1
|
Zhang J, Han J, Li N, Zhou W. Deciphering the Protective Role of HIF-1α Downregulation on HIBD through the MALAT1/miR-140-5p/TGFBR1/NF-κB Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04451-7. [PMID: 39278884 DOI: 10.1007/s12035-024-04451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.
Collapse
Affiliation(s)
- Jiantao Zhang
- Colorectal & Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Jun Han
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China
| | - Nan Li
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China
| | - Wenli Zhou
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China.
| |
Collapse
|
2
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Liu N, Zheng Q, Zhang Y, Wang H, Zhang Z, He L, Wei C, Xia H, Liu Y, Wang X. Hypoxia differently regulates the proportion of ALDH hi cells in lung squamous carcinoma H520 and adenocarcinoma A549 cells via the Wnt/β-catenin pathway. Thorac Cancer 2024; 15:1419-1428. [PMID: 38736300 PMCID: PMC11194122 DOI: 10.1111/1759-7714.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a specific subpopulation of cancer cells with the ability of self-renewal, infinite proliferation, multidifferentiation and tumorigenicity, and play critical roles in cancer progression and treatment resistance. CSCs are tightly regulated by the tumor microenvironment, such as hypoxia; however, how hypoxia regulates CSCs in non-small cell lung cancer (NSCLC) remains unclear. METHODS The proportion of ALDHhi cells was examined using the Aldefluor assay. Tankyrase inhibitor XAV939 and siRNA were used to inhibit β-catenin while pcDNA3-β-catenin (S33Y) plasmid enhanced the expression of β-catenin. Western blot was administered for protein detection. The mRNA expression was measured by quantitative real-time PCR. RESULTS We found that hypoxia led to an increase in the proportion of ALDHhi cells in lung squamous carcinoma (LUSC) H520 cells, while causing a decrease in the ALDHhi cell proportion in lung adenocarcinoma (LUAD) A549 cells. Similarly, β-catenin expression was upregulated in H520 cells but downregulated in A549 cells upon exposure to hypoxia. Mechanically, the proportion of ALDHhi cells in both cell lines was decreased by β-catenin inhibitor or siRNA knockdown, whereas increased after β-catenin overexpression. Furthermore, hypoxia treatment suppressed E-cadherin expression in H520 cells and enhanced N-cadherin and β-catenin expression, while this effect was completely opposite in A549 cells. CONCLUSION The hypoxia-EMT-β-catenin axis functions as an important regulator for the proportion of CSCs in NSCLC and could potentially be explored as therapeutic targets in the future.
Collapse
Affiliation(s)
- Ni Liu
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Qi Zheng
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Yuqing Zhang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Huimin Wang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Zhihui Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Long He
- Department of OncologyThe Third Hospital of JinanJinanChina
| | - Chenxi Wei
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Handai Xia
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Yanguo Liu
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiuwen Wang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
4
|
Chen T, He X, Wang J, Du D, Xu Y. NT-3 Combined with TGF-β Signaling Pathway Enhance the Repair of Spinal Cord Injury by Inhibiting Glial Scar Formation and Promoting Axonal Regeneration. Mol Biotechnol 2024; 66:1484-1495. [PMID: 37318740 PMCID: PMC11101526 DOI: 10.1007/s12033-023-00781-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
This study investigated the mechanism of neurotrophin-3 (NT-3) in promoting spinal cord injury repair through the transforming growth factor-beta (TGF-β) signaling pathway. A mouse model of spinal cord injury was established. Forty C57BL/6J mice were randomized into model, NT-3, NT-3 + TGF-β1 and NT-3 + LY364947 groups. The Basso-Beattie-Bresnahan (BBB) scores of the NT-3 and NT-3 + LY364947 groups were significantly higher than the model group. The BBB score of the NT-3 + TGF-β1 group was significantly lower than NT-3 group. Hematoxylin-eosin staining and transmission electron microscopy showed reduction in myelin sheath injury, more myelinated nerve fibers in the middle section of the catheter, and relatively higher density and more neatly arranged regenerated axons in the NT-3 and NT-3 + LY364947 groups compared with the model and NT-3 + TGF-β1 groups. Immunofluorescence, TUNEL and Western blot analysis showed that compared with model group, the NEUN expression increased, and the apoptosis and Col IV, LN, CSPG, tenascin-C, Sema 3 A, EphB2 and Smad2/3 protein expression decreased significantly in the NT-3 and NT-3 + LY364947 groups; the condition was reversed in the NT-3 + TGF-β1 group compared with the NT-3 group. NT-3 combined with TGF-β signaling pathway promotes astrocyte differentiation, reduces axon regeneration inhibitory molecules, apoptosis and glial scar formation, promotes axon regeneration, and improves spinal cord injury.
