1
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
2
|
Su Y, Chen M, Xu W, Gu P, Fan X. Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases. ACS NANO 2024; 18:22793-22828. [PMID: 39141830 PMCID: PMC11363148 DOI: 10.1021/acsnano.4c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles of various sizes that can be secreted by most cells. EVs contain a diverse array of cargo, including RNAs, lipids, proteins, and other molecules with functions of intercellular communication, immune modulation, and regulation of physiological and pathological processes. The biofluids in the eye, including tears, aqueous humor, and vitreous humor, are important sources for EV-based diagnosis of ocular disease. Because the molecular cargos may reflect the biology of their parental cells, EVs in these biofluids, as well as in the blood, have been recognized as promising candidates as biomarkers for early diagnosis of ocular disease. Moreover, EVs have also been used as therapeutics and targeted drug delivery nanocarriers in many ocular disorders because of their low immunogenicity and superior biocompatibility in nature. In this review, we provide an overview of the recent advances in the field of EV-based studies on the diagnosis and therapeutics of ocular disease. We summarized the origins of EVs applied in ocular disease, assessed different methods for EV isolation from ocular biofluid samples, highlighted bioengineering strategies of EVs as drug delivery systems, introduced the latest applications in the diagnosis and treatment of ocular disease, and presented their potential in the current clinical trials. Finally, we briefly discussed the challenges of EV-based studies in ocular disease and some issues of concern for better focusing on clinical translational studies of EVs in the future.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Moxin Chen
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Wei Xu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
3
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
4
|
Liu S, Yan Z, Huang Z, Yang H, Li J. Smart Nanocarriers for the Treatment of Retinal Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2070-2085. [PMID: 38489843 DOI: 10.1021/acsabm.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Retinal diseases, such as age-related macular degeneration, diabetic retinopathy, and retinoblastoma, stand as the leading causes of irreversible vision impairment and blindness worldwide. Effectively administering drugs for retinal diseases poses a formidable challenge due to the presence of complex ocular barriers and elimination mechanisms. Over time, various approaches have been developed to fabricate drug delivery systems for improving retinal therapy including virus vectors, lipid nanoparticles, and polymers. However, conventional nanocarriers encounter issues related to the controllability, efficiency, and safety in the retina. Therefore, the development of smart nanocarriers for effective or more invasive long-term treatment remains a desirable goal. Recently, approaches have surfaced for the intelligent design of nanocarriers, leveraging specific responses to external or internal triggers and enabling multiple functions for retinal therapy such as topical administration, prolonged drug release, and site-specific drug delivery. This Review provides an overview of prevalent retinal pathologies and related pharmacotherapies to enhance the understanding of retinal diseases. It also surveys recent developments and strategies employed in the intelligent design of nanocarriers for retinal disease. Finally, the challenges of smart nanocarriers in potential clinical retinal therapeutic applications are discussed to inspire the next generation of smart nanocarriers.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhike Yan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
5
|
Han G, Zhang Y, Zhong L, Wang B, Qiu S, Song J, Lin C, Zou F, Wu J, Yu H, Liang C, Wen K, Seow Y, Yin H. Generalizable anchor aptamer strategy for loading nucleic acid therapeutics on exosomes. EMBO Mol Med 2024; 16:1027-1045. [PMID: 38448545 PMCID: PMC11018858 DOI: 10.1038/s44321-024-00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.
Collapse
Affiliation(s)
- Gang Han
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Yao Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Li Zhong
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Biaobiao Wang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Shuai Qiu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Jun Song
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Caorui Lin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Fangdi Zou
- Public Laboratory & Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center & Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Jingqiao Wu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Huanan Yu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ke Wen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Genome, Singapore, 138672, Republic of Singapore
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, 300052, Tianjin, China.
| |
Collapse
|
6
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
7
|
Denes V, Lukats A, Szarka G, Subicz R, Mester A, Kovacs-Valasek A, Geck P, Berta G, Herczeg R, Postyeni E, Gyenesei A, Gabriel R. Long-term Effects of the pituitary-adenylate cyclase-activating Polypeptide (PACAP38) in the Adult Mouse Retina: Microglial Activation and Induction of Neural Proliferation. Neurochem Res 2023; 48:3430-3446. [PMID: 37466802 PMCID: PMC10514177 DOI: 10.1007/s11064-023-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary.
| | - Akos Lukats
- Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary
| | - Gergely Szarka
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Rovena Subicz
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Adrienn Mester
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Andrea Kovacs-Valasek
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Peter Geck
- Department of Medical Education, School of Medicine, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Etelka Postyeni
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Attila Gyenesei
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Robert Gabriel
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| |
Collapse
|
8
|
Danilushkina AA, Emene CC, Barlev NA, Gomzikova MO. Strategies for Engineering of Extracellular Vesicles. Int J Mol Sci 2023; 24:13247. [PMID: 37686050 PMCID: PMC10488046 DOI: 10.3390/ijms241713247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.
