1
|
Brandes F, Keiler AM, Kirchner B, Borrmann M, Billaud JN, Reithmair M, Klein M, Campolongo P, Thieme D, Pfaffl MW, Schelling G, Meidert AS. Extracellular Vesicles and Endocannabinoid Signaling in Patients with COVID-19. Cannabis Cannabinoid Res 2024; 9:1326-1338. [PMID: 37713293 DOI: 10.1089/can.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Introduction: Endocannabinoids in COVID-19 have immunomodulatory and anti-inflammatory properties but the functional role and the regulation of endocannabinoid signaling in this pandemic disorder is controversial. To exercise their biologic function, endocannabinoids need to travel across the intercellular space and within the blood stream to reach their target cells. How the lipophilic endocannabinoids are transported in the vascular system and how these hydrophobic compounds cross cell membranes is still unclear. Extracellular vesicles (EVs) are released and incorporated by many cell types including immune cells. EVs are small lipid-membrane covered particles and contain RNA, lipids and proteins. They play an important role in intercellular communication by transporting these signaling molecules from their cells of origin to specific target cells. EVs may represent ideal transport vehicles for lipophilic signaling molecules like endocannabinoids and this effect could also be evident in COVID-19. Materials and Methods: We measured the endocannabinoids anandamide, 2-AG, SEA, PEA and OEA in patients with COVID-19 in EVs and plasma. RNA sequencing of microRNAs (miRNAs) derived from EVs (EV-miRNAs) and mRNA transcripts from blood cells was used for the construction of signaling networks reflecting endocannabinoid and miRNA communication by EVs to target immune cells. Results: With the exception of anandamide, endocannabinoid concentrations were significantly enriched in EVs in comparison to plasma and increased with disease severity. No enrichment in EVs was seen for the more hydrophilic steroid hormones cortisol and testosterone. High EV-endocannabinoid concentrations were associated with downregulation of CNR2 (CB2) by upregulated EV-miRNA miR-146a-5p and upregulation of MGLL by downregulated EV-miR-199a-5p and EV-miR-370-5p suggesting counterregulatory effects. In contrast, low EV-levels of anandamide were associated with upregulation of CNR1 by downregulation of EV-miR-30c-5p and miR-26a-5p along with inhibition of FAAH. Immunologically active molecules in immune cells regulated by endocannabinoid signaling included VEGFA, GNAI2, IGF1, BDNF, IGF1R and CREB1 and CCND1 among others. Discussion and Conclusions: EVs carry immunologically functional endocannabinoids in COVID-19 along with miRNAs which may regulate the expression of mRNA transcripts involved in the regulation of endocannabinoid signaling and metabolism. This mechanism could fine-tune and adapt endocannabinoid effects in recipient cells in relationship to the present biological context.
Collapse
Affiliation(s)
- Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology «V. Erspamer», Sapienza University of Rome, Rome, Italy
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry, Kreischa, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Agnes S Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Grätz C, Schuster M, Brandes F, Meidert AS, Kirchner B, Reithmair M, Schelling G, Pfaffl MW. A pipeline for the development and analysis of extracellular vesicle-based transcriptomic biomarkers in molecular diagnostics. Mol Aspects Med 2024; 97:101269. [PMID: 38552453 DOI: 10.1016/j.mam.2024.101269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 06/12/2024]
Abstract
Extracellular vesicles are shed by every cell type and can be found in any biofluid. They contain different molecules that can be utilized as biomarkers, including several RNA species which they protect from degradation. Here, we present a pipeline for the development and analysis of extracellular vesicle-associated transcriptomic biomarkers that our group has successfully applied multiple times. We highlight the key steps of the pipeline and give particular emphasis to the necessary quality control checkpoints, which are linked to numerous available guidelines that should be considered along the workflow. Our pipeline starts with patient recruitment and continues with blood sampling and processing. The purification and characterization of extracellular vesicles is explained in detail, as well as the isolation and quality control of extracellular vesicle-associated RNA. We point out the possible pitfalls during library preparation and RNA sequencing and present multiple bioinformatic tools to pinpoint biomarker signature candidates from the sequencing data. Finally, considerations and pitfalls during the validation of the biomarker signature using RT-qPCR will be elaborated.
