1
|
Urzì O, Olofsson Bagge R, Crescitelli R. Extracellular vesicles in uveal melanoma - Biological roles and diagnostic value. Cancer Lett 2025; 615:217531. [PMID: 39914771 DOI: 10.1016/j.canlet.2025.217531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Uveal melanoma (UM), which originates from the uveal tract of the eye, is the most common and aggressive intraocular cancer in adults. The detection of genetic markers is crucial for an accurate diagnosis, but this requires tumor biopsies that can be challenging to obtain. Extracellular vesicles (EVs) have emerged as potential biomarkers for UM due to their presence in biological fluids and their ability to carry disease-related biomolecules such as proteins and nucleic acids. Increasing evidence indicates that EVs released from UM cells play crucial roles in UM development, including cancer progression, pre-metastatic niche formation, and metastasis. Moreover, many studies have demonstrated that UM-derived EVs carry proteins and microRNAs that might be used as biomarkers. This review explores the role of EVs in UM, focusing on their biological functions and their potential as diagnostic and prognostic biomarkers of UM. Additionally, current challenges to the use of UM-derived EVs in clinical translation were identified, as well as perspectives and future directions in the field.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Erana-Perez Z, Igartua M, Santos-Vizcaino E, Hernandez RM. Differential protein and mRNA cargo loading into engineered large and small extracellular vesicles reveals differences in in vitro and in vivo assays. J Control Release 2025; 379:951-966. [PMID: 39892179 DOI: 10.1016/j.jconrel.2025.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Extracellular vesicles (EV) represent an advanced platform for genetic material and protein delivery, particularly when they are loaded through the so-called endogenous loading method. This study investigates the differences between large EV (lEV) and small EV (sEV) obtained from genetically engineered C2C12 myoblasts overexpressing two different model biomolecules. Erythropoietin (EPO) is a secretory protein with anti-inflammatory, angiogenic and hematopoietic effects, while TGL is a chimeric cytosolic protein containing green fluorescent protein (GFP) and luciferase, used for imaging. We compared these EV subtypes in terms of protein and nucleic acid loading, intercellular cargo transfer capacity, and subsequent functional effects both in vitro and in vivo. Our results demonstrated that lEV exhibited higher protein and mRNA cargo content than sEV, which also translated into increased intercellular cargo transfer capacity, even when dosing according to the constitutive sEV and lEV secretion ratio (10,1). Indeed, we showed that, although receptor cells successfully internalized both EV subtypes, cells treated with lEV displayed stronger intracellular luciferase signals and higher EPO protein secretion compared to those treated with sEV. In terms of functional effects, both EV subtypes exerted anti-inflammatory and antioxidant effects in lipopolysaccharide-activated macrophages, as well as angiogenic effects in human umbilical vein endothelial cells. Finally, in vivo studies evidenced that subcutaneously administered lEV led to a more significant increase in hematocrit levels and red blood cell counts than sEV. Taken together, these findings suggest that the protein and mRNA cargo differ between endogenously loaded EV subtypes, and that this variation in cargo loading leads to differences in their functional outcomes. Therefore, the choice of EV subtype could be critical for optimizing EV-based delivery strategies for biologic drugs.