Collapse
Affiliation(s)
- Anna A. Danilushkina
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Charles C. Emene
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Nicolai A. Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana 001000, Kazakhstan
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
9
|
Hu Y, Zhao M, Wang H, Guo Y, Cheng X, Zhao T, Wang H, Zhang Y, Ma Y, Tao W. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression. J Nanobiotechnology 2023; 21:261. [PMID: 37553718 PMCID: PMC10408189 DOI: 10.1186/s12951-023-02005-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
The development of natural membranes as coatings for nanoparticles to traverse the blood-brain barrier (BBB) presents an effective approach for treating central nervous system (CNS) disorders. In this study, we have designed a nanogel loaded with PACAP and estrogen (E2), sheathed with exosomes and responsive to reactive oxygen species (ROS), denoted as HA NGs@exosomes. The objective of this novel design is to serve as a potent drug carrier for the targeted treatment of perimenopausal depression. The efficient cellular uptake and BBB penetration of HA NGs@exosomes has been demonstrated in vitro and in vivo. Following intranasal intervention with HA NGs@exosomes, ovariectomized mice under chronic unpredictable mild stress (CUMS) have shown improved behavioral performance, indicating that HA NGs@exosomes produced a rapid-onset antidepressant effect. Moreover, HA NGs@exosomes exhibit notable antioxidant and anti-inflammatory properties and may regulate the expression of pivotal proteins in the PACAP/PAC1 pathway to promote synaptic plasticity. Our results serve as a proof-of-concept for the utility of exosome-sheathed ROS-responsive nanogel as a promising drug carrier for the treatment of perimenopausal depression.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Min Zhao
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Hui Wang
- School of pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yang Guo
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Xiaolan Cheng
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Tong Zhao
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Hanqing Wang
- School of pharmacology, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China.
| | - Yong Ma
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China.
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Weiwei Tao
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China.
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
10
|
Wu KY, Tan K, Akbar D, Choulakian MY, Tran SD. A New Era in Ocular Therapeutics: Advanced Drug Delivery Systems for Uveitis and Neuro-Ophthalmologic Conditions. Pharmaceutics 2023; 15:1952. [PMID: 37514137 PMCID: PMC10385446 DOI: 10.3390/pharmaceutics15071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The eye's intricate anatomical barriers pose significant challenges to the penetration, residence time, and bioavailability of topically applied medications, particularly in managing uveitis and neuro-ophthalmologic conditions. Addressing this issue, polymeric nano-based drug delivery systems (DDS) have surfaced as a promising solution. These systems enhance drug bioavailability in hard-to-reach target tissues, extend residence time within ocular tissues, and utilize biodegradable and nanosized polymers to reduce undesirable side effects. Thus, they have stimulated substantial interest in crafting innovative treatments for uveitis and neuro-ophthalmologic diseases. This review provides a comprehensive exploration of polymeric nano-based DDS used for managing these conditions. We discuss the present therapeutic hurdles posed by these diseases and explore the potential role of various biopolymers in broadening our treatment repertoire. Our study incorporates a detailed literature review of preclinical and clinical studies from 2017 to 2023. Owing to advancements in polymer science, ocular DDS has made rapid strides, showing tremendous potential to revolutionize the treatment of patients with uveitis and neuro-ophthalmologic disorders.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Kenneth Tan
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
11
|
Chatterjee A, Singh R. Extracellular vesicles: an emerging player in retinal homeostasis. Front Cell Dev Biol 2023; 11:1059141. [PMID: 37181750 PMCID: PMC10166895 DOI: 10.3389/fcell.2023.1059141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Extracellular vesicles (EVs) encompass secreted membrane vesicles of varied sizes, including exosomes (-30-200 nm) and microvesicles (MVs) that are ∼100-1,000 nm in size. EVs play an important role in autocrine, paracrine, and endocrine signaling and are implicated in myriad human disorders including prominent retinal degenerative diseases, like age related macular degeneration (AMD) and diabetic retinopathy (DR). Studies of EVs in vitro using transformed cell lines, primary cultures, and more recently, induced pluripotent stem cell derived retinal cell type(s) (e.g., retinal pigment epithelium) have provided insights into the composition and function of EVs in the retina. Furthermore, consistent with a causal role of EVs in retinal degenerative diseases, altering EV composition has promoted pro-retinopathy cellular and molecular events in both in vitro and in vivo models. In this review, we summarize the current understanding of the role of EVs in retinal (patho)physiology. Specifically, we will focus on disease-associated EV alterations in specific retinal diseases. Furthermore, we discuss the potential utility of EVs in diagnostic and therapeutic strategies for targeting retinal diseases.