Collapse
Affiliation(s)
- Christian Grätz
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Martina Schuster
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Agnes S Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany; Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
4
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Brandes F, Meidert AS, Kirchner B, Yu M, Gebhardt S, Steinlein OK, Dolch ME, Rantner B, Tsilimparis N, Schelling G, Pfaffl MW, Reithmair M. Identification of microRNA biomarkers simultaneously expressed in circulating extracellular vesicles and atherosclerotic plaques. Front Cardiovasc Med 2024; 11:1307832. [PMID: 38725837 PMCID: PMC11079260 DOI: 10.3389/fcvm.2024.1307832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Background Atherosclerosis is a widespread disorder of the cardiovascular system. The early detection of plaques by circulating biomarkers is highly clinically relevant to prevent the occurrence of major complications such as stroke or heart attacks. It is known that extracellular vesicles (EVs) are important in intercellular communication in atherosclerotic disorders and carry many components of their cells of origin, including microRNAs (miRNAs). In this study, we test the assumption that miRNAs present in material acquired from plaques in patients undergoing surgery for atherosclerotic carotid artery stenosis are also expressed in circulating EVs obtained from the identical patients. This would allow the adoption of a liquid biopsy approach for the detection of plaques. Methods We studied 22 surgical patients with atherosclerotic carotid arterial stenosis and 28 healthy controls. EVs were isolated from serum by precipitation. miRNA expression profiles of serum-derived EVs were obtained by small RNA sequencing and in plaque material simultaneously acquired from patients. A comparative analysis was performed to identify circulating atherosclerosis-associated miRNAs that are also detectable in plaques. Results Seven miRNAs were found to be differentially regulated in patient serum compared with the serum of healthy controls. Of these, miR-193b-5p, miR-193a-5p, and miR-125a-3p were significantly upregulated in patients compared with that in healthy controls and present in both, circulating EVs and plaque material. An overrepresentation analysis of experimentally validated mRNA targets revealed an increased regulation of inflammation and vascular growth factors, key players in atherosclerosis and plaque formation. Conclusion Our findings suggest that circulating EVs reflect plaque development in patients with symptomatic carotid artery stenosis, which can serve as biomarker candidates for detecting the presence of atherosclerotic plaques.
Collapse
Affiliation(s)
- Florian Brandes
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mia Yu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sonja Gebhardt
- Department of Anaesthesiology, InnKlinikum Altötting, Altötting, Germany
| | - Ortrud K. Steinlein
- Institute of Human Genetics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael E. Dolch
- Department of Anaesthesiology, InnKlinikum Altötting, Altötting, Germany
| | - Barbara Rantner
- Department of Vascular Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Tasopoulou KM, Karakasiliotis I, Argyriou C, Bampali M, Tsaroucha AK, Dovrolis N, Christaina E, Georgiadis GS. Next-Generation Sequencing of microRNAs in Small Abdominal Aortic Aneurysms: MiR-24 as a Biomarker. Ann Vasc Surg 2024; 99:366-379. [PMID: 37922957 DOI: 10.1016/j.avsg.2023.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Small abdominal aortic aneurysms (AAAs) are asymptomatic but can potentially lead to rupture if left undetected. To date, there is a lack of simple nonradiologic routine tests available for diagnosing AAAs. MicroRNAs (miRNAs) have been proven to be good-quality biomarkers in several diseases, including AAA. METHODS An attempt to identify a panel of circulating miRNAs with differential expression in AAAs via next-generation sequencing (NGS) was performed in serum samples: small AAAs (n = 3), large AAAs (n = 3), and controls (n = 3). For miR-24, validation with real-time polymerase chain reaction (PCR) was undertaken in a larger group (n = 80). RESULTS In the NGS study, 23 miRNAs were identified as differentially expressed (with statistical significance) in small AAAs in comparison with controls. Among them, miR-24 showed the largest upregulation with 23-fold change (log2FC 4.5, P = 0.024). For large AAAs compared with controls, and small AAAs compared with large AAAs, a panel of 33 and 131 miRNAs showed statistically significant differential expression, respectively. Based on the results of the NGS stage, a literature search was performed, and information regarding AAA pathogenesis, coronary artery disease, and peripheral arterial disease was documented where applicable: miR-24, miR-103, miR-193a, miR-486, miR-582, and miR-3663. Of these 6 miRNAs, miR-24 was chosen for further validation with real-time PCR. Additionally, in the NGS study analysis, 17 miRNAs were common between the small-large AAAs, small AAAs-controls, and large AAAs-controls comparisons: miR-7846, miR-3195, miR-486-2, miR-3194, miR-5589, miR-1538, miR-3178, miR-4771-1, miR-5695, miR-6504, miR-1908, miR-6823, miR-3159, miR-23a, miR-7853, miR-496, and miR-193a. Interestingly, in the validation stage with real-time PCR, miR-24 was found downregulated in small and large AAAs compared with controls (fold-changes: 0.27, P = 0.015 and 0.15, P = 0.005, respectively). No correlation was found between average Ct values, aneurysm diameter, and patients' age. CONCLUSIONS Our findings further highlight the importance of miR-24 as a potential biomarker as well as a therapeutic target for abdominal aneurysmal disease. Future research and validation of a panel of miRNAs for AAA would aid in diagnosis and discrimination between diseases with overlapping pathogeneses.