Collapse
Affiliation(s)
- Taibang Chen
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China.
| | - Xiaoqing He
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Jing Wang
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Di Du
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Yongqing Xu
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China.
| |
Collapse
|
5
|
Kang T, Han Z, Zhu L, Cao B. TFR1 knockdown alleviates iron overload and mitochondrial dysfunction during neural differentiation of Alzheimer's disease-derived induced pluripotent stem cells by interacting with GSK3B. Eur J Med Res 2024; 29:101. [PMID: 38321571 PMCID: PMC10845644 DOI: 10.1186/s40001-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Iron metabolism disorders are implicated in the pathogenesis of Alzheimer's disease (AD). It was previously reported that transferrin receptor (TFR1) expression was upregulated in AD mouse model. However, the precise biological functions of TFR1 in AD progression remains unclear. Herein, we observed a gradual increase in TFR1 protein expression during the differentiation of AD patient-derived induced pluripotent stem cells (AD-iPS). TFR1 knockdown inhibited the protein expression of ferritin and ferritin heavy chain 1 (FTH1), enhanced the expression of ferroportin 1 (FPN1), and decreased intracellular levels of total iron, labile iron, and reactive oxygen species (ROS). Moreover, TFR1 knockdown improved mitochondrial membrane potential (MMP), increased adenosine triphosphate (ATP) content, downregulated mitochondrial fission proteins, and upregulated mitochondrial fusion proteins. TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS, while TFR1 overexpression showed the opposite results. Additionally, TFR1interacted with glycogen synthase kinase 3 beta (GSK3B) and promoted GSK3B expression. GSK3B overexpression reversed the inhibitory effects of TFR1 knockdown on iron overload and mitochondrial dysfunction in AD-iPS differentiated neural cells. In conclusion, TFR1 knockdown alleviated iron overload and mitochondrial dysfunction in neural cells differentiated from AD-iPS by promoting GSK3B expression. Our findings provide a potential therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tao Kang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zheng Han
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Lijuan Zhu
- Department of Anesthesia, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Bingqing Cao
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
6
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
施 剑, 殷 明. [Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1276-1283. [PMID: 37848325 PMCID: PMC10581868 DOI: 10.7507/1002-1892.202306017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. Methods The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. Results When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Collapse
Affiliation(s)
- 剑明 施
- 景德镇市第一人民医院骨科(江西景德镇 333000)Department of Orthopaedics, Jingdezhen First People’s Hospital, Jingdezhen Jiangxi, 333000, P. R. China
| | - 明 殷
- 景德镇市第一人民医院骨科(江西景德镇 333000)Department of Orthopaedics, Jingdezhen First People’s Hospital, Jingdezhen Jiangxi, 333000, P. R. China
| |
Collapse
|
8
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
9
|
Wang F, Yang Z, Li J, Ma Y, Tu Y, Zeng X, Wang Q, Jiang Y, Huang S, Yi Q. The involvement of hypoxia inducible factor-1α on the proportion of three types of haemocytes in Chinese mitten crab under hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104598. [PMID: 36511346 DOI: 10.1016/j.dci.2022.104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia triggers diverse cell physiological processes, and the hypoxia inducible factors (HIFs) are a family of heterodimeric transcription factors that function as master regulators to respond to hypoxia in different cells. However, the knowledge about the hypoxic responses especially cell alteration mediated by HIFs under hypoxia stress is still limited in crustaceans. In the present study, a hypoxia-inducible factor-1α (HIF-1α) gene was identified (designed as EsHIF-1α). The relative mRNA expression level of EsHIF-1α was highest in hyalinocytes and lowest in granulocytes among three types of haemocytes in crabs. Hypoxia could significantly increase the EsHIF-1α protein expression level in haemocytes. Meanwhile, the proportion of hyalinocytes began to increase from 3 h post hypoxia treatment, and reached the highest level at 24 h. However, the opposite variation in proportion of granulocytes was observed under hypoxia stress. Further investigation showed that the inhibition of EsHIF-1α induced by KC7F2 (HIF-1α inhibitor) could lead to the significant decrease in the proportion of hyalinocytes under hypoxia stress, and also resulted in an increase of granulocytes proportion. While, after EsHIF-1α was activated by IOX4 (HIF-1α activator), the proportion of hyalinocytes was significantly up-regulated and the proportion of granulocytes was significantly down-regulated under post hypoxia treatment. These results collectively suggested that EsHIF-1α was involved in the regulation of proportion of three types of haemocytes induced by hypoxia stress, which provided vital insight into the understanding of the crosstalk between hypoxia and cell development in invertebrates.