Collapse
Affiliation(s)
- Zuriñe Erana-Perez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
3
|
Patel B, Gaikwad S, Prasad S. Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools. CANCER PATHOGENESIS AND THERAPY 2025; 3:109-119. [PMID: 40182121 PMCID: PMC11963151 DOI: 10.1016/j.cpt.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/05/2025]
Abstract
Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Bhaumik Patel
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Thongsit A, Oontawee S, Siriarchavatana P, Rodprasert W, Somparn P, Na Nan D, Osathanon T, Egusa H, Sawangmake C. Scalable production of anti-inflammatory exosomes from three-dimensional cultures of canine adipose-derived mesenchymal stem cells: production, stability, bioactivity, and safety assessment. BMC Vet Res 2025; 21:81. [PMID: 39979916 PMCID: PMC11841348 DOI: 10.1186/s12917-025-04517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The therapeutic potential of exosomes derived from mesenchymal stem cells (MSCs) is increasingly recognized in veterinary medicine. This study explored the feasibility of a microcarrier-based three-dimensional (3D) culture system for producing the exosomes (cEXO). Investigations were conducted to enhance production efficiency, ensure stability, and evaluate the therapeutic potential of cEXO for anti-inflammatory applications while assessing their safety profile. RESULTS The microcarrier-based 3D culture system improved efficient production of cEXO, yielding exosomes with acceptable profiles, including a size of approximately 81.22 nm, negative surface charge, and high particle concentration (1.32 × 109 particles/mL). Confocal imaging proved dynamic changes in cell viability across culture phases, highlighting the challenges of maintaining cell viability during repeated exosome collection cycles. Characterization via transmission electron microscopy, nanoparticle tracking analysis, and zeta-potential measurements confirmed the stability and functionality of cEXO, particularly when stored at -20 °C. Functional assays showed that cEXO exerted significant anti-inflammatory activity in RAW264.7 macrophages in an inverse dose-dependent manner, with no observed cytotoxicity to fibroblasts or macrophages. Acute toxicity testing in rats revealed no adverse effects on clinical parameters, organ health, or body weight, supporting the safety of cEXO for therapeutic use. CONCLUSIONS This study highlights the potential of a microcarrier-based 3D culture system for scalable cEXO production with robust anti-inflammatory activity, stability, and safety profiles. These findings advance the development of cEXO-based therapies and support their application in veterinary regenerative medicine.
Collapse
Affiliation(s)
- Anatcha Thongsit
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saranyou Oontawee
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parkpoom Siriarchavatana
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Daneeya Na Nan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Center for Advanced Stem Cell and Regenerative Research, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Rajavel A, Essakipillai N, Anbazhagan R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Molecular profiling of blood plasma-derived extracellular vesicles derived from Duchenne muscular dystrophy patients through integration of FTIR spectroscopy and machine learning reveals disease signatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125236. [PMID: 39368178 DOI: 10.1016/j.saa.2024.125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE To identify and monitor the FTIR spectral signatures of plasma extracellular vesicles (EVs) from Duchenne Muscular Dystrophy (DMD) patients at different stages with Healthy controls using machine learning models. MATERIALS AND METHODS Whole blood samples were collected from the DMD (n = 30) and Healthy controls (n = 12). EVs were extracted by the Total Exosome Isolation (TEI) Method and resuspended in 1XPBS. We characterize the morphology, size, particle count, and surface markers (CD9, Alix, and Flotillin) by HR-TEM, NTA, and Western Blot analysis. The mid-IR spectra were recorded from (4000-400 cm-1) by Bruker ALPHA II FTIR spectrometer model, which was equipped with an attenuated total reflection (ATR) module. Machine learning algorithms like Principal Component Analysis (PCA) and Random Forest (RF) for dimensionality reduction and classifying the two study groups based on the FTIR spectra. The model performance was evaluated by a confusion matrix and the sensitivity, specificity, and Receiver Operating Characteristic Curve (ROC) was calculated respectively. RESULTS Alterations in Amide I & II (1700-1470 cm-1) and lipid (3000-2800 cm-1) regions in FTIR spectra of DMD compared with healthy controls. The PCA-RF model classified correctly the two study groups in the range of 4000-400 cm-1 with a sensitivity of 20 %, specificity of 87.50 %, accuracy of 71.43 %, precision of 33.33 %, and 5-fold cross-validation accuracy of 82 %. We analyzed the ten different spectral regions which showed statistically significant at P < 0.01 except the Ester Acyl Chain region. CONCLUSION Our proof-of-concept study demonstrated distinct infrared (IR) spectral signatures in plasma EVs derived from DMD. Consistent alterations in protein and lipid configurations were identified using a PCA-RF model, even with a small clinical dataset. This minimally invasive liquid biopsy method, combined with automated analysis, warrants further investigation for its potential in early diagnosis and monitoring of disease progression in DMD patients within clinical settings.