1
|
Galende SB, Paula MND, Fachi MM, Medeiros Araújo DCD, Chierrito D, Mello JCPD. Plants with Hair Growth Activity for Alopecia: A Scoping Review on Methodological Aspects. PLANTA MEDICA 2025. [PMID: 39622506 DOI: 10.1055/a-2494-9020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Alopecia is a common dermatological disorder of patchy hair loss with substantial patient burden. Phytotherapeutic compounds are increasingly used as a source of new therapeutic options. This review aimed to synthesize the evidence on plant species in hair growth and the methodological aspects of in vivo experimental models. The systematic scoping review was conducted following the PRISMA checklist, the Joanna Briggs Institute, and in accordance with Cochrane. A systematic search was carried out in the Pubmed, Scopus, Web of Science, and SciELO databases. In vivo experiments that evaluated hair growth activity using natural substances of plant origin were included. Data collection and analysis: a total of 1250 studies were identified, of which 175 were included for qualitative synthesis. Of these, 128 used mice, 37 rats, 10 rabbits, 1 guinea pig, and 1 sheep as animal models. The methodologies mapped were as follows: hair growth analysis, histological analysis, immunohistochemistry, gene expression analysis, Western blot, enzyme-linked immunosorbent assay, and biochemical analysis. Minoxidil and finasteride were the most commonly used positive controls. The studies evaluated plant species (166), algae (11), or isolated substances (31). Overall, 152 plant species and 37 isolated substances were identified. This is the first systematic scoping review on the methodological aspects of in vivo hair growth activity. We created a checklist to be completed by authors to allow data comparison and reproducibility, facilitate data interpretation by readers, and ensure better quality of evidence. This work may become a valuable tool for future research and contribute to significant advances in hair growth studies.
Collapse
Affiliation(s)
- Sharize Betoni Galende
- Department of Pharmacy, Laboratory of Pharmaceutical Biology, Palafito, Universidade Estadual de Maringá, Maringá, Brazil
| | - Mariana Nascimento de Paula
- Department of Pharmacy, Laboratory of Pharmaceutical Biology, Palafito, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | | | - João Carlos Palazzo de Mello
- Department of Pharmacy, Laboratory of Pharmaceutical Biology, Palafito, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
2
|
Kubota D, Sato M, Udono M, Kohara A, Kudoh M, Ukawa Y, Teruya K, Katakura Y. Activation of the Gut-Brain Interaction by Urolithin A and Its Molecular Basis. Nutrients 2024; 16:3369. [PMID: 39408336 PMCID: PMC11478980 DOI: 10.3390/nu16193369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Urolithin A (Uro-A), a type of polyphenol derived from pomegranate, is known to improve memory function when ingested, in addition to its direct effect on the skin epidermal cells through the activation of longevity gene SIRT1. However, the molI ecular mechanism by which orally ingested Uro-A inhibits cognitive decline via the intestine remains unexplored. Objectives: This study aimed to evaluate the role of Uro-A in improving cognitive function via improved intestinal function and the effect of Uro-A on the inflammation levels and gene expression in hippocampus. Methods: Research to clarify the molecular basis of the functionality of Uro-A was also conducted. Results: The results demonstrated that Uro-A suppressed age-related memory impairment in Aged mice (C57BL/6J Jcl, male, 83 weeks old) by reducing inflammation and altering hippocampal gene expression. Furthermore, exosomes derived from intestinal cells treated with Uro-A and from the serum of Aged mice fed with Uro-A both activated neuronal cells, suggesting that exosomes are promising candidates as mediators of the Uro-A-induced activation of gut-brain interactions. Additionally, neurotrophic factors secreted from intestinal cells may contribute to the Uro-A-induced activation of gut-brain interactions. Conclusions: This study suggests that Uro-A suppresses age-related cognitive decline and that exosomes and other secreted factors may contribute to the activation of the gut-brain interaction. These findings provide new insights into the therapeutic potential of Uro-A for cognitive health.
