1
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
2
|
Mateos-Martínez P, Coronel R, Sachse M, González-Sastre R, Maeso L, Rodriguez MJ, Terrón MC, López-Alonso V, Liste I. Human cerebral organoids: cellular composition and subcellular morphological features. Front Cell Neurosci 2024; 18:1406839. [PMID: 38933177 PMCID: PMC11199856 DOI: 10.3389/fncel.2024.1406839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Human cerebral organoids (hCOs) derived from pluripotent stem cells are very promising for the study of neurodevelopment and the investigation of the healthy or diseased brain. To help establish hCOs as a powerful research model, it is essential to perform the morphological characterization of their cellular components in depth. Methods In this study, we analyzed the cell types consisting of hCOs after culturing for 45 days using immunofluorescence and reverse transcriptase qualitative polymerase chain reaction (RT-qPCR) assays. We also analyzed their subcellular morphological characteristics by transmission electron microscopy (TEM). Results Our results show the development of proliferative zones to be remarkably similar to those found in human brain development with cells having a polarized structure surrounding a central cavity with tight junctions and cilia. In addition, we describe the presence of immature and mature migrating neurons, astrocytes, oligodendrocyte precursor cells, and microglia-like cells. Discussion The ultrastructural characterization presented in this study provides valuable information on the structural development and morphology of the hCO, and this information is of general interest for future research on the mechanisms that alter the cell structure or function of hCOs.
Collapse
Affiliation(s)
- Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), Programa en Ciencias Biomédicas y Salud Pública, Madrid, Spain
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Martin Sachse
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), Programa en Ciencias Biomédicas y Salud Pública, Madrid, Spain
| | - Laura Maeso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Josefa Rodriguez
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | - María C. Terrón
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Babu HWS, Kumar SM, Kaur H, Iyer M, Vellingiri B. Midbrain organoids for Parkinson's disease (PD) - A powerful tool to understand the disease pathogenesis. Life Sci 2024; 345:122610. [PMID: 38580194 DOI: 10.1016/j.lfs.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Brain Organiods (BOs) are a promising technique for researching disease progression in the human brain. These organoids, which are produced from human induced pluripotent stem cells (HiPSCs), can construct themselves into structured frameworks. In the context of Parkinson's disease (PD), recent advancements have been made in the development of Midbrain organoids (MBOs) models that consider key pathophysiological mechanisms such as alpha-synuclein (α-Syn), Lewy bodies, dopamine loss, and microglia activation. However, there are limitations to the current use of BOs in disease modelling and drug discovery, such as the lack of vascularization, long-term differentiation, and absence of glial cells. To address these limitations, researchers have proposed the use of spinning bioreactors to improve oxygen and nutrient perfusion. Modelling PD utilising modern experimental in vitro models is a valuable tool for studying disease mechanisms and elucidating previously unknown features of PD. In this paper, we exclusively review the unique methods available for cultivating MBOs using a pumping system that mimics the circulatory system. This mechanism may aid in delivering the required amount of oxygen and nutrients to all areas of the organoids, preventing cell death, and allowing for long-term culture and using co-culturing techniques for developing glial cell in BOs. Furthermore, we emphasise some of the significant discoveries about the BOs and the potential challenges of using BOs will be discussed.
Collapse
Affiliation(s)
- Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sindduja Muthu Kumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Harsimrat Kaur
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India; Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
4
|
Modafferi S, Lupo G, Tomasello M, Rampulla F, Ontario M, Scuto M, Salinaro AT, Arcidiacono A, Anfuso CD, Legmouz M, Azzaoui FZ, Palmeri A, Spano' S, Biamonte F, Cammilleri G, Fritsch T, Sidenkova A, Calabrese E, Wenzel U, Calabrese V. Antioxidants, Hormetic Nutrition, and Autism. Curr Neuropharmacol 2024; 22:1156-1168. [PMID: 37592816 PMCID: PMC10964097 DOI: 10.2174/1570159x21666230817085811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 08/19/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
Collapse
Affiliation(s)
- Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Legmouz
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima-Zahra Azzaoui
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Sestina Spano'
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesca Biamonte
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi, 3 90129, Palermo, Italy
| | | | - Alena Sidenkova
- Department of Psychiatry, Ural State Medical University, Ekaterinburg, Russia
| | - Edward Calabrese
- Department of Environmental Health Sciences; Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| |
Collapse
|
5
|
Gaston-Breton R, Maïza Letrou A, Hamoudi R, Stonestreet BS, Mabondzo A. Brain organoids for hypoxic-ischemic studies: from bench to bedside. Cell Mol Life Sci 2023; 80:318. [PMID: 37804439 PMCID: PMC10560197 DOI: 10.1007/s00018-023-04951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Auriane Maïza Letrou
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara S Stonestreet
- Departments of Molecular Biology, Cell Biology and Biochemistry and Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
6
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
7
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
8
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Girodengo M, Ultanir SK, Bateman JM. Mechanistic target of rapamycin signaling in human nervous system development and disease. Front Mol Neurosci 2022; 15:1005631. [PMID: 36226315 PMCID: PMC9549271 DOI: 10.3389/fnmol.2022.1005631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates fundamental cellular processes including growth control, autophagy and metabolism. mTOR has key functions in nervous system development and mis-regulation of mTOR signaling causes aberrant neurodevelopment and neurological diseases, collectively called mTORopathies. In this mini review we discuss recent studies that have deepened our understanding of the key roles of the mTOR pathway in human nervous system development and disease. Recent advances in single-cell transcriptomics have been exploited to reveal specific roles for mTOR signaling in human cortical development that may have contributed to the evolutionary divergence from our primate ancestors. Cerebral organoid technology has been utilized to show that mTOR signaling is active in and regulates outer radial glial cells (RGCs), a population of neural stem cells that distinguish the human developing cortex. mTOR signaling has a well-established role in hamartoma syndromes such as tuberous sclerosis complex (TSC) and other mTORopathies. New ultra-sensitive techniques for identification of somatic mTOR pathway mutations have shed light on the neurodevelopmental origin and phenotypic heterogeneity seen in mTORopathy patients. These emerging studies suggest that mTOR signaling may facilitate developmental processes specific to human cortical development but also, when mis-regulated, cause cortical malformations and neurological disease.
Collapse
Affiliation(s)
- Marie Girodengo
- Kinases and Brain Development Lab, The Francis Crick Institute, London, United Kingdom.,King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, London, United Kingdom
| | - Joseph M Bateman
- King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|