1
|
Hernandez BJ, Strain M, Suarez MF, Stamer WD, Ashley-Koch A, Liu Y, Klingeborn M, Bowes Rickman C. Small Extracellular Vesicle-Associated MiRNAs in Polarized Retinal Pigmented Epithelium. Invest Ophthalmol Vis Sci 2024; 65:57. [PMID: 39589346 PMCID: PMC11601136 DOI: 10.1167/iovs.65.13.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose Oxidative stress in the retinal pigmented epithelium (RPE) has been implicated in age-related macular degeneration by impacting endocytic trafficking, including the formation, content, and secretion of extracellular vesicles (EVs). Using our model of polarized primary porcine RPE (pRPE) cells under chronic subtoxic oxidative stress, we tested the hypothesis that RPE miRNAs packaged into EVs are secreted in a polarized manner and contribute to maintaining RPE homeostasis. Methods Small EVs (sEVs) enriched for exosomes were isolated from apical and basal conditioned media from pRPE cells grown for up to four weeks with or without low concentrations of hydrogen peroxide using two sEV isolation methods, leading to eight experimental groups. The sEV miRNA expression was profiled using miRNA-Seq with Illumina MiSeq, followed by quality control and bioinformatics analysis for differential expression using the R computing environment. Expression of selected miRNAs were validated using qRT-PCR. Results We identified miRNA content differences carried by sEVs isolated using two ultracentrifugation-based methods. Regardless of the sEV isolation method, miR-182 and miR-183 were enriched in the cargo of apically secreted sEVs, and miR-122 in the cargo of basally secreted sEVs from RPE cells during normal homeostatic conditions. After oxidative stress, miR-183 levels were significantly decreased in the cargo of apically released sEVs from stressed RPE cells. Conclusions We curated RPE sEV miRNA datasets based on cell polarity and oxidative stress. Unbiased miRNA analysis identified differences based on polarity, stress, and sEV isolation methods. These findings suggest that miRNAs in sEVs may contribute to RPE homeostasis and function in a polarized manner.
Collapse
Affiliation(s)
- Belinda J. Hernandez
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Madison Strain
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, North Carolina, United States
| | - Maria Fernanda Suarez
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Mikael Klingeborn
- McLaughlin Research Institute, Great Falls, Montana, United States
- Touro College of Osteopathic Medicine Montana, Great Falls, Montana, United States
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
2
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Pollalis D, Nair GKG, Leung J, Bloemhof CM, Bailey JK, Pennington BO, Kelly KR, Khan AI, Yeh AK, Sundaram KS, Clegg DO, Peng CC, Xu L, Georgescu C, Wren JD, Lee SY. Dynamics of microRNA secreted via extracellular vesicles during the maturation of embryonic stem cell-derived retinal pigment epithelium. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70001. [PMID: 39281021 PMCID: PMC11393772 DOI: 10.1002/jex2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/18/2024]
Abstract
Retinal pigment epithelial (RPE) cells are exclusive to the retina, critically multifunctional in maintaining the visual functions and health of photoreceptors and the retina. Despite their vital functions throughout lifetime, RPE cells lack regenerative capacity, rendering them vulnerable which can lead to degenerative retinal diseases. With advancements in stem cell technology enabling the differentiation of functional cells from pluripotent stem cells and leveraging the robust autocrine and paracrine functions of RPE cells, extracellular vesicles (EVs) secreted by RPE cells hold significant therapeutic potential in supplementing RPE cell activity. While previous research has primarily focused on the trophic factors secreted by RPE cells, there is a lack of studies investigating miRNA, which serves as a master regulator of gene expression. Profiling and defining the functional role of miRNA contained within RPE-secreted EVs is critical as it constitutes a necessary step in identifying the optimal phenotype of the EV-secreting cell and understanding the biological cargo of EVs to develop EV-based therapeutics. In this study, we present a comprehensive profile of miRNA in small extracellular vesicles (sEVs) secreted during RPE maturation following differentiation from human embryonic stem cells (hESCs); early-stage hESC-RPE (20-21 days in culture), mid-stage hESC-RPE (30-31 days in culture) and late-stage hESC-RPE (60-61 days in culture). This exploration is essential for ongoing efforts to develop and optimize EV-based intraocular therapeutics utilizing RPE-secreted EVs, which may significantly impact the function of dysfunctional RPE cells in retinal diseases.