Collapse
Affiliation(s)
- Daiki Kubota
- Graduate School of Bioresources, Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (D.K.); (M.S.)
| | - Momoka Sato
- Graduate School of Bioresources, Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (D.K.); (M.S.)
| | - Miyako Udono
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; (M.U.); (K.T.)
| | - Akiko Kohara
- Daicel Corporation, Tokyo 108-8230, Japan (M.K.); (Y.U.)
| | - Masatake Kudoh
- Daicel Corporation, Tokyo 108-8230, Japan (M.K.); (Y.U.)
| | - Yuichi Ukawa
- Daicel Corporation, Tokyo 108-8230, Japan (M.K.); (Y.U.)
| | - Kiichiro Teruya
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; (M.U.); (K.T.)
| | - Yoshinori Katakura
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; (M.U.); (K.T.)
| |
Collapse
|
3
|
Du F, Li J, Zhang S, Zeng X, Nie J, Li Z. Oxidative stress in hair follicle development and hair growth: Signalling pathways, intervening mechanisms and potential of natural antioxidants. J Cell Mol Med 2024; 28:e18486. [PMID: 38923380 PMCID: PMC11196958 DOI: 10.1111/jcmm.18486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.
Collapse
Affiliation(s)
- Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Xuemei Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
4
|
Liu X, Lv X, Ji T, Hu H, Chang L. Gynostemma pentaphyllum Makino extract induces hair growth and exhibits an anti-graying effect via multiple mechanisms. J Cosmet Dermatol 2024; 23:648-657. [PMID: 37649302 DOI: 10.1111/jocd.15963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND In traditional Asian medicine, Gynostemma pentaphyllum Makino leaf extract (Gp) is used to treat aging, metabolic syndrome, diabetes, and neurodegenerative diseases. Hair loss and hair-graying are common phenomena that haunt everyone. However, whether Gp activities on inhibition of hair loss and getting gray have been rarely studied. AIM Study the Gp activity and mechanism by in vivo and in vitro experiments to explore its application on hair health. METHODS In the present study, we determined the effects of Gp on the expression of hair growth-related genes and proliferation of human dermal papilla cells (hDPCs). Furthermore, Gp was topically applied to the hair-shaved skin of male C57BL/6 mice, and the histological profile of the skin was studied. Because emotional stress may lead to melanocyte disappearance, norepinephrine-exposed mice B16 melanocytes were treated with Gp to elucidate the anti-hair graying capacity of Gp in response to this stress type. RESULTS Gp stimulated the proliferation of hDPCs and the Wnt signaling pathways associated with hair growth; furthermore, the expression of the hair loss-related gene transforming growth factor-β1 was suppressed. Gp treatment significantly increased the size of hair follicles in the treated mice and stimulated them. Moreover, Gp not only increased melanin synthesis but also tyrosinase activity in B16 cells. Quantitative real-time polymerase chain reaction revealed that Gp increased melanin synthesis by increasing the expression of tyrosine-related protein-1, tyrosine-related protein-2, tyrosinase, and microphthalmia-associated transcription factor. CONCLUSION Our study provides preclinical evidence regarding the potential of Gp as a promising hair growth and anti-graying agent.
Collapse
Affiliation(s)
- Xiaojin Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tiancheng Ji
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Haoya Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lei Chang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
5
|
Wu S, Kou X, Niu Y, Liu Y, Zheng B, Ma J, Liu M, Xue Z. Progress on the mechanism of natural products alleviating androgenetic alopecia. Eur J Med Chem 2024; 264:116022. [PMID: 38086191 DOI: 10.1016/j.ejmech.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/β-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China.
| |
Collapse
|
6
|
Yamada A, Watanabe K, Nishi Y, Oshiro M, Katakura Y, Sakai K, Tashiro Y. Scalp bacterial species influence SIRT1 and TERT expression in keratinocytes. Biosci Biotechnol Biochem 2023; 87:1364-1372. [PMID: 37673677 DOI: 10.1093/bbb/zbad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Scalp bacteria on the human scalp and scalp hair comprise distinct community structures for sites and individuals. To evaluate their effect on human keratinocyte cellular activity, including that of the hair follicular keratinocytes, the expression of several longevity genes was examined using HaCaT cells. A screening system that uses enhanced green fluorescent protein (EGFP) fluorescence was established to identify scalp bacteria that enhance silent mating type information regulation 2 homolog-1 (SIRT1) promoter activity in transformed HaCaT cells (SIRT1p-EGFP). The results of quantitative polymerase chain reaction revealed that several predominant scalp bacteria enhanced (Cutibacterium acnes and Pseudomonas lini) and repressed (Staphylococcus epidermidis) the expressions of SIRT1 and telomerase reverse transcriptase (TERT) genes in HaCaT cells. These results suggest that the predominant scalp bacteria are related to the health of the scalp and hair, including repair of the damaged scalp and hair growth, by regulating gene expression in keratinocytes.