Collapse
Affiliation(s)
- Kalliopi-Maria Tasopoulou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Argyriou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Bampali
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Department of Experimental Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleni Christaina
- Department of Biostatistics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
7
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Namous H, Krueger C, Cheng Y, Melo PHC, Peppas A, Kaluza GL, Stoffregen WC, Reed J, Khatib H, Granada JF. Longitudinal dynamics of circulating miRNAs in a swine model of familial hypercholesterolemia during early atherosclerosis. Sci Rep 2023; 13:19355. [PMID: 37935844 PMCID: PMC10630391 DOI: 10.1038/s41598-023-46762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Atherosclerosis is a complex progressive disease involving intertwined biological mechanisms. We aimed to identify miRNA expression dynamics at the early stages of atherosclerosis using a large swine model (Wisconsin Miniature Swine, WMS). A total of 18 female pigs; 9 familial hypercholesterolemic (WMS-FH) and 9 normal control swine (WMS-N) were studied. miRNA sequencing was performed on plasma cell-free RNA at 3, 6, and 9 months of age. RT-qPCR validated DE miRNAs in a new cohort of animals (n = 30) with both sexes. Gene ontology and mRNA targets for DE miRNAs were identified. In vivo multimodality imaging and histopathology were performed to document the presence of atherosclerosis at termination. 20, 19, and 9 miRNAs were significantly DE between the groups at months 3, 6, and 9, respectively. Most DE miRNAs and their target genes are involved in human atherosclerosis development. Coronary atherosclerosis was documented in 7/9 WMS-FH pigs. Control animals had no lesions. miR-138, miR-152, miR-190a, and miR-196a showed a significant diagnostic power at month 3, whereas miR-486, miR-126-3p, miR-335, and miR-423-5p were of significant diagnostic power at month 9. In conclusion, specific DE miRNAs with significant discriminatory power may be promising biomarkers for the early detection of coronary atherosclerosis.
Collapse
Affiliation(s)
- Hadjer Namous
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Christian Krueger
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Yanping Cheng
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | - Pedro H C Melo
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | - Athanasios Peppas
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | - Grzegorz L Kaluza
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA
| | | | - Jess Reed
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, 1675 Observatory Drive, Madison, WI, 53706, USA.
| | - Juan F Granada
- Skirball Center for Innovation, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY, 10019, USA.
| |
Collapse
|
9
|
Zhu H, Liang H, Gao Z, Zhang X, He Q, He C, Cai C, Chen J. MiR-483-5p downregulation alleviates ox-LDL induced endothelial cell injury in atherosclerosis. BMC Cardiovasc Disord 2023; 23:521. [PMID: 37891465 PMCID: PMC10612234 DOI: 10.1186/s12872-023-03496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND In light of the abnormal expression of microRNA (miR-483-5p) in patients with atherosclerosis (AS), its role in vascular endothelial cell injury was explored. And the mechanisms related to autophagy were also elucidated. METHODS Human umbilical vein endothelial cells (HUVECs) were given 100 mg/L ox-LDL to induce endothelial injury. Cell transfection was done to regulate miR-483-5p levels. Cell viability and apoptosis were detected. qRT-PCR was employed for the mRNA levels' detection. RESULTS Autophagic flux impairment of HUVECs was detected after ox-LDL treatment, along with the upregulation of miR-483-5p. Ox-LDL inhibited cell viability and promoted cell apoptosis, but these influences were changed by miR-483-5p downregulation. MiR-483-5p downregulation decreased the mRNA levels of IL-1β, IL-6, ICAM-1 and VCAM-1. 3-MA, the autophagy inhibitor, reversed the beneficial role of miR-483-5p downregulation in ox-LDL-induced HUVECs' injury. TIMP2 acts as a target gene of miR-483-5p, and was downregulated in HUVEC models. CONCLUSION MiR-483-5p downregulation alleviated ox-LDL-induced endothelial injury via activating autophagy, this might be related to TIMP2.