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Narayanan Essakipillai
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayashree Ramakrishnan
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department of Paediatrics Neurology, Apollo Children's Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Doktor F, Antounians L, Figueira RL, Khalaj K, Duci M, Zani A. Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential. Stem Cells Transl Med 2025; 14:szae095. [PMID: 39823257 PMCID: PMC11740888 DOI: 10.1093/stcltm/szae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experimental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges related to stem cell-based therapies in fetal medicine.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Miriam Duci
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
7
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
8
|
Emami A, Arabpour Z, Izadi E. Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement. Mol Biol Rep 2025; 52:113. [PMID: 39798011 DOI: 10.1007/s11033-024-10209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results. Stem cell therapy emerges as a promising avenue, but challenges like immune rejection and low cell survival rates hinder its widespread clinical implementation. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered attention for their regenerative capabilities, which surpass those of MSCs themselves. EVs offer advantages such as reduced immunogenicity, enhanced stability, and simplified storage, positioning them as a promising tool in stem cell-based therapies. This review explores the potential of EV-based therapy in bone tissue regeneration, delving into their biological characteristics, communication mechanisms, and preclinical applications across various physiological and pathological conditions. The mechanisms underlying EV-mediated bone regeneration, including angiogenesis, osteoblast proliferation, mineralization, and immunomodulation, are elucidated. Preclinical studies demonstrate the efficacy of EVs in promoting bone repair and neovascularization, even in pathological conditions like osteoporosis. EVs hold promise as a potential alternative for regenerating bone tissue, particularly in the context of critical-sized bone defects, offering new avenues for effective bone defect repair and management.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Science and University of Illinois, Chicago, IL, 60612, USA
| | - Elaheh Izadi
- Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
10
|
Alter CL, Lotter C, Puligilla RD, Bolten JS, Sedzicki J, Marchese J, Schittny V, Rucci F, Beverly M, Palivan CG, Detampel P, Einfalt T, Huwyler J. Nano Plasma Membrane Vesicle-Lipid Nanoparticle Hybrids for Enhanced Gene Delivery and Expression. Adv Healthc Mater 2025; 14:e2401888. [PMID: 39523736 DOI: 10.1002/adhm.202401888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Indexed: 11/16/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the leading nonviral nucleic acid (NA) delivery system, gaining widespread attention for their use in COVID-19 vaccines. They are recognized for their efficient NA encapsulation, modifiability, and scalable production. However, LNPs face efficacy and potency limitations due to suboptimal intracellular processing, with endosomal escape efficiencies (ESE) below 2.5%. Additionally, up to 70% of NPs undergo recycling and exocytosis after cellular uptake. In contrast, cell-derived vesicles offer biocompatibility and high-delivery efficacy but are challenging to load with exogenous NAs and to manufacture at large-scale. To leverage the strengths of both systems, a hybrid system is designed by combining cell-derived vesicles, such as nano plasma membrane vesicles (nPMVs), with LNPs through microfluidic mixing and subsequent dialysis. These hybrids demonstrate up to tenfold increase in ESE and an 18-fold rise in reporter gene expression in vitro and in vivo in zebrafish larvae (ZFL) and mice, compared to traditional LNPs. These improvements are linked to their unique physico-chemical properties, composition, and morphology. By incorporating cell-derived vesicles, this strategy streamlines the development process, significantly enhancing the efficacy and potency of gene delivery systems without the need for extensive screening.