Collapse
Affiliation(s)
- Azusa Yamada
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kota Watanabe
- Laboratory of Fermentation Microbiology, Department of Fermentation Science, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuri Nishi
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Mugihito Oshiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yoshinori Katakura
- Laboratory of Cellular Regulation Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
8
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
9
|
Soe ZC, Ei ZZ, Visuttijai K, Chanvorachote P. Potential Natural Products Regulation of Molecular Signaling Pathway in Dermal Papilla Stem Cells. Molecules 2023; 28:5517. [PMID: 37513389 PMCID: PMC10384366 DOI: 10.3390/molecules28145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cells have demonstrated significant potential for tissue engineering and repair, anti-aging, and rejuvenation. Hair follicle stem cells can be found in the dermal papilla at the base of the follicle and the bulge region, and they have garnered increased attention because of their potential to regenerate hair as well as their application for tissue repair. In recent years, these cells have been shown to affect hair restoration and prevent hair loss. These stem cells are endowed with mesenchymal characteristics and exhibit self-renewal and can differentiate into diverse cell types. As research in this field continues, it is probable that insights regarding stem cell maintenance, as well as their self-renewal and differentiation abilities, will benefit the application of these cells. In addition, an in-depth discussion is required regarding the molecular basis of cellular signaling and the influence of nature-derived compounds in stimulating the stemness properties of dermal papilla stem cells. This review summarizes (i) the potential of the mesenchymal cells component of the hair follicle as a target for drug action; (ii) the molecular mechanism of dermal papilla stem cells for maintenance of their stem cell function; and (iii) the positive effects of the natural product compounds in stimulating stemness in dermal papilla stem cells. Together, these insights may help facilitate the development of novel effective hair loss prevention and treatment.
Collapse
Affiliation(s)
- Zar Chi Soe
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
11
|
Fang T, Xu R, Sun S, He Y, Yan Y, Fu H, Luo H, Cao Y, Tao M. Caizhixuan hair tonic regulates both apoptosis and the PI3K/Akt pathway to treat androgenetic alopecia. PLoS One 2023; 18:e0282427. [PMID: 36827412 PMCID: PMC9956876 DOI: 10.1371/journal.pone.0282427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
PURPOSE Caizhixuan hair tonic (CZX) is a topical traditional Chinese medicine (TCM) preparation for the treatment of androgenetic alopecia (AGA). However, its active compounds and underlying mechanism for treating AGA are still unclear. The purpose of this study was to observe the effects of CZX on hair growth promotion in AGA mice and to explore the active components and mechanism. METHODS Testosterone propionate was administered subcutaneously to mice to establish an AGA mouse model. The therapeutic effects of CZX on AGA were evaluated by observing skin colour changes, hair growth time, and average hair length; calculating the hair growth score; and performing skin histopathological analysis. Following that, CZX chemical components were analysed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Network pharmacology was used to predict the major effects and possible mechanisms of CZX for the treatment of AGA. Furthermore, RT-qPCR and Western blotting were performed to assess the expression of key genes and proteins involved in PI3K/Akt and apoptosis pathways in order to validate CZX's predicted mechanism in AGA. RESULTS CZX promoted hair growth and improved the pathological morphology of hair follicles in the skin. In UPLC-Q-TOF/MS analysis, 69 components from CZX were isolated. Based on network pharmacology, CZX alleviated AGA by regulating PI3K/Akt and apoptosis pathways. According to RT-qPCR and Western blotting, CZX upregulated the expressions of PI3K, Akt, and Bcl-2, while downregulating that of Bax and caspase-3. CONCLUSIONS CZX promotes hair growth to treat AGA by regulating the PI3K/Akt and apoptosis pathways.