Collapse
Affiliation(s)
- Hezhong Zhu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Hui Liang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhen Gao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Qian He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Chaoyong He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China
| | - Chao Cai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China.
| | - Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, China.
| |
Collapse
|
10
|
Li Z, Zhao Y, Suguro S, Suguro R. MicroRNAs Regulate Function in Atherosclerosis and Clinical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2561509. [PMID: 37675243 PMCID: PMC10480027 DOI: 10.1155/2023/2561509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Background Atherosclerosis is considered the most common cause of morbidity and mortality worldwide. Athermanous plaque formation is pathognomonic of atherosclerosis. The main feature of atherosclerosis is the formation of plaque, which is inseparable from endothelial cells, vascular smooth muscle cells, and macrophages. MicroRNAs, a small highly conserved noncoding ribonucleic acid (RNA) molecule, have multiple biological functions, such as regulating gene transcription, silencing target gene expression, and affecting protein translation. MicroRNAs also have various pharmacological activities, such as regulating cell proliferation, apoptosis, and metabolic processes. It is noteworthy that many studies in recent years have also proved that microRNAs play a role in atherosclerosis. Methods To summarize the functions of microRNAs in atherosclerosis, we reviewed all relevant articles published in the PubMed database before June 2022, with keywords "atherosclerosis," "microRNA," "endothelial cells," "vascular smooth muscle cells," "macrophages," and "cholesterol homeostasis," briefly summarized a series of research progress on the function of microRNAs in endothelial cells, vascular smooth muscle cells, and macrophages and atherosclerosis. Results and Conclusion. In general, the expression levels of some microRNAs changed significantly in different stages of atherosclerosis pathogenesis; therefore, MicroRNAs may become new diagnostic biomarkers for atherosclerosis. In addition, microRNAs are also involved in the regulation of core processes such as endothelial dysfunction, plaque formation and stabilization, and cholesterol metabolism, which also suggests the great potential of microRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yidan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Sei Suguro
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong SAR, China
| | - Rinkiko Suguro
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| |
Collapse
|
11
|
He S, Zhang S, Wang YJ, Gan XK, Chen JX, Zhou HX, Jia EZ. Long non-coding RNA in coronary artery disease: the role of PDXDC1-AS1 and SFI1-AS1. Funct Integr Genomics 2023; 23:219. [PMID: 37394483 DOI: 10.1007/s10142-023-01134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023]
Abstract
This study investigates the interaction between long non-coding RNAs (lncRNAs) and metabolic risk factors that contribute to coronary artery disease (CAD). A total transcriptome high throughput sequencing study was conducted on peripheral blood mononuclear cells from five patients with CAD and five healthy controls. Validation assay by qRT-PCR was conducted among 270 patients and 47 controls. Finally, to evaluate the lncRNAs' diagnostic value for CAD, the Spearman correlation test and receiver operating characteristic curve (ROC) analysis were utilized. Additionally, univariate and multivariate logistic regression along with crossover analyses were conducted to identify the interaction between lncRNA and environmental risk factors. A total of 2149 of 26,027 lncRNAs identified by RNA sequencing were differentially expressed in CAD patients compared to controls. Validation by qRT-PCR showed significantly different relative expression levels for lncRNAs PDXDC1-AS1, SFI1-AS1, RP13-143G15.3, DAPK1-IT1, PPIE-AS1, and RP11-362A1.1 between the two groups (all P<0.05). The area under the ROC values of PDXDC1-AS1 and SFI1-AS1 is 0.645 (sensitivity=0.443 and specificity=0.920) and 0.629 (sensitivity=0.571 and specificity=0.909), especially. Multivariate logistic regression analyses showed that lncRNAs PDXDC1-AS1 (OR=2.285, 95%CI=1.390-3.754, p=0.001) and SFI1-AS1 (OR=1.163, 95%CI=1.163-2.264, p=0.004) were protective factors against CAD. Under the additive model, cross-over analyses demonstrated significant interactions between lncRNAs PDXDC1-AS1 and smoking in relation to CAD risk (S=3.871, 95%CI=1.140-6.599). PDXDC1-AS1 and SFI1-AS1 were sensitive and specific biomarkers for CAD and exhibited synergistic effects with certain environmental factors. These results highlighted their potential use as CAD diagnostic biomarkers for future research.
Collapse
Affiliation(s)
- Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yan-Jun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Xiong-Kang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Jia-Xin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Han-Xiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - En-Zhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
12
|
Li Z, Xu T, Fan X, Chen K, Wan C, Li X, Yin H, Li S. Bisphenol A aggravate selenium deficiency-induced apoptosis via miR-215-3p/Dio1 to activate ROS/PI3K/AKT pathway in chicken arterial. J Cell Physiol 2023; 238:1256-1274. [PMID: 37012668 DOI: 10.1002/jcp.31007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.