Collapse
Affiliation(s)
- Claudio Luca Alter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, Basel, 4056, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Ramya Deepthi Puligilla
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Jan Stephan Bolten
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Jaroslaw Sedzicki
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Jason Marchese
- Novartis BioMedical Research, 100 Technology Square, Cambridge, MA, 02139, USA
| | - Valentin Schittny
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Francesca Rucci
- Novartis Biologics Research Center, Fabrikstrasse 16, Basel, 4056, Switzerland
| | - Michael Beverly
- Novartis BioMedical Research, 100 Technology Square, Cambridge, MA, 02139, USA
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Tomaž Einfalt
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| |
Collapse
|
11
|
Ravichandran R, Rahman M, Bansal S, Scozzi D, Fleming T, Ratti G, Arjuna A, Weigt S, Kaza V, Smith M, Bremner RM, Mohanakumar T. Reduced levels of liver kinase B1 in small extracellular vesicles as a predictor for chronic lung allograft dysfunction in cystic fibrosis lung transplant recipients. Hum Immunol 2025; 86:111187. [PMID: 39612537 DOI: 10.1016/j.humimm.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Small extracellular vesicles (sEVs) isolated from plasma of lung transplant recipients (LTRs) with chronic lung allograft dysfunction (CLAD) contain increased levels of lung associated self-antigens, Kα1 tubulin and collagen V, and decreased expression of the tumor suppressor liver kinase B1 (LKB1). In this study, sEVs were isolated from plasma collected from LTRs with or without cystic fibrosis (CF) from multiple centers at the onset of CLAD and 6 and 12 months before clinical diagnosis of CLAD (n = 32) as well as from time-matched stable controls (n = 25). sEVs were analyzed for Kα1 tubulin, collagen V, and LKB1 by western blot. Exoview R200, a functionalized microarray chip was employed to characterize the LKB1 in sEVs. EVs from non-CF LTRs had higher levels of lung self-antigens (p < 0.05) and lower levels of LKB1 (p = 0.024) 12 months before CLAD diagnosis than those from time-matched stable LTRs; however, in CF LTRs, only LKB1 levels were lower (p = 0.0005) 6 months before diagnosis. Further characterization of sEVs 6 months before CLAD in CF LTRs also demonstrated significantly lower numbers of LKB1 and LKB1/CD9 + sEV particles. Reduced LKB1 in circulating sEVs offers a potential biomarker for the risk of CLAD in LTRs with CF.
Collapse
Affiliation(s)
- Ranjithkumar Ravichandran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Davide Scozzi
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Gregory Ratti
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Ashwini Arjuna
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Samuel Weigt
- Division of Pulmonary, Critical Care, Allergy and Immunology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Vaidehi Kaza
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Michael Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States
| | - Thalachallour Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W Thomas Road, Suite 105, Phoenix, AZ 85013, United States.
| |
Collapse
|
12
|
Torabi C, Choi SE, Pisanic TR, Paulaitis M, Hur SC. Streamlined miRNA loading of surface protein-specific extracellular vesicle subpopulations through electroporation. Biomed Eng Online 2024; 23:116. [PMID: 39574085 PMCID: PMC11580418 DOI: 10.1186/s12938-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) have emerged as an exciting tool for targeted delivery of therapeutics for a wide range of diseases. As nano-scale membrane-bound particles derived from living cells, EVs possess inherent capabilities as carriers of biomolecules. However, the translation of EVs into viable therapeutic delivery vehicles is challenged by lengthy and inefficient processes for cargo loading and pre- and post-loading purification of EVs, resulting in limited quantity and consistency of engineered EVs. RESULTS In this work, we develop a fast and streamlined method to load surface protein-specific subpopulations of EVs with miRNA by electroporating EVs, while they are bound to antibody-coated beads. We demonstrate the selection of CD81+ EV subpopulation using magnetic microbeads, facilitating rapid EV manipulations, loading, and subsequent purification processes. Our approach shortens the time per post-electroporation EV wash by 20-fold as compared to the gold standard EV washing method, ultracentrifugation, resulting in about 2.5-h less time required to remove unloaded miRNA. In addition, we addressed the challenge of nonspecific binding of cargo molecules due to affinity-based EV selection, lowering the purity of engineered EVs, by implementing innovative strategies, including poly A carrier RNA-mediated blocking and dissociation of residual miRNA and EV-like miRNA aggregates following electroporation. CONCLUSIONS Our streamlined method integrates magnetic bead-based selection with electroporation, enabling rapid and efficient loading of miRNA into CD81+ EVs. This approach not only achieves comparable miRNA loading efficiency to conventional bulk electroporation methods but also concentrates CD81+ EVs and allows for simple electroporation parameter adjustment, promising advancements in therapeutic RNA delivery systems with enhanced specificity and reduced toxicity.
