpressing cells to anticancer drugs that are MRP7 substrates. Mechanistic study showed that CMP25reversed MRP7-mediated MDR by increasing the intracellular accumulation of anticancer drugs and decreasing drug efflux, without altering protein expression level or subcellular localization. Currently, very few studies on synthetic MRP7 modulators have been published. Our findings provide a valuable prototype for designing drugs to combine with conventional anticancer drugs to overcome MDR-mediated by MRP7.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, PR China; Key Laboratory of Henan Province for Drug Quality and Evaluation, PR China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
17
|
Use of cucurbitacins for lung cancer research and therapy. Cancer Chemother Pharmacol 2021; 88:1-14. [PMID: 33825035 DOI: 10.1007/s00280-021-04265-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research and even clinical practice.
Collapse
|
18
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
19
|
Wang JQ, Teng QX, Lei ZN, Ji N, Cui Q, Fu H, Lin L, Yang DH, Fan YF, Chen ZS. Reversal of Cancer Multidrug Resistance (MDR) Mediated by ATP-Binding Cassette Transporter G2 (ABCG2) by AZ-628, a RAF Kinase Inhibitor. Front Cell Dev Biol 2020; 8:601400. [PMID: 33364237 PMCID: PMC7753047 DOI: 10.3389/fcell.2020.601400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Overexpression of ABCG2 remains a major impediment to successful cancer treatment, because ABCG2 functions as an efflux pump of chemotherapeutic agents and causes clinical multidrug resistance (MDR). Therefore, it is important to uncover effective modulators to circumvent ABCG2-mediated MDR in cancers. In this study, we reported that AZ-628, a RAF kinase inhibitor, effectively antagonizes ABCG2-mediated MDR in vitro. Our results showed that AZ-628 completely reversed ABCG2-mediated MDR at a non-toxic concentration (3 μM) without affecting ABCB1-, ABCC1-, or ABCC10 mediated MDR. Further studies revealed that the reversal mechanism was by attenuating ABCG2-mediated efflux and increasing intracellular accumulation of ABCG2 substrate drugs. Moreover, AZ-628 stimulated ABCG2-associated ATPase activity in a concentration-dependent manner. Docking and molecular dynamics simulation analysis showed that AZ-628 binds to the same site as ABCG2 substrate drugs with higher score. Taken together, our studies indicate that AZ-628 could be used in combination chemotherapy against ABCG2-mediated MDR in cancers.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Han Fu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|