Collapse
Affiliation(s)
- Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
13
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
14
|
Tasopoulou KM, Argiriou C, Tsaroucha AK, Georgiadis GS. Circulating miRNAs as biomarkers for diagnosis, surveillance and post-operative follow-up of abdominal aortic aneurysms. Ann Vasc Surg 2023:S0890-5096(23)00144-9. [PMID: 36921794 DOI: 10.1016/j.avsg.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
OBJECTIVE To provide a summary of the current state of research in English medical literature on circulating miRNAs, as biomarkers for AAA. Additionally, for the most commonly mentioned circulating miRNAs in the literature, to attempt a documentation of the biological mechanisms underlying their role in AAA development. METHODS A literature search was undertaken in the MEDLINE database. Only reports that involved peripheral blood samples (whole blood, plasma, serum) were included. The following terms were used in combination: microrna, mirna, abdominal aortic aneurysm, human, circulating, plasma, serum, endovascular and EVAR. RESULTS A total of 25 reports, published from 2012 to 2022 were included with a total of 1259 patients with AAA, predominantly men (N= 1040, 90%). Six of these reports recruited healthy donors who underwent ultrasound screening for AAA as control samples. The majority of studies were undertaken in plasma samples and the most preferred microRNA profiling method was Real - Time quantitative polymerase chain reaction (qRT-PCR). The following nine miRNAs (out of a total of 76) were studied in more than two references: miR-145, miR-24, miR-33, miR-125, let-7, miR-15, miR-191, miR-29 and miR-133. CONCLUSION The nine miRNAs described in this study, are implicated in known pathogenetic mechanisms of AAA such as atherosclerosis, vascular smooth muscle cell phenotype switch and apoptosis, vascular inflammation, extracellular matrix degradation and lipid metabolism. Identifying disease-specific miRNAs, in combination with other clinical parameters, as indicators of AAA, is crucial for early diagnosis as well as follow-up of AAAs. For future research on miRNAs as AAA biomarkers, strict case and control group definitions, sample acquisition protocols, and miRNA expression profiling techniques are warranted.
Collapse
Affiliation(s)
- Kalliopi-Maria Tasopoulou
- Department of Vascular Surgery, Medical School, Democritus University of Thrace, University General Hospital of Evros, Alexandroupolis, Greece.
| | - Christos Argiriou
- Department of Vascular Surgery, Medical School, Democritus University of Thrace, University General Hospital of Evros, Alexandroupolis, Greece
| | - Alexandra K Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, Medical School, Democritus University of Thrace, University General Hospital of Evros, Alexandroupolis, Greece
| |
Collapse
|
15
|
Brown PA, Brown PD. Extracellular vesicles and atherosclerotic peripheral arterial disease. Cardiovasc Pathol 2023; 63:107510. [PMID: 36460259 DOI: 10.1016/j.carpath.2022.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Atherogenesis involves a complex multifactorial process including chronic inflammation that requires the participation of several cell types and molecules. In addition to their role in vascular homeostasis, extracellular vesicles also appear to play an important role in atherogenesis, including monocyte transmigration and foam cell formation, SMC proliferation and migration, leukocyte transmigration, and thrombosis. Peripheral arterial disease, a major form of peripheral vascular disease, is characterized by structural or functional impairment of peripheral arterial supply, often secondary to atherosclerosis. Elevated levels of extracellular vesicles have been demonstrated in patients with peripheral arterial disease and implicated in the development of atherosclerosis within peripheral vascular beds. However, extracellular vesicles also appear capable of delivering cargo with atheroprotective effects. This capability has been exploited in vesicles engineered to carry content capable of neovascularization, suggesting potential for therapeutic angiogenesis. This dual capacity holds substantial promise for diagnosis and therapy, including possibly limb- and life-saving options for peripheral arterial disease management.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - Paul D Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica
| |
Collapse
|
16
|
Borrmann M, Brandes F, Kirchner B, Klein M, Billaud JN, Reithmair M, Rehm M, Schelling G, Pfaffl MW, Meidert AS. Extensive blood transcriptome analysis reveals cellular signaling networks activated by circulating glycocalyx components reflecting vascular injury in COVID-19. Front Immunol 2023; 14:1129766. [PMID: 36776845 PMCID: PMC9909741 DOI: 10.3389/fimmu.2023.1129766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Background Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.