Collapse
Affiliation(s)
- Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- UR Stem Cell and Regenerative Medicine Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
12
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Li X, Liu Z, Xu S, Ma X, Zhao Z, Hu H, Deng J, Peng C, Wang Y, Ma S. A drug delivery system constructed by a fusion peptide capturing exosomes targets to titanium implants accurately resulting the enhancement of osseointegration peri-implant. Biomater Res 2022; 26:89. [PMID: 36575503 PMCID: PMC9795642 DOI: 10.1186/s40824-022-00331-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) have been shown triggering osteogenic differentiation and mineralization of MSCs, but exosomes administered via bolus injections are rapidly sequestered and cleared. Therefore, we considered the implant as a new organ of patient's body and expected to find a method to treat implant with BMSC-exos in vivo directly. METHODS A fusion peptide (PEP), as a drug delivery system (DDS) which contained a titanium-binding peptide (TBP) possessing the ability to selectively bind to the titanium surface and another peptide CP05 being able to capture exosomes expertly, is constructed to modify the titanium surface. RESULTS Both in vitro and in vivo experiments prove PEP retains the ability to bind titanium and exosome simultaneously, and the DDS gain the ability to target exosomes to titanium implants surface following enhancing osseointegration post-implantation. Moreover, the DDS constructed by exosomes of diverse origins shows the similar combination rate and efficiency of therapy. CONCLUSION This drug delivery system demonstrates the concept that EXO-PEP system can offer an accurate and efficient therapy for treating implants with long-term effect.
Collapse
Affiliation(s)
- Xuewen Li
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China ,grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Zihao Liu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Shendan Xu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Xinying Ma
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Zhezhe Zhao
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Han Hu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Jiayin Deng
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Cheng Peng
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China
| | - Yonglan Wang
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Shiqing Ma
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China
| |
Collapse
|
14
|
Guo M, Zhu Y, Shi Y, Meng X, Dong X, Zhang H, Wang X, Du M, Yan H. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies. Redox Biol 2022; 58:102541. [PMID: 36413918 PMCID: PMC9679710 DOI: 10.1016/j.redox.2022.102541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/04/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Retinal ganglion cell (RGC) death is a hallmark of traumatic optic neuropathy, glaucoma, and other optic neuropathies that result in irreversible vision loss. However, therapeutic strategies for rescuing RGC loss still remain challenging, and the molecular mechanism underlying RGC loss has not been fully elucidated. Here, we highlight the role of ferroptosis, a non-apoptotic form of programmed cell death characterized by iron-dependent lethal lipid peroxides accumulation, in RGC death using an experimental model of glaucoma and optic nerve crush (ONC). ONC treatment resulted in significant downregulation of glutathione peroxidase 4 (GPx4) and system xc(-) cystine/glutamate antiporter (xCT) in the rat retina, accompanied by increased lipid peroxide and iron levels. The reduction of GPx4 expression in RGCs after ONC was confirmed by laser-capture microdissection and PCR. Transmission electron microscopy (TEM) revealed alterations in mitochondrial morphology, including increased membrane density and reduced mitochondrial cristae in RGCs after ONC. Notably, the ferroptosis inhibitor ferrostatin-1 (Fer-1) significantly promoted RGC survival and preserved retinal function in ONC and microbead-induced glaucoma mouse models. In addition, compared to the apoptosis inhibitor Z-VAD-FMK, Fer-1 showed better effect in rescuing RGCs death in ONC retinas. Mechanistically, we found the downregulation of GPx4 mainly occurred in the mitochondrial compartment, accompanied by increased mitochondrial reactive oxygen species (ROS) and lipid peroxides. The mitochondria-selective antioxidant MitoTEMPO attenuated RGC loss after ONC, implicating mitochondrial ROS and lipid peroxides as major mechanisms in ferroptosis-induced RGC death in ONC retinas. Notably, administering Fer-1 effectively prevented the production of mitochondrial lipid peroxides, the impairment of mitochondrial adenosine 5'-triphosphate (ATP) production, and the downregulation of mitochondrial genes, such as mt-Cytb and MT-ATP6, in ONC retinas. Our findings suggest that ferroptosis is a major form of regulated cell death for RGCs in experimental glaucoma and ONC models and suggesting targeting mitochondria-dependent ferroptosis as a protective strategy for RGC injuries in optic neuropathies.