Collapse
Affiliation(s)
- Corinna Torabi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
- RASyn, LLC, 700 Main Street, Cambridge, MA, 02139, USA
| | - Thomas R Pisanic
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Michael Paulaitis
- Center for Nanomedicine at Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
- Department of Oncology, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD, 21287, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
13
|
Nix C, Sulejman S, Fillet M. Development of complementary analytical methods to characterize extracellular vesicles. Anal Chim Acta 2024; 1329:343171. [PMID: 39396273 DOI: 10.1016/j.aca.2024.343171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use. RESULTS We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants. SIGNIFICANCE This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted.
Collapse
Affiliation(s)
- Cindy Nix
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium
| | - Sanije Sulejman
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium.
| |
Collapse
|
14
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application. Vaccines (Basel) 2024; 12:1282. [PMID: 39591185 PMCID: PMC11599128 DOI: 10.3390/vaccines12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
15
|
Muhandiram S, Kodithuwakku S, Godakumara K, Fazeli A. Rapid increase of MFGE8 secretion from endometrial epithelial cells is an indicator of extracellular vesicle mediated embryo maternal dialogue. Sci Rep 2024; 14:25911. [PMID: 39472639 PMCID: PMC11522515 DOI: 10.1038/s41598-024-75893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Successful embryo implantation relies on synchronized dialog between the embryo and endometrium, and the role of extracellular vesicles (EVs) in facilitating this cross-talk has been recently established. In our previous study, milk fat globule-EGF factor 8 protein (MFGE8) was identified as increasing in receptive endometrial epithelial cells (EECs) in response to trophoblastic EVs. However, the dynamics of MFGE8 protein in this context are not completely understood. Therefore, we examined its expression and secretion in EECs exposed to estrogen, progesterone, and trophoblastic EVs to gain deeper insights into its potential as an indicator of EV-mediated embryo-maternal dialogue. Our findings revealed that MFGE8 secretion is sensitive to estrogen and progesterone, and that trophoblastic EVs stimulate their release in both receptive and non-receptive EECs. Furthermore, trophoblast EV function was dose and time-dependent. Notably, the secretion of MFGE8 increased within a short timeframe of 30 min after addition of EVs, suggesting the possibility of rapid processes such as binding, fusion or internalization of trophoblastic EVs within EECs. Interestingly, MFGE8 released from EECs was associated with EVs, suggesting increased EV secretion from EECs in response to embryonic signals. In conclusion, increased MFGE8 secretion in this embryo implantation model can serve as an indicator of EV-mediated embryo-maternal dialogue.
Collapse
Affiliation(s)
- Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, Tartu, 50411, Estonia.
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
16
|
Yi S, Kim J, Kim MJ, Yae CG, Kim KH, Kim HK. Development of human amniotic epithelial cell-derived extracellular vesicles as cell-free therapy for dry eye disease. Ocul Surf 2024; 34:370-380. [PMID: 39332677 DOI: 10.1016/j.jtos.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE This study aimed to investigate the therapeutic potential of extracellular vesicles (EVs) derived from human amniotic epithelial cells (hAEC-EVs) for Dry Eye Disease (DED) treatment. METHODS Highly purified EVs were isolated from the culture supernatants of hAECs, which obtained from term placenta and characterized. Proteomic contents were analyzed for assessing its biological function related to the therapeutic potentials for DED. Subsequently, we examined the therapeutic efficacy of hAEC-EVs on human corneal epithelial cells exposed to hyperosmotic stress and in an experimental DED mouse model induced by desiccation stress. RESULTS Proteomic analysis of hAEC-EVs revealed proteins linked to cell proliferation and anti-inflammatory responses. We demonstrated efficient uptake of hAEC-EVs by ocular surface cells. Under DED conditions, EV treatment increased corneal epithelial cell proliferation and migration, and concurrently reducing inflammatory cytokines. In the DED mouse model, hAEC-EVs showed significant improvements in corneal staining score, tear secretion, corneal irregularity, and conjunctival goblet cell density. Additionally, hAEC-EVs exhibited a mitigating effect on ocular surface inflammation induced by desiccation. CONCLUSIONS These findings suggest that hAEC-EVs hold potential as a cell-free therapy for corneal epithelial defects and ocular surface diseases, presenting a promising treatment option for DED.