Collapse
Affiliation(s)
- Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Rehm
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Department of Anesthesiology and intensive Care Medicine, Hospital Agatharied, Hausham, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Gustav Schelling,
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
17
|
Jiapaer Z, Li C, Yang X, Sun L, Chatterjee E, Zhang L, Lei J, Li G. Extracellular Non-Coding RNAs in Cardiovascular Diseases. Pharmaceutics 2023; 15:pharmaceutics15010155. [PMID: 36678784 PMCID: PMC9865796 DOI: 10.3390/pharmaceutics15010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death despite the best available healthcare and therapy. Emerging as a key mediator of intercellular and inter-organ communication in CVD pathogenesis, extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed nano-sized vesicles released by virtually all cells, of which their RNA cargo, especially non-coding RNAs (ncRNA), has been increasingly recognized as a promising diagnostic and therapeutic target. Recent evidence shows that ncRNAs, such as small ncRNAs, circular RNAs, and long ncRNAs, can be selectively sorted into EVs or other non-vesicular carriers and modulate various biological processes in recipient cells. In this review, we summarize recent advances in the literature regarding the origin, extracellular carrier, and functional mechanisms of extracellular ncRNAs with a focus on small ncRNAs, circular RNAs, and long ncRNAs. The pathophysiological roles of extracellular ncRNAs in various CVDs, including atherosclerosis, ischemic heart diseases, hypertension, cardiac hypertrophy, and heart failure, are extensively discussed. We also provide an update on recent developments and challenges in using extracellular ncRNAs as biomarkers or therapeutical targets in these CVDs.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Chengyu Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing 102400, China
| | - Lingfei Sun
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| |
Collapse
|
18
|
Lu T, Han T, Zhao M. miR-3168 promotes hepatocellular carcinoma progression via downregulating p53. Carcinogenesis 2022; 43:956-968. [PMID: 35926447 DOI: 10.1093/carcin/bgac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant disease with poor prognosis, which is partly due to the presence of liver cancer stem cells (CSCs). CSCs participate in tumor recurrence, metastasis, and chemoresistance. However, the mechanisms underlying liver CSC regulation are unknown. In this study, we found that miR-3168 expression is increased in HCC and that it predicts poor prognosis. Functional assays showed that miR-3168 promotes HCC cells' proliferation and facilitates liver CSC self-renewal and tumorigenicity. Mechanistically, bioinformatics and the luciferase reporter assay demonstrated that miR-3168 targets the 3'UTR of the p53 mRNA. MiR-3168 expression was negatively correlated with p53 mRNA in HCC tissue samples. Rescue assays demonstrated that p53 knockdown abrogates the discrepancies in proliferation, self-renewal, and tumorigenicity between miR-3168 knockdown HCC cells and control HCC cells. Furthermore, miR-3168 expression was negatively correlated with p53 in HCC tissues. The combined HCC panels exhibited a worse prognostic value for HCC patients than any of these components alone. Moreover, miR-3168 expression was increased in cisplatin-resistant HCC cells and patient-derived xenografts. Clinical cohort analysis revealed that HCC patients with low miR-3168 levels have a superior survival rate when treated with postoperative transcatheter arterial chemoembolization compared with that of patients with high miR-3168 levels. In conclusion, our study uncovered a novel mechanism of liver CSC regulation and provided a potential therapeutic target for liver CSCs.
Collapse
Affiliation(s)
- Tingting Lu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Mingfang Zhao
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
19
|
Wu D, Tao T, Eshraghian EA, Lin P, Li Z, Zhu X. Extracellular RNA as a kind of communication molecule and emerging cancer biomarker. Front Oncol 2022; 12:960072. [PMID: 36465402 PMCID: PMC9714358 DOI: 10.3389/fonc.2022.960072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2023] Open
Abstract
Extracellular RNA (exRNA) is a special form of RNA in the body. RNA carries information about genes and metabolic regulation in the body, which can reflect the real-time status of cells. This characteristic renders it a biomarker for disease diagnosis, treatment, and prognosis. ExRNA is transported through extracellular vesicles as a signal medium to mediate communication between cells. Tumor cells can release more vesicles than normal cells, thereby promoting tumor development. Depending on its easy detection, the advantages of non-invasive molecular diagnostic technology can be realized. In this systematic review, we present the types, vectors, and biological value of exRNA. We briefly describe new methods of tumor diagnosis and treatment, as well as the difficulties faced in the progress of such research. This review highlights the groundbreaking potential of exRNA as a clinical biomarker.