Collapse
Affiliation(s)
- Miao Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Shi
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China,Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China
| | - Haokun Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China,Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China,Corresponding author. Tianjin Medical University, No. 22, Qixiangtai Road, Tianjin, 300070, China.
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China,Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China,Corresponding author. Tianjin Medical University, No. 22, Qixiangtai Road, Tianjin, 300070, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, 300052, Tianjin, China,Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, 300070, Tianjin, China,School of Medicine, Nankai University, 300071, Tianjin, China,Corresponding author. Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
15
|
Sanie-Jahromi F, Mahmoudi A, Khalili MR, Nowroozzadeh MH. A Review on the Application of Stem Cell Secretome in the Protection and Regeneration of Retinal Ganglion Cells; a Clinical Prospect in the Treatment of Optic Neuropathies. Curr Eye Res 2022; 47:1463-1471. [PMID: 35876610 DOI: 10.1080/02713683.2022.2103153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Retinal ganglion cells (RGCs) are one the most specialized neural tissues in the body. They transmit (and further process) chemoelectrical information originating in outer retinal layers to the central nervous system. In fact, the optic nerve is composed of RGC axons. Like other neural cells, RGCs will not completely heal after the injury, leading to irreversible vision loss from disorders such as glaucoma that primarily affect these cells. Several methods have been developed to protect or regenerate RGCs during or after the insult has occurred. This study aims to review the most recent clinical, animal and laboratory experiments designed for the regeneration of RGC that apply the stem cell-derived secretome. METHODS We extracted the studies from Web of Science (ISI), Medline (PubMed), Scopus, Embase, and Google scholar from the first record to the last report registered in 2022, using the following keywords; "secretome" OR "conditioned medium" OR "exosome" OR "extracellular vesicle" AND "stem cell" AND "RGC" OR "optic neuropathy". Any registered clinical trials related to the subject were also extracted from clinicaltrial.gov. All published original studies that express the effect of stem cell secretome on RGC cells in optic neuropathy, whether in vitro, in animal studies, or in clinical trials were included in this survey. RESULTS In this review, we provided an update on the existing reports, and a brief description of the details applied in the procedure. Compared to cell transplant, applying stem cell-derived secretome has the advantage of minimized immunogenicity yet preserving efficacy via its rich content of growth factors. CONCLUSIONS Different sources of stem cell secretomes have distinct implications in the management of RGC injury, which is the main subject of the present article.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Mahmoudi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Demais V, Pohl A, Wunderlich KA, Pfaller AM, Kaplan L, Barthélémy A, Dittrich R, Puig B, Giebel B, Hauck SM, Pfrieger FW, Grosche A. Release of VAMP5-positive extracellular vesicles by retinal Müller glia in vivo. J Extracell Vesicles 2022; 11:e12254. [PMID: 36043482 PMCID: PMC9428896 DOI: 10.1002/jev2.12254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022] Open
Abstract
Cell-cell interactions in the central nervous system are based on the release of molecules mediating signal exchange and providing structural and trophic support through vesicular exocytosis and the formation of extracellular vesicles. The specific mechanisms employed by each cell type in the brain are incompletely understood. Here, we explored the means of communication used by Müller cells, a type of radial glial cells in the retina, which forms part of the central nervous system. Using immunohistochemical, electron microscopic, and molecular analyses, we provide evidence for the release of distinct extracellular vesicles from endfeet and microvilli of retinal Müller cells in adult mice in vivo. We identify VAMP5 as a Müller cell-specific SNARE component that is part of extracellular vesicles and responsive to ischemia, and we reveal differences between the secretomes of immunoaffinity-purified Müller cells and neurons in vitro. Our findings suggest extracellular vesicle-based communication as an important mediator of cellular interactions in the retina.