Collapse
Affiliation(s)
- Tingting Fang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruofei Xu
- Longyou County People’s Hospital, Longyou, Zhejiang, China
| | - Shaopeng Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yineng He
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Yan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maocan Tao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,* E-mail:
| |
Collapse
|
12
|
Zhang Y, Zhang S, Long Y, Wang W, Du F, Li J, Jin F, Li Z. Stimulation of hair growth by Tianma Gouteng decoction: Identifying mechanisms based on chemical analysis, systems biology approach, and experimental evaluation. Front Pharmacol 2022; 13:1073392. [PMID: 36588691 PMCID: PMC9802907 DOI: 10.3389/fphar.2022.1073392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hair serves important physiological functions, including temperature regulation and scalp protection. However, excessive shedding not only impacts these functions but can also significantly affect mental health and quality of life. Tianma Gouteng decoction (TGD) is a traditional Chinese medicine used for the treatment of various conditions, including hair loss. However, the associated mechanism underlying its anti-alopecia effect remains unknown. Therefore, this study aims to elucidate these mechanisms by employing systematic biology approaches, as well as in vitro and in vivo experimental validation. The chemical constituents of Tianma Gouteng decoction were identified using UHPLC-MS/MS, from which 39 potential bioactive components were screened, while an additional 131 putative Tianma Gouteng decoction beneficial components were extracted from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database. We then applied a dual-dimensional network pharmacology approach to analyze the data, followed by validation studies combining molecular docking techniques with in vivo and in vitro experiments. From the 39 bioactive components, including quercetin, luteolin, fisetin, wogonin, oroxylin A, boldine, tetrahydroalstonine, and galangin A, 782 corresponding targets were identified. In particular, GSK3β and β-catenin exhibited strong binding activity with the bioactive compounds. Hence, construction of a bioactive component-target network revealed that the mechanism underlying the anti-alopecia mechanism of Tianma Gouteng decoction primarily involved the Wnt/β-catenin signaling pathway. Moreover, C57BL/6J mice exhibited measurable improvements in hair follicle regeneration following treatment with Tianma Gouteng decoction. Additionally, β-catenin and p-GSK3β levels were upregulated, while GSK3β was downregulated in Tianma Gouteng decoction-treated animals and dermal papilla cells compared to control group. These in vivo and in vitro outcomes validated the targets and pathways predicted in the network pharmacology analysis of Tianma Gouteng decoction. This study provides a systematic analysis approach to identify the underlying anti-alopecia mechanisms of Tianma Gouteng decoction, further providing theoretical support for clinical assessment of Tianma Gouteng decoction.
Collapse
Affiliation(s)
- Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Zheng Li,
| |
Collapse
|
13
|
Ijima S, Saito Y, Nagaoka K, Yamamoto S, Sato T, Miura N, Iwamoto T, Miyajima M, Chikenji TS. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front Immunol 2022; 13:960601. [PMID: 36466895 PMCID: PMC9714549 DOI: 10.3389/fimmu.2022.960601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by the involvement of multiple organs. Lupus nephritis (LN) is a major risk factor for overall morbidity and mortality in SLE patients. Hence, designing effective drugs is pivotal for treating individuals with LN. Fisetin plays a senolytic role by specifically eliminating senescent cells, inhibiting cell proliferation, and exerting anti-inflammatory, anti-oxidant, and anti-tumorigenic effects. However, limited research has been conducted on the utility and therapeutic mechanisms of fisetin in chronic inflammation. Similarly, whether the effects of fisetin depend on cell type remains unclear. In this study, we found that LN-prone MRL/lpr mice demonstrated accumulation of Ki-67-positive myofibroblasts and p15INK4B-positive senescent tubular epithelial cells (TECs) that highly expressed transforming growth factor β (TGF-β). TGF-β stimulation induced senescence of NRK-52E renal TECs and proliferation of NRK-49F renal fibroblasts, suggesting that TGF-β promotes senescence and proliferation in a cell type-dependent manner, which is inhibited by fisetin treatment in vitro. Furthermore, fisetin treatment in vivo reduced the number of senescent TECs and myofibroblasts, which attenuated kidney fibrosis, reduced senescence-associated secretory phenotype (SASP) expression, and increased TEC proliferation. These data suggest that the effects of fisetin vary depending on the cell type and may have therapeutic effects in complex and diverse LN pathologies.