Collapse
Affiliation(s)
- Dimitrios Pollalis
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Ginsburg Institute for Biomedical Therapeutics University of Southern California Los Angeles California USA
| | - Gopa Kumar Gopinadhan Nair
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Ginsburg Institute for Biomedical Therapeutics University of Southern California Los Angeles California USA
| | - Justin Leung
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Dornsife College of Letters, Arts and Sciences Los Angeles California USA
| | - Clarisa Marie Bloemhof
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- University of Southern California Los Angeles California USA
- School of Medicine California University of Science and Medicine Colton California USA
| | - Jeffrey K Bailey
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Britney O Pennington
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Kaitlin R Kelly
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Amir I Khan
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Ashley K Yeh
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
- College of Creative Studies, Biology University of California Santa Barbara California USA
| | - Kartik S Sundaram
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Biomolecular Science and Engineering University of California Santa Barbara California USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
- Biomolecular Science and Engineering University of California Santa Barbara California USA
| | - Chen-Ching Peng
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- Children's Hospital Los Angeles Vision Center Los Angeles California USA
| | - Liya Xu
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- Children's Hospital Los Angeles Vision Center Los Angeles California USA
| | - Constantin Georgescu
- Genes & Human Diseases Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
| | - Jonathan D Wren
- Genes & Human Diseases Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
| | - Sun Young Lee
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Ginsburg Institute for Biomedical Therapeutics University of Southern California Los Angeles California USA
- Department of Physiology and Neuroscience, Keck School of Medicine University of Southern California Los Angeles California USA
| |
Collapse
|
4
|
Costa BLD, Quinn PMJ, Wu WH, Liu S, Nolan ND, Demirkol A, Tsai YT, Caruso SM, Cabral T, Wang NK, Tsang SH. Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy. Cell Biosci 2024; 14:64. [PMID: 38773556 PMCID: PMC11110387 DOI: 10.1186/s13578-024-01243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process. RESULTS Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis. CONCLUSIONS Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Siyuan Liu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas D Nolan
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Aykut Demirkol
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Salvatore Marco Caruso
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS and Vision Center Unit, Ophthalmology EBSERH, HUCAM/CCS, UFES-Federal University of Espírito Santo (UFES), Vitória, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Nan-Kai Wang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Stem Cell Initiative, Institute of Human Nutrition ,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Irving Medical Center, Hammer Health Sciences Center 205b, 701 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
6
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
7
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Shao L, Zhang QL, Zhang C, Dong L, Zhou WD, Zhang RH, Wu HT, Wei WB. Thickness of retinal pigment epithelium-Bruch's membrane complex in adult Chinese using optical coherence tomography. Eye (Lond) 2023; 37:155-159. [PMID: 35046547 PMCID: PMC9829656 DOI: 10.1038/s41433-021-01911-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To study thickness of RPE-BM complex in adult Chinese subjects and its correlation with systemic and ocular biometric parameters. DESIGN Population-based longitudinal study. Cross-sectional study. PARTICIPANTS The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6 ± 9.8 years (range: 50-93 years). METHODS A detailed ophthalmic examination was performed including spectral-domain optical coherence tomography (SD OCT) for measurement of the thickness of RPE-BM complex. Use Heidelberg software "Heidelberg Eye Explorer" for segmentation and measurements. MAIN OUTCOME MEASURE Thickness of RPE-BM complex. RESULTS In total, 3276 people (6530 eyes) were included in the study. In total, 1844 (56.3%) subjects were female. The mean age was 64.3 ± 9.6 years (range: 50-93 years). The mean refractive error (spherical equivalent) was -0.18 ± 2.04 diopters (range: -22.0 to +7.50 diopters). Mean thickness of the RPE-BM complex at the foveal center was 25.09 ± 3.98 μm (range: 17-37 μm). In multiple regression analysis, subfoveal thickness of the RPE-BM complex was associated with age (p = 0.039; beta: 0.22; B: 0.10 (95% CI: 0.01, 0.20)) and hypertension history (p = 0.038; beta: 0.23; B: 1.96 (95% CI: 0.12, 3.81)). CONCLUSION Mean subfoveal thickness of the RPE-BM complex was 25.09 ± 3.98 μm in elderly subjects with a mean age of 64.3 years increased with age and hypertension history. The increase in the thickness of RPE-BM complex may play a role in the pathophysiologic features of various age-related ocular conditions.