Collapse
Affiliation(s)
- Danny Wu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Emily A. Eshraghian
- Department of Medicine, University of California (UC) San Diego Health, San Diego, CA, United States
| | - Peixu Lin
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
- Ningbo Institute of Life and Health Industry, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
20
|
Zhang L, Li W, Shi B, Zhang X, Gong K. Expression profiles and functions of ferroptosis-related genes in intimal hyperplasia induced by carotid artery ligation in mice. Front Genet 2022; 13:964458. [PMID: 36110200 PMCID: PMC9468614 DOI: 10.3389/fgene.2022.964458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Intimal hyperplasia (IH) is a prominent pathological event that occurs during in-stent restenosis and atherosclerosis. Ferroptosis, characterized by iron-dependent and lipid peroxidation, has become the recent focus of studies on the occurrence and progress of cardiovascular diseases. However, there are few studies on ferroptosis and IH. Therefore, we aimed to identify and validate ferroptosis-related markers in IH to explore new possibilities for IH diagnosis and treatment. The IH microarray dataset (GSE182291) was downloaded from the Gene Expression Omnibus (GEO) database and ferroptosis-related genes (FRGs) were obtained from the FerrDb databases. The differentially expressed genes (DEGs) were analyzed using the GEO2R. Overlapping was performed to identify the ferroptosis-related DEGs among the DEGs and FRGs. Then, clustering, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein–protein interaction (PPI) analyses were performed. Subsequently, the hub genes were identified using Cytoscape and hub gene–transcription factors and hub gene–microRNA networks were constructed. Finally, real-time qPCR (RT-qPCR) and immunohistochemistry (IHC) were used to verify the mRNA and protein levels of the hub FRGs in IH. Thirty-four FRGs showing significantly different expression were identified from a total of 1,197 DEGs 2 days after ligation; 31 FRGs were selected from a total of 1,556 DEGs 14 days after ligation. The GO and KEGG analyses revealed that these 34 ferroptosis-related DEGs identified 2 days after ligation were mainly enriched in the basolateral plasma membrane, ferroptosis, lipid and atherosclerosis, and IL-17 signaling pathways. The 31 ferroptosis-related DEGs in endometrial hyperplasia identified 14 days after ligation were mainly enriched in response to oxidative stress, ferroptosis, tumor necrosis factor signaling pathway, and lipid and atherosclerosis. Five hub FRGs (Il1b, Ptgs2, Cybb, Cd44, and Tfrc) were identified using PPI networks; four hub FRGs (Il1b, Ptgs2, Cybb, and Cd44) were validated to be upregulated 2 and 14 days after ligation using RT-qPCR and show significantly different expression 14 days after ligation via IHC. Our findings verify the expression of hub DEGs related to ferroptosis in IH and elucidate the potential relationship between ferroptosis and IH, providing more evidence about the vital role of ferroptosis in IH.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bo Shi
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Xiaoqing Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- *Correspondence: Kaizheng Gong,
| |
Collapse
|
21
|
Giannella A, Riccetti S, Sinigaglia A, Piubelli C, Razzaboni E, Di Battista P, Agostini M, Dal Molin E, Manganelli R, Gobbi F, Ceolotto G, Barzon L. Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients. Front Immunol 2022; 13:968991. [PMID: 36032130 PMCID: PMC9403711 DOI: 10.3389/fimmu.2022.968991] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background SARS-CoV-2 induces a spectrum of clinical conditions ranging from asymptomatic infection to life threatening severe disease. Host microRNAs have been involved in the cytokine storm driven by SARS-CoV-2 infection and proposed as candidate biomarkers for COVID-19. Methods To discover signatures of circulating miRNAs associated with COVID-19, disease severity and mortality, small RNA-sequencing was performed on serum samples collected from 89 COVID-19 patients (34 severe, 29 moderate, 26 mild) at hospital admission and from 45 healthy controls (HC). To search for possible sources of miRNAs, investigation of differentially expressed (DE) miRNAs in relevant human cell types in vitro. Results COVID-19 patients showed upregulation of miRNAs associated with lung disease, vascular damage and inflammation and downregulation of miRNAs that inhibit pro-inflammatory cytokines and chemokines, angiogenesis, and stress response. Compared with mild/moderate disease, patients with severe COVID-19 had a miRNA signature indicating a profound impairment of innate and adaptive immune responses, inflammation, lung fibrosis and heart failure. A subset of the DE miRNAs predicted mortality. In particular, a combination of high serum miR-22-3p and miR-21-5p, which target antiviral response genes, and low miR-224-5p and miR-155-5p, targeting pro-inflammatory factors, discriminated severe from mild/moderate COVID-19 (AUROC 0.88, 95% CI 0.80-0.95, p<0.0001), while high leukocyte count and low levels of miR-1-3p, miR-23b-3p, miR-141-3p, miR-155-5p and miR-4433b-5p predicted mortality with high sensitivity and specificity (AUROC 0.95, 95% CI 0.89-1.00, p<0.0001). In vitro experiments showed that some of the DE miRNAs were modulated directly by SARS-CoV-2 infection in permissive lung epithelial cells. Conclusions We discovered circulating miRNAs associated with COVID-19 severity and mortality. The identified DE miRNAs provided clues on COVID-19 pathogenesis, highlighting signatures of impaired interferon and antiviral responses, inflammation, organ damage and cardiovascular failure as associated with severe disease and death.