Collapse
Affiliation(s)
- Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Nagaoka
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Taiki Iwamoto
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takako S. Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Effects of Natural Polyphenols on Skin and Hair Health: A Review. Molecules 2022; 27:molecules27227832. [PMID: 36431932 PMCID: PMC9695112 DOI: 10.3390/molecules27227832] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
The skin is the largest organ of the body and plays multiple essential roles, ranging from regulating temperature, preventing infections, to ultimately affecting human health. A hair follicle is a complex cutaneous appendage. Skin diseases and hair loss have a significant effect on the quality of life and psychosocial adjustment of individuals. However, the available traditional drugs for treating skin and hair diseases may have some insufficiencies; therefore, a growing number of researchers are interested in natural materials that could achieve satisfactory results and minimize adverse effects. Natural polyphenols, named for the multiple phenolic hydroxyl groups in their structures, are promising candidates and continue to be of scientific interest due to their multifunctional biological properties and safety. Polyphenols have a wide range of pharmacological effects. In addition to the most common effect, antioxidation, polyphenols have anti-inflammatory, bacteriostatic, antitumor, and other biological effects associated with reduced risk of a number of chronic diseases. Various polyphenols have also shown efficacy against different types of skin and hair diseases, both in vitro and in vivo, via different mechanisms. Thus, this paper reviews the research progress in natural polyphenols for the protection of skin and hair health, especially focusing on their potential therapeutic mechanisms against skin and hair disorders. A deep understanding of natural polyphenols provides a new perspective for the safe treatment of skin diseases and hair loss.
Collapse
|
15
|
The Molecular Mechanism of Natural Products Activating Wnt/β-Catenin Signaling Pathway for Improving Hair Loss. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111856. [PMID: 36430990 PMCID: PMC9693075 DOI: 10.3390/life12111856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Hair loss, or alopecia, is a dermatological disorder that causes psychological stress and poor quality of life. Drug-based therapeutics such as finasteride and minoxidil have been clinically used to treat hair loss, but they have limitations due to their several side effects in patients. To solve this problem, there has been meaningful progress in elucidating the molecular mechanisms of hair growth and finding novel targets to develop therapeutics to treat it. Among various signaling pathways, Wnt/β-catenin plays an essential role in hair follicle development, the hair cycle, and regeneration. Thus, much research has demonstrated that various natural products worldwide promote hair growth by stimulating Wnt/β-catenin signaling. This review discusses the functional role of the Wnt/β-catenin pathway and its related signaling molecules. We also review the molecular mechanism of the natural products or compounds that activate Wnt/β-catenin signaling and provide insights into developing therapeutics or cosmeceuticals that treat hair loss.