Collapse
Affiliation(s)
- Valerie Demais
- Plateforme Imagerie In Vitro, CNRS UAR 3156, NeuropôleUniversity of StrasbourgStrasbourgFrance
| | - Anne Pohl
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
| | - Kirsten A. Wunderlich
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| | - Anna M. Pfaller
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| | - Lew Kaplan
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| | - Amelie Barthélémy
- Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance
| | - Robin Dittrich
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Berta Puig
- Neurology DepartmentExperimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein ScienceHelmholtz‐Zentrum MünchenMünchenGermany
| | - Frank W. Pfrieger
- Plateforme Imagerie In Vitro, CNRS UAR 3156, NeuropôleUniversity of StrasbourgStrasbourgFrance
- Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance
| | - Antje Grosche
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| |
Collapse
|
17
|
Tsai SJ, Ai Y, Guo C, Gould SJ. Degron tagging of BleoR and other antibiotic-resistance genes selects for higher expression of linked transgenes and improved exosome engineering. J Biol Chem 2022; 298:101846. [PMID: 35314197 PMCID: PMC9111990 DOI: 10.1016/j.jbc.2022.101846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Five antibiotic resistance (AR) genes have been used to select for transgenic eukaryotic cell lines, with the BleoR, PuroR, HygR, NeoR, and BsdR cassettes conferring resistance to zeocin, puromycin, hygromycin, geneticin/G418, and blasticidin, respectively. We recently demonstrated that each AR gene establishes a distinct threshold of transgene expression below which no cell can survive, with BleoR selecting for the highest level of transgene expression, nearly ∼10-fold higher than in cells selected using the NeoR or BsdR markers. Here, we tested the hypothesis that there may be an inverse proportionality between AR protein function and the expression of linked, transgene-encoded, recombinant proteins. Specifically, we fused each AR protein to proteasome-targeting degron tags, used these to select for antibiotic-resistant cell lines, and then measured the expression of the linked, recombinant protein, mCherry, as a proxy marker of transgene expression. In each case, degron-tagged AR proteins selected for higher mCherry expression than their cognate WT AR proteins. ER50BleoR selected for the highest level of mCherry expression, greater than twofold higher than BleoR or any other AR gene. Interestingly, use of ER50BleoR as the selectable marker translated to an even higher, 3.5-fold increase in the exosomal loading of the exosomal cargo protein, CD63/Y235A. Although a putative CD63-binding peptide, CP05, has been used to decorate exosome membranes in a technology known as "exosome painting," we show here that CP05 binds equally well to CD63-/- cells, WT 293F cells, and CD63-overexpressing cells, indicating that CP05 may bind membranes nonspecifically. These results are of high significance for cell engineering and especially for exosome engineering.
Collapse
Affiliation(s)
- Shang Jui Tsai
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Li H, Su Y, Wang F, Tao F. Exosomes: a new way of protecting and regenerating optic nerve after injury. Hum Cell 2022; 35:771-778. [PMID: 35258808 DOI: 10.1007/s13577-022-00688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
Abstract
As an important part of the central nervous system (CNS), the optic nerve usually cannot regenerate directly after injury. Therefore, treating the injury and restoring the function of the optic nerve are a historical problem in the medical field. Due to the special anatomical position of the optic nerve, the microenvironment needed for protection and regeneration after injury is lacking. Therefore, preventing the continued loss of neurons, protecting the functional nerves, and promoting the effective protection of nerves are the main ways to solve the problem. Exosomes are nano-sized vesicles with a diameter of 30-150 nm, composed of lipid bilayers, proteins, and genetic material. They have key functions in cell-to-cell communication, immune regulation, inflammation, and regeneration. More and more shreds of evidence show that exosomes not only play an important role in systemic diseases such as cancer, cardiovascular diseases, and brain diseases; they also play a key role in ophthalmological diseases. This article reviews the role of exosomes in the protection and regeneration of the optic nerve after optic nerve injury in related experimental studies and clinical treatment methods. GRAPHICAL ABSTARCT: .