Collapse
Affiliation(s)
- Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Tu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Xiaorui Zeng
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Qingyao Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| |
Collapse
|
10
|
Spice DM, Cooper TT, Lajoie GA, Kelly GM. Never in Mitosis Kinase 2 regulation of metabolism is required for neural differentiation. Cell Signal 2022; 100:110484. [PMID: 36195199 DOI: 10.1016/j.cellsig.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Wnt and Hh are known signalling pathways involved in neural differentiation and recent work has shown the cell cycle regulator, Never in Mitosis Kinase 2 (Nek2) is able to regulate both pathways. Despite its known function in pathway regulation, few studies have explored Nek2 within embryonic development. The P19 embryonal carcinoma cell model was used to investigate Nek2 and neural differentiation through CRISPR knockout and overexpression studies. Loss of Nek2 reduced cell proliferation in the undifferentiated state and during directed differentiation, while overexpression increased cell proliferation. Despite these changes in proliferation rates, Nek2 deficient cells maintained pluripotency markers after neural induction while Nek2 overexpressing cells lost these markers in the undifferentiated state. Nek2 deficient cells lost the ability to differentiate into both neurons and astrocytes, although Nek2 overexpressing cells enhanced neuron differentiation at the expense of astrocytes. Hh and Wnt signalling were explored, however there was no clear connection between Nek2 and these pathways causing the observed changes to differentiation phenotypes. Mass spectrometry was also used during wildtype and Nek2 knockout cell differentiation and we identified reduced electron transport chain components in the knockout population. Immunoblotting confirmed the loss of these components and additional studies showed cells lacking Nek2 were exclusively glycolytic. Interestingly, hypoxia inducible factor 1α was stabilized in these Nek2 knockout cells despite culturing them under normoxic conditions. Since neural differentiation requires a metabolic switch from glycolysis to oxidative phosphorylation, we propose a mechanism where Nek2 prevents HIF1α stabilization, thereby allowing cells to use oxidative phosphorylation to facilitate neuron and astrocyte differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Tyler T Cooper
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada.
| | - Gilles A Lajoie
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Don Rix Protein Identification Facility, University of Western, Ontario, London, ON N6G 2V4, Canada.
| | - Gregory M Kelly
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada; Child Health Research Institute, 345 Westminster Ave, London, ON N6C 4V3, Canada.
| |
Collapse
|
11
|
Liu Z, Li C, Liu M, Song Z, Moyer MP, Su D. The Low-density Lipoprotein Receptor-related Protein 6 Pathway in the Treatment of Intestinal Barrier Dysfunction Induced by Hypoxia and Intestinal Microbiota through the Wnt/β-catenin Pathway. Int J Biol Sci 2022; 18:4469-4481. [PMID: 35864969 PMCID: PMC9295061 DOI: 10.7150/ijbs.72283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 11/12/2022] Open
Abstract
Our study is to explore the key molecular of Low-density lipoprotein receptor-related protein 6 (LRP6) and the related Wnt/β-catenin pathway regulated by LRP6 during the intestinal barrier dysfunction. Colorectal protein profile analysis showed that LRP6 expression was decreased in dextran sulfate sodium (DSS)-induced colitis mice, and mice received fecal bacteria transplantation from stroke patients. Mice with intestinal hypoxia and intestinal epithelial cells cultured in hypoxia showed decreased expression of LRP6. Overexpression of LPR6 or its N-terminus rescued the Wnt/β-catenin signaling pathway which was inhibited by hypoxia and endoplasmic reticulum stress. In mice overexpressing of LRP6, the expression of β-catenin and DKK1 increased, Bcl2 decreased, and Bax increased. Mice with LRP6 knockout showed an opposite trend, and the expression of Claudin2, Occludin and ZO-1 decreased. Two drugs, curcumin and auranofin could alleviate intestinal barrier damage in DSS-induced colitis mice by targeting LRP-6. Therefore, gut microbiota dysbiosis and hypoxia can inhibit the LRP6 and Wnt/β-catenin pathway, and drugs targeting LRP6 can protect the intestinal barrier.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Chao Li
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Min Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Zhen Song
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | | | - Dan Su
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510799, China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University.,INCELL Corporation, San Antonio, Texas, 78249, USA.,Department of Anorectal surgery. The Sixth Affiliated Hospital of Sun Yatsen University, Guangzhou 510665, China