Collapse
|
16
|
Honsho M, Mawatari S, Fujino T. Transient Ca2+ entry by plasmalogen-mediated activation of receptor potential cation channel promotes AMPK activity. Front Mol Biosci 2022; 9:1008626. [PMID: 36406270 PMCID: PMC9672372 DOI: 10.3389/fmolb.2022.1008626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Ethanolamine-containing alkenyl ether glycerophospholipids, plasmalogens, are major cell membrane components of mammalian cells that activate membrane protein receptors such as ion transporters and G-protein coupled receptors. However, the mechanism by which plasmalogens modulate receptor function is unknown. Here, we found that exogenously added plasmalogens activate transient receptor potential cation channel subfamily C member 4 (TRPC4) to increase Ca2+ influx, followed by calcium/calmodulin-dependent protein kinase 2-mediated phosphorylation of AMP-activated protein kinase (AMPK). Upon topical application of plasmalogens to the skin of mice, AMPK activation was observed in TRPC4-expressing hair bulbs and hair follicles. Here, TRPC4 was co-localized with the leucine-rich repeat containing G protein-coupled receptor 5, a marker of hair-follicle stem cells, leading to hair growth. Collectively, this study indicates that plasmalogens could function as gate openers for TRPC4, followed by activating AMPK, which likely accelerates hair growth in mice.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Masanori Honsho,
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, Fukuoka, Japan
| | | |
Collapse
|
17
|
Ferdousi F, Sasaki K, Xu D, Zheng YW, Szele FG, Isoda H. Editorial: Directing Stem Cell Fate Using Plant Extracts and Their Bioactive Compounds. Front Cell Dev Biol 2022; 10:957601. [PMID: 35846354 PMCID: PMC9277474 DOI: 10.3389/fcell.2022.957601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Hiroko Isoda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroko Isoda,
| |
Collapse
|
18
|
Essential Oils Derived from Cistus Species Activate Mitochondria by Inducing SIRT1 Expression in Human Keratinocytes, Leading to Senescence Inhibition. Molecules 2022; 27:molecules27072053. [PMID: 35408452 PMCID: PMC9000612 DOI: 10.3390/molecules27072053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022] Open
Abstract
Cistus L. is a genus of dicotyledonous perennial herbaceous plants. Cistus species have been commonly used in folk medicine in the Mediterranean region. In the present study, the biological activities of essential oils derived from Cistus species (Cistus laurifolius, C. monspeliensis, C. creticus, and C. salviifolius) were evaluated. Essential oils derived from C. laurifolius and C. monspeliensis were found to augment the expression of SIRT1, an anti-aging gene, in the normal culture of HaCaT cells. Furthermore, these essential oils increased the number and size of mitochondria and augmented their activity. These effects were thought to be caused by the up- and downregulated expression of MITOL and Drp1 in HaCaT cells, respectively, in response to the essential oil treatment. In addition, these essential oils were found to attenuate ultraviolet-B-induced mitochondrial damage and cellular senescence in HaCaT cells. These findings indicate that essential oils derived from C. laurifolius and C. monspeliensis may inhibit skin aging through mitochondrial regulation via SIRT1 activation.
Collapse
|
19
|
Xiong J, Wu B, Hou Q, Huang X, Jia L, Li Y, Jiang H. Comprehensive Analysis of LncRNA AC010789.1 Delays Androgenic Alopecia Progression by Targeting MicroRNA-21 and the Wnt/β-Catenin Signaling Pathway in Hair Follicle Stem Cells. Front Genet 2022; 13:782750. [PMID: 35242164 PMCID: PMC8886141 DOI: 10.3389/fgene.2022.782750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Androgen alopecia (AGA), the most common type of alopecia worldwide, has become an important medical and social issue. Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the progression of various human diseases, including AGA. However, the potential roles of lncRNAs in hair follicle stem cells (HFSCs) and their subsequent relevance for AGA have not been fully elucidated. The current study aimed to explore the function and molecular mechanism of the lncRNA AC010789.1 in AGA progression. Methods: We investigated the expression levels of AC010789.1 in AGA scalp tissues compared with that in normal tissues and explored the underlying mechanisms using bioinformatics. HFSCs were then isolated from hair follicles of patients with AGA, and an AC010789.1-overexpressing HFSC line was produced and verified. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to verify the molecular mechanisms involved. Results: AC010789.1 overexpression promoted the proliferation and differentiation of HFSCs. Mechanistically, we demonstrated that AC010789.1 overexpression promotes the biological function of HFSCs by downregulating miR-21-5p and TGF-β1 expression but upregulating the Wnt/β-catenin signaling pathway. Conclusion: These results reveal that overexpression of AC010789.1 suppresses AGA progression via downregulation of hsa-miR-21-5p and TGF-β1 and promotion of the Wnt/β-catenin signaling pathway, highlighting a potentially promising strategy for AGA treatment.