Collapse
Affiliation(s)
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Elisa Razzaboni
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Piero Di Battista
- Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Matteo Agostini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | | | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
22
|
Peng M, Sun R, Hong Y, Wang J, Xie Y, Zhang X, Li J, Guo H, Xu P, Li Y, Wang X, Wan T, Zhao Y, Huang F, Wang Y, Ye R, Liu Q, Liu G, Liu X, Xu G. Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell Mol Life Sci 2022; 79:430. [PMID: 35851433 PMCID: PMC11071964 DOI: 10.1007/s00018-022-04464-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Most cells involved in atherosclerosis release extracellular vesicles (EVs), which can carry bioactive substances to downstream tissues via circulation. We hypothesized that EVs derived from atherosclerotic plaques could promote atherogenesis in remote locations, a mechanism that mimics the blood metastasis of cancer. Ldlr gene knockout (Ldlr KO) rats were fed on a high cholesterol diet and underwent partial carotid ligation to induce local atherosclerosis. EVs were separated from carotid artery tissues and downstream blood of carotid ligation by centrifugation. MiRNA sequencing and qPCR were then performed to detect miRNA differences in EVs from rats with and without induced carotid atherosclerosis. Biochemical analyses demonstrated that EVs derived from atherosclerosis could increase the expression of ICAM-1, VCAM-1, and E-selectin in endothelial cells in vitro. EVs derived from atherosclerosis contained a higher level of miR-23a-3p than those derived from controls. MiR-23a-3p could promote endothelial inflammation by targeting Dusp5 and maintaining ERK1/2 phosphorylation in vitro. Inhibiting EV release could attenuate atherogenesis and reduce macrophage infiltration in vivo. Intravenously administrating atherosclerotic plaque-derived EVs could induce intimal inflammation, arterial wall thickening and lumen narrowing in the carotids of Ldlr KO rats, while simultaneous injection of miR-23a-3p antagomir could reverse this reaction. The results suggested that EVs may transfer atherosclerosis to remote locations by carrying proinflammatory factors, particularly miR-23a-3p.
Collapse
Affiliation(s)
- Mengna Peng
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Jia Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Pengfei Xu
- Division of Life Sciences and Medicine, Stroke Center & Department of Neurology, Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaoke Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ting Wan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Feihong Huang
- Department of Neurology, Guilin People's Hospital, Guilin, 541002, Guangxi, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China
- Institute of Cardiovascular Sciences, School of Basic Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China
- Institute of Cardiovascular Sciences, School of Basic Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Department of Neurology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China.
- Division of Life Sciences and Medicine, Stroke Center & Department of Neurology, Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| | - Gelin Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Department of Neurology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
23
|
Lu S, Wang R, Fu W, Si Y. Applications of Extracellular Vesicles in Abdominal Aortic Aneurysm. Front Cardiovasc Med 2022; 9:927542. [PMID: 35711380 PMCID: PMC9194528 DOI: 10.3389/fcvm.2022.927542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a localized expansion of the abdominal aorta which can lead to lethal complication as the rupture of aortic wall. Currently there is still neither competent method to predict the impending rupture of aneurysm, nor effective treatment to arrest the progression of small and asymptomatic aneurysms. Accumulating evidence has confirmed the crucial role of extracellular vesicles (EVs) in the pathological course of AAA, acting as important mediators of intercellular communication. Given the advantages of intrinsic targeting properties, lower toxicity and fair stability, EVs show great potential to serve as biomarkers, therapeutic agents and drug delivery carriers. However, EV therapies still face several major challenges before they can be applied clinically, including off-target effect, low accumulation rate and rapid clearance by mononuclear phagocyte system. In this review, we first illustrate the roles of EV in the pathological process of AAA and evaluate its possible clinical applications. We also identify present challenges for EV applications, highlight different strategies of EV engineering and constructions of EV-like nanoparticles, including EV display technology and membrane hybrid technology. These leading-edge techniques have been recently employed in multiple cardiovascular diseases and their promising application in the field of AAA is discussed.
Collapse
Affiliation(s)
- Shan Lu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ruihan Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Weiguo Fu
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Vascular Surgery Institute of Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- *Correspondence: Yi Si
| |
Collapse
|
24
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|