Collapse
Affiliation(s)
- Soojin Yi
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea; Department of Biomedical Science, The Graduate School, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea
| | - Mi Ju Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Che Gyem Yae
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Ubanako P, Mirza S, Ruff P, Penny C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges. Front Mol Biosci 2024; 11:1447953. [PMID: 39355533 PMCID: PMC11442288 DOI: 10.3389/fmolb.2024.1447953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
The discovery of novel and innovative therapeutic strategies for cancer treatment and management remains a major global challenge. Exosomes are endogenous nanoscale extracellular vesicles that have garnered increasing attention as innovative vehicles for advanced drug delivery and targeted therapy. The attractive physicochemical and biological properties of exosomes, including increased permeability, biocompatibility, extended half-life in circulation, reduced toxicity and immunogenicity, and multiple functionalization strategies, have made them preferred drug delivery vehicles in cancer and other diseases. Small interfering RNAs (siRNAs) are remarkably able to target any known gene: an attribute harnessed to knock down cancer-associated genes as a viable strategy in cancer management. Extensive research on exosome-mediated delivery of siRNAs for targeting diverse types of cancer has yielded promising results for anticancer therapy, with some formulations progressing through clinical trials. This review catalogs recent advances in exosome-mediated siRNA delivery in several types of cancer, including the manifold benefits and minimal drawbacks of such innovative delivery systems. Additionally, we have highlighted the potential of plant-derived exosomes as innovative drug delivery systems for cancer treatment, offering numerous advantages such as biocompatibility, scalability, and reduced toxicity compared to traditional methods. These exosomes, with their unique characteristics and potential for effective siRNA delivery, represent a significant advancement in nanomedicine and cancer therapeutics. Further exploration of their manufacturing processes and biological mechanisms could significantly advance natural medicine and enhance the efficacy of exosome-based therapies.
Collapse
Affiliation(s)
- Philemon Ubanako
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Hatano E, Akhter N, Anada R, Ono M, Oohashi T, Kuboki T, Kamioka H, Okada M, Matsumoto T, Hara ES. The cell membrane as biofunctional material for accelerated bone repair. Acta Biomater 2024; 186:411-423. [PMID: 39089349 DOI: 10.1016/j.actbio.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The cell (plasma) membrane is enriched with numerous receptors, ligands, enzymes, and phospholipids that play important roles in cell-cell and cell-extracellular matrix interactions governing, for instance, tissue development and repair. We previously showed that plasma membrane nanofragments (PMNFs) act as nucleation sites for bone formation in vivo, and induce in vitro mineralization within 1 day. In this study, we optimized the methods for generating, isolating, and applying PMNFs as a cell-free therapeutic to expedite bone defect repair. The PMNFs were isolated from different mouse cell lines (chondrocytes, osteoblasts, and fibroblasts), pre-conditioned, lyophilized, and subsequently transplanted into 2 mm critical-sized calvarial defects in mice (n = 75). The PMNFs from chondrocytes, following a 3-day pre-incubation, significantly accelerated bone repair within 2 weeks, through a coordinated attraction of macrophages, endothelial cells, and osteoblasts to the healing site. In vitro experiments confirmed that PMNFs enhanced cell adhesion. Comparison of the PMNF efficacy with phosphatidylserine, amorphous calcium phosphate (ACP), and living cells confirmed the unique ability of PMNFs to promote accelerated bone repair. Importantly, PMNFs promoted nearly complete integration of the regenerated bone with native tissue after 6 weeks (% non-integrated bone area = 15.02), contrasting with the partial integration (% non-integrated bone area = 56.10; p < 0.01, Student's test) with transplantation of ACP. Vickers microhardness tests demonstrated that the regenerated bone after 6 weeks (30.10 ± 1.75) exhibited hardness similar to native bone (31.07 ± 2.46). In conclusion, this is the first study to demonstrate that cell membrane can be a promising cell-free material with multifaceted biofunctional properties that promote accelerated bone repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Emi Hatano