Collapse
Affiliation(s)
- Jiachao Xiong
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Hou
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingling Jia
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yufei Li
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yufei Li, ; Hua Jiang,
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yufei Li, ; Hua Jiang,
| |
Collapse
|
20
|
Zhang Y, Ni C, Huang Y, Tang Y, Yang K, Shi X, Zhang Y, Li Z, Wang J, Zhu Y, Li H, Ma Y, Lin J, Wang J, Liu Q, Wu W. Hair Growth-Promoting Effect of Resveratrol in Mice, Human Hair Follicles and Dermal Papilla Cells. Clin Cosmet Investig Dermatol 2021; 14:1805-1814. [PMID: 34866922 PMCID: PMC8637427 DOI: 10.2147/ccid.s335963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Background Oxidative damage has been found in various types of hair loss. As a polyphenolic phytoalexin, resveratrol (RSV) is known as an antioxidant, anti-inflammatory and anti-apoptotic agent. Objective Thus, we aim to examine the effects of RSV on hair growth. Methods In vivo C57BL/6 mice were used to evaluate the effects of RSV on hair cycle, hair length, skin thickness, hair follicle diameter, hair cycle score and the percentage of hair cycle stage. Then hair shaft length and hair cycle were evaluated by human hair follicles (HFs) ex vivo. The proliferative activities of human dermal papilla cells (hDPCs) cultured in vitro with RSV were assessed using RTCA. The ability of RSV to protect hDPCs against H2O2-induced oxidative damage is examined by a ROS assay kit. Results Topical application of RSV significantly promoted hair growth and stimulated the transition of hair cycle from telogen into the anagen phase on shaved C57BL/6 mice. Ex vivo experiments showed that RSV increased the hair shaft length of HFs and delayed the entry into catagen. In vitro experiments indicated that RSV proliferated hDPCs and prevented hDPCs from oxidative damage caused by H2O2. Conclusion RSV can promote hair growth and may be a potential candidate for the treatment of hair loss.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chunya Ni
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, People's Republic of China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yue Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zheng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ji'an Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yifei Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Haiyang Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, People's Republic of China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenyu Wu
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, People's Republic of China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Furukawa K, Kono M, Kataoka T, Hasebe Y, Jia H, Kato H. Effects of Eggshell Membrane on Keratinocyte Differentiation and Skin Aging In Vitro and In Vivo. Nutrients 2021; 13:nu13072144. [PMID: 34206704 PMCID: PMC8308305 DOI: 10.3390/nu13072144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
Skin aging is one of the hallmarks of the aging process that causes physiological and morphological changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin aging process in vitro using neonatal normal human epidermal keratinocytes (NHEK-Neo) and in vivo using interleukin-10 knockout (IL-10 KO) mice. In NHEK-Neo cells, 1 mg/mL of enzymatically hydrolyzed ESM (eESM) upregulated the expression of keratinocyte differentiation markers, including keratin 1, filaggrin and involucrin, and changed the keratinocyte morphology. In IL-10 KO mice, oral supplementation of 8% powdered-ESM (pESM) upregulated the expression of growth factors, including transforming growth factor β1, platelet-derived growth factor-β and connective tissue growth factor, and suppressed skin thinning. Furthermore, voltage-gated calcium channel, transient receptor potential cation channel subfamily V members were upregulated by eESM treatment in NHEK-Neo cells and pESM supplementation in IL-10 KO mice. Collectively, these data suggest that ESM has an important role in improving skin health and aging, possibly via upregulating calcium signaling.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
| | - Masaya Kono
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
| | - Tetsuro Kataoka
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
| | | | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
- Correspondence: (H.J.); (H.K.); Tel.: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.F.); (M.K.); (T.K.)
- Correspondence: (H.J.); (H.K.); Tel.: +81-3-5841-5116 (H.J.); +81-3-5841-1607 (H.K.)