Collapse
Affiliation(s)
- Lei Shao
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qing Lin Zhang
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Chuan Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Da Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rui Heng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Tian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
He X, Ding DN. Expression and clinical significance of miR-204 in patients with hypertensive disorder complicating pregnancy. BMC Pregnancy Childbirth 2022; 22:182. [PMID: 35255856 PMCID: PMC8903659 DOI: 10.1186/s12884-022-04501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Hypertensive disorder complicating pregnancy (HDCP) is a unique and common obstetrical complication in pregnancy. The current study sought to investigate the diagnostic value of serum miR-204 in HDCP patients. Methods A total of 196 HDCP patients were enrolled, with 54 healthy pregnant women as controls. The expression levels of miR-204 and inflammatory factors in the serum were determined. Receiver operating characteristic (ROC) curve was used to assess the diagnostic value of miR-204 in HDCP patients. Person coefficient was introduced to analyze the correlation between miR-204 and inflammatory indexes. Kaplan–Meier method was employed to analyze the effect of miR-204 expression on the incidence of adverse pregnancy outcomes. Logistic regression was adopted to assess the risk factors for adverse pregnancy outcomes. Results miR-204 expression was upregulated in the serum of HDCP patients. The serum miR-204 level > 1.432 could assist the diagnosis of HDCP. miR-204 level in the serum was positively correlated with TNF-α, IL-6, and hs-CRP concentrations in HDCP patients. The risk of adverse outcomes was higher in pregnant women with high miR-204 expression. High miR-204 expression was associated with an increased risk of adverse pregnancy outcomes after adjusting the family history of HDCP, systolic pressure, diastolic pressure, AST, ALT, LDH, 24-h urinary protein, TNF-α, IL-6, and hs-CRP. Conclusion The high expression of miR-204 assists the diagnosis of HDCP and is an independent risk factor for adverse pregnancy outcomes in HDCP patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04501-9.
Collapse
Affiliation(s)
- Xin He
- Department of Obstetrics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University), Jiefang Xi Lu, Changsha, 410005, Hunan, China
| | - Dan-Ni Ding
- Department of Obstetrics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University), Jiefang Xi Lu, Changsha, 410005, Hunan, China.
| |
Collapse
|
10
|
Fishman ES, Han JS, La Torre A. Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Front Cell Dev Biol 2022; 10:831750. [PMID: 35186936 PMCID: PMC8847441 DOI: 10.3389/fcell.2022.831750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
A broad repertoire of transcription factors and other genes display oscillatory patterns of expression, typically ranging from 30 min to 24 h. These oscillations are associated with a variety of biological processes, including the circadian cycle, somite segmentation, cell cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional feedback loops in which transcriptional activities are inhibited by their corresponding gene target products. Oscillatory transcriptional patterns have been proposed as a mechanism to drive biological clocks, the molecular machinery that transforms temporal information into accurate spatial patterning during development. Notably, several microRNAs (miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of these new findings in the context of the developing retina. We propose that miRNA oscillations are a powerful mechanism to coordinate signaling pathways and gene expression, and that addressing the dynamic interplay between miRNA expression and their target genes could be key for a more complete understanding of many developmental processes.
