1
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Suryavanshi P, Bodas D. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip. Nanotheranostics 2024; 8:380-400. [PMID: 38751938 PMCID: PMC11093718 DOI: 10.7150/ntno.87818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| |
Collapse
|
4
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
5
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2024:1-30. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
6
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
7
|
Eliason J, Rao A. Investigating Ecological Interactions in the Tumor Microenvironment using Joint Species Distribution Models for Point Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567108. [PMID: 38014073 PMCID: PMC10680696 DOI: 10.1101/2023.11.14.567108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that involves interactions between different cell types, such as cancer cells, immune cells, and stromal cells. These interactions can promote or inhibit tumor growth and affect response to therapy. Multitype Gibbs point process (MGPP) models are statistical models used to study the spatial distribution and interaction of different types of objects, such as the distribution of cell types in a tissue sample. Such models are potentially useful for investigating the spatial relationships between different cell types in the tumor microenvironment, but so far studies of the TME using cell-resolution imaging have been largely limited to spatial descriptive statistics. However, MGPP models have many advantages over descriptive statistics, such as uncertainty quantification, incorporation of multiple covariates and the ability to make predictions. In this paper, we describe and apply a previously developed MGPP method, the saturated pairwise interaction Gibbs point process model , to a publicly available multiplexed imaging dataset obtained from colorectal cancer patients. Importantly, we show how these methods can be used as joint species distribution models (JSDMs) to precisely frame and answer many relevant questions related to the ecology of the tumor microenvironment.
Collapse
|
8
|
Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2790-2806. [PMID: 37261603 PMCID: PMC10234250 DOI: 10.1007/s13346-023-01370-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Extracellular vesicles (EVs) are a group of nanoscale membrane-bound organelles including exosomes, microvesicles (MVs), membrane particles, and apoptotic bodies, which are released from almost all eukaryotic cells. Owing to their ingredients, EVs can be employed as biomarkers for human diseases. Interestingly, EVs show favorable features as candidates for targeted drug delivery and thus, they are suggested as ideal drug carriers as well as good vaccines for various human diseases including cancer. Among various drugs loaded in EVs for targeted drug delivery, immune checkpoint inhibitors (ICIs), including antibodies against programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), have attracted an increasing attention for cancer researchers and clinicians. Animal and clinical studies have shown combination of EVs and immunotherapy antibodies to improve the efficacy and reduce possible side effects in systemic administration of ICIs. In this review, we discuss the EVs and their significance in drug delivery with a focus on cancer immunotherapy agents.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
9
|
Jain SS, McNamara ME, Varghese RS, Ressom HW. Deconvolution of immune cell composition and biological age of hepatocellular carcinoma using DNA methylation. Methods 2023; 218:125-132. [PMID: 37574160 PMCID: PMC10529003 DOI: 10.1016/j.ymeth.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been an approved indication for the administration of immunotherapy since 2017, but biomarkers that predict therapeutic response have remained limited. Understanding and characterizing the tumor immune microenvironment enables better classification of these tumors and may reveal biomarkers that predict immunotherapeutic efficacy. In this paper, we applied a cell-type deconvolution algorithm using DNA methylation array data to investigate the composition of the tumor microenvironment in HCC. Using publicly available and in-house datasets with a total cohort size of 57 patients, each with tumor and matched normal tissue samples, we identified key differences in immune cell composition. We found that NK cell abundance was significantly decreased in HCC tumors compared to adjacent normal tissue. We also applied DNA methylation "clocks" which estimate phenotypic aging and compared these findings to expression-based determinations of cellular senescence. Senescence and epigenetic aging were significantly increased in HCC tumors, and the degree of age acceleration and senescence was strongly associated with decreased NK cell abundance. In summary, we found that NK cell infiltration in the tumor microenvironment is significantly diminished, and that this loss of NK abundance is strongly associated with increased senescence and age-related phenotype. These findings point to key interactions between NK cells and the senescent tumor microenvironment and offer insights into the pathogenesis of HCC as well as potential biomarkers of therapeutic efficacy.
Collapse
Affiliation(s)
- Sidharth S Jain
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Megan E McNamara
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rency S Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
11
|
Efficient Redirection of NK Cells by Genetic Modification with Chemokine Receptors CCR4 and CCR2B. Int J Mol Sci 2023; 24:ijms24043129. [PMID: 36834542 PMCID: PMC9967507 DOI: 10.3390/ijms24043129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are a subset of lymphocytes that offer great potential for cancer immunotherapy due to their natural anti-tumor activity and the possibility to safely transplant cells from healthy donors to patients in a clinical setting. However, the efficacy of cell-based immunotherapies using both T and NK cells is often limited by a poor infiltration of immune cells into solid tumors. Importantly, regulatory immune cell subsets are frequently recruited to tumor sites. In this study, we overexpressed two chemokine receptors, CCR4 and CCR2B, that are naturally found on T regulatory cells and tumor-resident monocytes, respectively, on NK cells. Using the NK cell line NK-92 as well as primary NK cells from peripheral blood, we show that genetically engineered NK cells can be efficiently redirected using chemokine receptors from different immune cell lineages and migrate towards chemokines such as CCL22 or CCL2, without impairing the natural effector functions. This approach has the potential to enhance the therapeutic effect of immunotherapies in solid tumors by directing genetically engineered donor NK cells to tumor sites. As a future therapeutic option, the natural anti-tumor activity of NK cells at the tumor sites can be increased by co-expression of chemokine receptors with chimeric antigen receptors (CAR) or T cell receptors (TCR) on NK cells can be performed in the future.