Collapse
Affiliation(s)
- Huazhang Li
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Feng Tao
- Department of Neurology, The Hospital of Heilongjiang Province, Harbin, 150001, China.
| |
Collapse
|
19
|
Xu K, Jin Y, Li Y, Huang Y, Zhao R. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem 2022; 10:844124. [PMID: 35281563 PMCID: PMC8908031 DOI: 10.3389/fchem.2022.844124] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane extracellular vesicles secreted by almost all kinds of cells, which are rich in proteins, lipids, and nucleic acids. As a medium of intercellular communication, exosomes play important roles in biological processes and are closely related to the occurrence, and development of many diseases. The isolation of exosomes and downstream analyses can provide important information to the accurate diagnosis and treatment of diseases. However, exosomes are various in a size range from 30 to 200 nm and exist in complex bio-systems, which provide significant challenges for the isolation and enrichment of exosomes. Different methods have been developed to isolate exosomes, such as the “gold-standard” ultracentrifugation, size-exclusion chromatography, and polymer precipitation. In order to improve the selectivity of isolation, affinity capture strategies based on molecular recognition are becoming attractive. In this review, we introduced the main strategies for exosome isolation and enrichment, and compared their strengths and limitations. Furthermore, combined with the excellent performance of targeted peptides, we summarized the application of peptide recognition in exosome isolation and engineering modification.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| |
Collapse
|
20
|
Differential susceptibility of retinal ganglion cell subtypes against neurodegenerative diseases. Graefes Arch Clin Exp Ophthalmol 2022; 260:1807-1821. [PMID: 35038014 DOI: 10.1007/s00417-022-05556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal ganglion cells (RGCs) are essential to propagate external visual information from the retina to the brain. Death of RGCs is speculated to be closely correlated with blinding retinal diseases, such as glaucoma and traumatic optic neuropathy (TON). Emerging innovative technologies have helped refine and standardize the classification of RGCs; at present, they are classified into more than 40 subpopulations in mammals. These RGC subtypes are identified by a combination of anatomical morphologies, electrophysiological functions, and genetic profiles. Increasing evidence suggests that neurodegenerative diseases do not collectively affect the RGCs. In fact, which RGC subtype exhibits the strongest or weakest susceptibility is hotly debated. Although a consensus has not yet been reached, it is certain that assorted RGCs display differential susceptibility against irreversible degeneration. Interestingly, a single RGC subtype can exhibit various vulnerabilities to optic nerve damage in diverse injury models. Thus, elucidating how susceptible RGC subtypes are to various injuries can protect vulnerable RGCs from damage and improve the possibility of preventing and treating visual impairment caused by neurodegenerative diseases. In this review, we summarize in detail the progress and status quo of research on the type-specific susceptibility of RGCs and point out current limitations and the possible directions for future research in this field.
Collapse
|
21
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
22
|
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies. BIOLOGY 2021; 10:biology10111181. [PMID: 34827174 PMCID: PMC8615038 DOI: 10.3390/biology10111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.
Collapse
|
23
|
Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms221910691. [PMID: 34639032 PMCID: PMC8509403 DOI: 10.3390/ijms221910691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.
Collapse
|
24
|
Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M, Yan H. Vitreous M2 Macrophage-Derived Microparticles Promote RPE Cell Proliferation and Migration in Traumatic Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34554178 PMCID: PMC8475283 DOI: 10.1167/iovs.62.12.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize vitreous microparticles (MPs) in patients with traumatic proliferative vitreoretinopathy (PVR) and investigate their role in PVR pathogenesis. Methods Vitreous MPs were characterized in patients with traumatic PVR, patients with rhegmatogenous retinal detachment (RRD) complicated with PVR, and control subjects by flow cytometry. The presence of M2 macrophages in epiretinal membranes was measured by immunostaining. Vitreous cytokines were quantified by ELISA assay. For in vitro studies, MPs isolated from THP-1 cell differentiated M1 and M2 macrophages, termed M1-MPs and M2-MPs, were used. The effects and mechanisms of M1-MPs and M2-MPs on RPE cell proliferation, migration, and epithelial to mesenchymal transition were analyzed. Results Vitreous MPs derived from photoreceptors, microglia, and macrophages were significantly increased in patients with traumatic PVR in comparison with control and patients with RRD (PVR), whereas no significance was identified between the two control groups. M2 macrophages were present in epiretinal membranes, and their signature cytokines were markedly elevated in the vitreous of patients with traumatic PVR. Moreover, MPs from M2 macrophages were increased in the vitreous of patients with traumatic PVR. In vitro analyses showed that M2-MPs promoted the proliferation and migration of RPE cells via activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. However, M2-MPs did not induce the expression of fibrotic proteins, including fibronectin, α-smooth muscle actin, and N-cadherin in RPE cells. Conclusions This study demonstrated increased MP shedding in the vitreous of patients with traumatic PVR; specifically, MPs derived from M2 polarized macrophages may contribute to PVR progression by stimulating RPE cell proliferation and migration.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Han
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|