| |
Collapse
|
22
|
Ogawa M, Udono M, Teruya K, Uehara N, Katakura Y. Exosomes Derived from Fisetin-Treated Keratinocytes Mediate Hair Growth Promotion. Nutrients 2021; 13:nu13062087. [PMID: 34207142 PMCID: PMC8234638 DOI: 10.3390/nu13062087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Enhanced telomerase reverse transcriptase (TERT) levels in dermal keratinocytes can serve as a novel target for hair growth promotion. Previously, we identified fisetin using a system for screening food components that can activate the TERT promoter in HaCaT cells (keratinocytes). In the present study, we aimed to clarify the molecular basis of fisetin-induced hair growth promotion in mice. To this end, the dorsal skin of mice was treated with fisetin, and hair growth was evaluated 12 days after treatment. Histochemical analyses of fisetin-treated skin samples and HaCaT cells were performed to observe the effects of fisetin. The results showed that fisetin activated HaCaT cells by regulating the expression of various genes related to epidermogenesis, cell proliferation, hair follicle regulation, and hair cycle regulation. In addition, fisetin induced the secretion of exosomes from HaCaT cells, which activated β-catenin and mitochondria in hair follicle stem cells (HFSCs) and induced their proliferation. Moreover, these results revealed the existence of exosomes as the molecular basis of keratinocyte-HFSC interaction and showed that fisetin, along with its effects on keratinocytes, caused exosome secretion, thereby activating HFSCs. This is the first study to show that keratinocyte-derived exosomes can activate HFSCs and consequently induce hair growth.
Collapse
Affiliation(s)
- Mizuki Ogawa
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (M.O.); (K.T.)
| | - Miyako Udono
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
| | - Kiichiro Teruya
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (M.O.); (K.T.)
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yoshinori Katakura
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (M.O.); (K.T.)
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
- Correspondence: ; Tel.: +81-92-802-4727
| |
Collapse
|
23
|
Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci 2021; 22:6381. [PMID: 34203694 PMCID: PMC8232155 DOI: 10.3390/ijms22126381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of cells-their ability to divide, differentiate, and regenerate-is dictated by genomic stability. The main factors contributing to this stability are the telomeric ends that cap chromosomes. Telomere biology and telomerase activity have been of interest to scientists in various medical science fields for years, including the study of both cancer and of senescence and aging. All these processes are accompanied by telomere-length modulation. Maintaining the key levels of telomerase component (hTERT) expression and telomerase activity that provide optimal telomere length as well as some nontelomeric functions represents a promising step in advanced anti-aging strategies, especially in dermocosmetics. Some known naturally derived compounds contribute significantly to telomere and telomerase metabolism. However, before they can be safely used, it is necessary to assess their mechanisms of action and potential side effects. This paper focuses on the metabolic potential of natural compounds to modulate telomerase and telomere biology and thus prevent senescence and skin aging.
Collapse
Affiliation(s)
| | | | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (B.J.); (B.R.)
| |
Collapse
|
24
|
Antal DS, Ardelean F, Jijie R, Pinzaru I, Soica C, Dehelean C. Integrating Ethnobotany, Phytochemistry, and Pharmacology of Cotinus coggygria and Toxicodendron vernicifluum: What Predictions can be Made for the European Smoketree? Front Pharmacol 2021; 12:662852. [PMID: 33953688 PMCID: PMC8092975 DOI: 10.3389/fphar.2021.662852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The smoketree (Cotinus coggygria) is a historically known medicinal plant from Southeast Europe. Its ethnomedicinal use in skin and mucosal lesions is commonly accepted across countries. Other utilizations reported locally include fever reduction, cardiac diseases, hypertension, urinary diseases, cough, asthma, hemorrhoids, diabetes, numbness of arm, liver disease, and cancer. Departing from the smoketree's traditional uses, this review summarizes investigations on the phytochemistry and bioactivity of the plant. In vitro and in vivo experiments supporting wound-healing, anti-inflammatory, antibacterial, cytotoxic, antioxidative, hepatoprotective, and antidiabetic effects are presented. Metabolites from smoketree that are responsible for the main pharmacological effects of smoketree are pointed out. Furthermore, the review performs a comparison between C. coggygria and the lacquer tree (Toxicodendron vernicifluum). The latter is a comprehensively studied species used in Asian phytotherapy, with whom the European smoketree shares a consistent pool of secondary metabolites. The comparative approach aims to open new perspectives in the research of smoketree and anticipates an optimized use of C. coggygria in therapy. It also points out the relevance of a chemosystematic approach in the field of medicinal plants research.
Collapse
Affiliation(s)
- Diana Simona Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Florina Ardelean
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Robert Jijie
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|