Collapse
|
12
|
Jain SS, Barefoot ME, Varghese RS, Ressom HW. Cell-type Deconvolution and Age Estimation Using DNA Methylation Reveals NK Cell Deficiency in the Hepatocellular Carcinoma Microenvironment. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2022; 2022:444-449. [PMID: 37663782 PMCID: PMC10473873 DOI: 10.1109/bibm55620.2022.9995041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Hepatocellular carcinoma (HCC) has been an approved indication for the administration of immunotherapy since 2017, but biomarkers that predict therapeutic response have remained limited. Understanding and characterizing the tumor immune microenvironment enables better classification of these tumors and may reveal biomarkers that predict immunotherapeutic efficacy. In this paper, we applied a cell-type deconvolution algorithm using DNA methylation array data to investigate the composition of the tumor microenvironment in HCC. Using two publicly available datasets with a total cohort size of 57 patients, each with tumor and matched normal tissue samples, we identified key differences in immune cell composition. We found that NK cell abundance was significantly decreased in HCC tumors compared to adjacent normal tissue. We also applied DNA methylation "clocks" which estimate phenotypic aging and compared these findings to expression-based determinations of cellular senescence. Senescence and epigenetic aging was significantly increased in HCC tumors, and the degree of age acceleration and senescence was strongly associated with decreased NK cell abundance. In summary, we found that NK cell infiltration in the tumor microenvironment is significantly diminished, and that this loss of NK abundance is strongly associated with increased senescence and age-related phenotype. These findings point to key interactions between NK cells and the senescent tumor microenvironment and offer insights into the pathogenesis of HCC as well as potential biomarkers of therapeutic efficacy.
Collapse
Affiliation(s)
- Sidharth S Jain
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Megan E Barefoot
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rency S Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
13
|
Dias AMM, Courteau A, Bellaye PS, Kohli E, Oudot A, Doulain PE, Petitot C, Walker PM, Decréau R, Collin B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 2022; 14:2388. [PMID: 36365207 PMCID: PMC9694944 DOI: 10.3390/pharmaceutics14112388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy has tremendous promise, but it has yet to be clinically applied in a wider variety of tumor situations. Many therapeutic combinations are envisaged to improve their effectiveness. In this way, strategies capable of inducing immunogenic cell death (e.g., doxorubicin, radiotherapy, hyperthermia) and the reprogramming of the immunosuppressive tumor microenvironment (TME) (e.g., M2-to-M1-like macrophages repolarization of tumor-associated macrophages (TAMs)) are particularly appealing to enhance the efficacy of approved immunotherapies (e.g., immune checkpoint inhibitors, ICIs). Due to their modular construction and versatility, iron oxide-based nanomedicines such as superparamagnetic iron oxide nanoparticles (SPIONs) can combine these different approaches in a single agent. SPIONs have already shown their safety and biocompatibility and possess both drug-delivery (e.g., chemotherapy, ICIs) and magnetic capabilities (e.g., magnetic hyperthermia (MHT), magnetic resonance imaging). In this review, we will discuss the multiple applications of SPIONs in cancer immunotherapy, focusing on their theranostic properties to target TAMs and to generate MHT. The first section of this review will briefly describe immune targets for NPs. The following sections will deal with the overall properties of SPIONs (including MHT). The last section is dedicated to the SPION-induced immune response through its effects on TAMs and MHT.
Collapse
Affiliation(s)
- Alexandre M. M. Dias
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | - Alan Courteau
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- ImViA Laboratory, EA 7535, University of Burgundy, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
- University Hospital Centre François Mitterrand, 21000 Dijon, France
| | - Alexandra Oudot
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | | | - Camille Petitot
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
| | - Paul-Michael Walker
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- ImViA Laboratory, EA 7535, University of Burgundy, 21000 Dijon, France
- University Hospital Centre François Mitterrand, 21000 Dijon, France
| | - Richard Decréau
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Bertrand Collin
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| |
Collapse
|
14
|
Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:598-629. [PMID: 36338519 PMCID: PMC9630350 DOI: 10.37349/etat.2022.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous players that shape the tumor microenvironment and influence tumor progression, metastasis formation, and response to conventional therapies. During the past years, some CAFs subsets have also been involved in the modulation of immune cell functions, affecting the efficacy of both innate and adaptive anti-tumor immune responses. Consequently, the implication of these stromal cells in the response to immunotherapeutic strategies raised major concerns. In this review, current knowledge of CAFs origins and heterogeneity in the tumor stroma, as well as their effects on several immune cell populations that explain their immunosuppressive capabilities are summarized. The current development of therapeutic strategies for targeting this population and their implication in the field of cancer immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM, UMR 1186, 94800 Villejuif, France
- Gustave Roussy Cancer Campus, 94805 Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
15
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
16
|
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res 2022; 45:401-416. [PMID: 35759090 PMCID: PMC9250479 DOI: 10.1007/s12272-022-01389-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cancer creates a complex tumor microenvironment (TME) composed of immune cells, stromal cells, blood vessels, and various other cellular and extracellular elements. It is essential for the development of anti-cancer combination therapies to understand and overcome this high heterogeneity and complexity as well as the dynamic interactions between them within the TME. Recent treatment strategies incorporating immune-checkpoint inhibitors and anti-angiogenic agents have brought many changes and advances in clinical cancer treatment. However, there are still challenges for immune suppressive tumors, which are characterized by a lack of T cell infiltration and treatment resistance. In this review, we will investigate the crosstalk between immunity and angiogenesis in the TME. In addition, we will look at strategies designed to enhance anti-cancer immunity, to convert "immune suppressive tumors" into "immune activating tumors," and the mechanisms by which these strategies enhance effector immune cell infiltration.
Collapse
Affiliation(s)
- Hei Jung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
- Department of Molecular Pathophysiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|