| |
Collapse
|
12
|
Deng L, Yi S, Yin X, Li Y, Luan Q. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:162. [PMID: 35413941 PMCID: PMC9006575 DOI: 10.1186/s13287-022-02836-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mitofusin-2 (MFN2) is a kind of GTPase that participates in the regulation of mitochondrial fusion, which is related to a variety of physiological and pathological processes, including energy metabolism, cell differentiation, and embryonic development. However, it remains unclear whether MFN2 is involved in the metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). Methods MFN2 knockdown (MFN2-KD) and MFN2-overexpressing (MFN2-OE) induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were constructed by lentivirus. The commercial kits were utilized to detect the glycolysis and oxidative phosphorylation (OXPHOS) rate. Flow cytometry, Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), RNA-seq, immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. Results We demonstrated that MFN2 and Wnt/β-catenin signaling pathway regulated glycolysis of iPSC-MSCs. The lack of MFN2 promoted the osteogenic differentiation of iPSC-MSCs, and aerobic glycolysis in the presence of sufficient oxygen, which increased glucose consumption and lactic acid production, as well as the glycolytic enzyme activity and gene expression. Inhibiting the Wnt/β-catenin signaling pathway normalized the enhanced glycolytic rate and osteogenic differentiation of MFN2-KD iPSC-MSCs. MFN2-OE iPSC-MSCs displayed the opposite phenotype. Conclusions Downregulating MFN2 promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Our research reveals the new function of MFN2 in regulating the osteogenic differentiation and energy metabolism of MSCs, which will provide a new therapeutic target and theoretical basis for alveolar bone repair and periodontal regenerative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02836-w.
Collapse
Affiliation(s)
- Lidi Deng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Siqi Yi
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaohui Yin
- Department of First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, 100191, People's Republic of China.
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
13
|
Proteasome Inhibitors Decrease the Viability of Pulmonary Arterial Smooth Muscle Cells by Restoring Mitofusin-2 Expression under Hypoxic Conditions. Biomedicines 2022; 10:biomedicines10040873. [PMID: 35453623 PMCID: PMC9030547 DOI: 10.3390/biomedicines10040873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe progressive disease, and the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the main causes. Mitofusin-2 (MFN2) profoundly inhibits cell growth and proliferation in a variety of tumor cell lines and rat vascular smooth muscle cells. Down-regulation of MFN2 is known to contribute to PH. Proteasome inhibitors have been shown to inhibit the proliferation of PASMCs; however, there is no study on the regulation of proteasome inhibitors through MFN-2 in the proliferation of PASMCs, a main pathophysiology of PH. In this study, PASMCs were exposed to hypoxic conditions and the expression of MFN2 and cleaved-PARP1 were detected by Western blotting. The effects of hypoxia and proteasome inhibitors on the cell viability of PASMC cells were detected by CCK8 assay. The results indicated that hypoxia increases the viability and reduces the expression of MFN2 in a PASMCs model. MFN2 overexpression inhibits the hypoxia-induced proliferation of PASMCs. In addition, proteasome inhibitors, bortezomib and marizomib, restored the decreased expression of MFN2 under hypoxic conditions, inhibited hypoxia-induced proliferation and induced the expression of cleaved-PARP1. These results suggest that bortezomib and marizomib have the potential to improve the hypoxia-induced proliferation of PASMCs by restoring MFN2 expression.
Collapse
|
14
|
Caballano-Infantes E, Cahuana GM, Bedoya FJ, Salguero-Aranda C, Tejedo JR. The Role of Nitric Oxide in Stem Cell Biology. Antioxidants (Basel) 2022; 11:497. [PMID: 35326146 PMCID: PMC8944807 DOI: 10.3390/antiox11030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies. In this sense, the molecular mechanisms underlying stemness regulation by NO have been studied intensively over the current years. Recently, we have reported the role of low NO as a hypoxia-like inducer in pluripotent stem cells (PSCs), which supports using this molecule to maintain pluripotency under normoxic conditions. In this review, we stress the role of NO levels on stem cells (SCs) fate as a new approach for potential cell therapy strategies. Furthermore, we highlight the recent uses of NO in regenerative medicine due to their properties regulating SCs biology.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain;
- Spanish Biomedical Research Network Centre in Oncology-CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|