Collapse
Affiliation(s)
| | | | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Hsp90-associated DNA replication checkpoint protein and proteasome-subunit components are involved in the age-related macular degeneration. Chin Med J (Engl) 2021; 134:2322-2332. [PMID: 34629418 PMCID: PMC8510006 DOI: 10.1097/cm9.0000000000001773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Age-related macular degeneration (AMD) is the leading cause of vision loss worldwide. However, the mechanisms involved in the development and progression of AMD are poorly delineated. We aimed to explore the critical genes involved in the progression of AMD. Methods: The differentially expressed genes (DEGs) in AMD retinal pigment epithelial (RPE)/choroid tissues were identified using the microarray datasets GSE99248 and GSE125564, which were downloaded from the gene expression omnibus database. The overlapping DEGs from the two datasets were screened to identify DEG-related biological pathways using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The hub genes were identified from these DEGs through protein-protein interaction network analyses. The expression levels of hub genes were evaluated by quantitative real-time polymerase chain reaction following the induction of senescence in ARPE-19 with FK866. Following the identification of AMD-related key genes, the potential small molecule compounds targeting the key genes were predicted by PharmacoDB. Finally, a microRNA-gene interaction network was constructed. Results: Microarray analyses identified 174 DEGs in the AMD RPE compared to the healthy RPE samples. These DEGs were primarily enriched in the pathways involved in the regulation of DNA replication, cell cycle, and proteasome-mediated protein polyubiquitination. Among the top ten hub genes, HSP90AA1, CHEK1, PSMA4, PSMD4, and PSMD8 were upregulated in the senescent ARPE-19 cells. Additionally, the drugs targeting HSP90AA1, CHEK1, and PSMA4 were identified. We hypothesize that Hsa-miR-16-5p might target four out of the five key DEGs in the AMD RPE. Conclusions: Based on our findings, HSP90AA1 is likely to be a central gene controlling the DNA replication and proteasome-mediated polyubiquitination during the RPE senescence observed in the progression of AMD. Targeting HSP90AA1, CHEK1, PSMA4, PSMD4, and/or PSMD8 genes through specific miRNAs or small molecules might potentially alleviate the progression of AMD through attenuating RPE senescence.
Collapse
|
13
|
Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021; 10:2394. [PMID: 34572041 PMCID: PMC8469605 DOI: 10.3390/cells10092394] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The possible interconnection between the eye and central nervous system (CNS) has been a topic of discussion for several years just based on fact that the eye is properly considered an extension of the brain. Both organs consist of neurons and derived from a neural tube. The visual process involves photoreceptors that receive light stimulus from the external environment and send it to retinal ganglionic cells (RGC), one of the cell types of which the retina is composed. The retina, the internal visual membrane of the eye, processes the visual stimuli in electric stimuli to transfer it to the brain, through the optic nerve. Retinal chronic progressive neurodegeneration, which may occur among the elderly, can lead to different disorders of the eye such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). Mainly in the elderly population, but also among younger people, such ocular pathologies are the cause of irreversible blindness or impaired, reduced vision. Typical neurodegenerative diseases of the CSN are a group of pathologies with common characteristics and etiology not fully understood; some risk factors have been identified, but they are not enough to justify all the cases observed. Furthermore, several studies have shown that also ocular disorders present characteristics of neurodegenerative diseases and, on the other hand, CNS pathologies, i.e., Alzheimer disease (AD) and Parkinson disease (PD), which are causes of morbidity and mortality worldwide, show peculiar alterations at the ocular level. The knowledge of possible correlations could help to understand the mechanisms of onset. Moreover, the underlying mechanisms of these heterogeneous disorders are still debated. This review discusses the characteristics of the ocular illnesses, focusing on the relationship between the eye and the brain. A better comprehension could help in future new therapies, thus reducing or avoiding loss of vision and improve quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy; (N.M.); (F.F.); (F.B.); (A.P.)
| |
Collapse
|