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahid Akhter
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Risa Anada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
19
|
Farahzadi R, Fathi E, Vandghanooni S, Valipour B. Hydrogel encapsulation of mesenchymal stem cells-derived extracellular vesicles as a novel therapeutic approach in cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189177. [PMID: 39218403 DOI: 10.1016/j.bbcan.2024.189177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cell therapy has emerged as one of the most promising approaches to treating disease in recent decades. The application of stem cells in anti-tumor therapy is determined by their varying capacity for proliferation, migration, and differentiation. These capacities are derived from different sources. The use of stem cell carriers in cancer treatment is justified by the following three reasons: (I) shield therapeutic agents from swift biological deterioration; (II) reduce systemic side effects; and (III) increase local therapeutic levels since stem cells have an innate ability to target tumors. The quantity of stem cells confined to the tumor microenvironment determines this system's anti-tumor activity. Nevertheless, there are limitations to the use of different types of stem cells. When immune cells are used in cell therapy, it may lead to cytokine storms and improper reactions to self-antigens. Furthermore, the use of stem cells may result in cancer. Additionally, after an intravenous injection, cells could not migrate to the injury location. Exosomes derived from different cells were thus proposed as possible therapeutic options. Exosomes are becoming more and more well-liked because of their small size, biocompatibility, and simplicity in storage and separation. A number of investigations have shown that adding various medications and microRNAs to exosomes may enhance their therapeutic effectiveness. Thus, it is essential to evaluate studies looking into the therapeutic effectiveness of encapsulated exosomes. In this review, we looked at studies on encapsulated exosomes' use in regenerative medicine and the treatment of cancer. The results imply that the therapeutic potential increases when encapsulated exosomes are used rather than intact exosomes. Therefore, in order to optimize the effectiveness of the treatment, it is advised to implement this technique in accordance with the kind of therapy.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
20
|
Idowu M, Taiwo G, Sidney T, Adewoye A, Ogunade IM. Plasma proteomic analysis reveals key pathways associated with divergent residual body weight gain phenotype in beef steers. Front Vet Sci 2024; 11:1415594. [PMID: 39104547 PMCID: PMC11298483 DOI: 10.3389/fvets.2024.1415594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
We utilized plasma proteomics profiling to explore metabolic pathways and key proteins associated with divergent residual body weight gain (RADG) phenotype in crossbred (Angus × Hereford) beef steers. A group of 108 crossbred growing beef steers (average BW = 282.87 ± 30 kg; age = 253 ± 28 days) were fed a high-forage total mixed ration for 49 days in five dry lot pens (20-22 beef steers per pen), each equipped with two GrowSafe8000 intake nodes to determine their RADG phenotype. After RADG identification, blood samples were collected from the beef steers with the highest RADG (most efficient; n = 15; 0.76 kg/d) and lowest RADG (least efficient; n = 15; -0.65 kg/d). Plasma proteomics analysis was conducted on all plasma samples using a nano LC-MS/MS platform. Proteins with FC ≥ 1.2 and false-discovery rate-adjusted p-values (FDR) ≤ 0.05 were considered significantly differentially abundant. The analysis identified 435 proteins, with 59 differentially abundant proteins (DAPs) between positive and negative-RADG beef steers. Plasma abundance of 38 proteins, such as macrophage stimulating 1 and peptidase D was upregulated (FC ≥ 1.2, FDR ≤ 0.05) in positive-RADG beef steers, while 21 proteins, including fibronectin and ALB protein were greater (FC < 1.2, FDR ≤ 0.05) in negative-RADG beef steers. The results of the Gene Ontology (GO) analysis of all the DAPs showed enrichment of pathways such as metabolic processes, biological regulation, and catalytic activity in positive-RADG beef steers. Results of the EuKaryotic Orthologous Groups (KOG) analysis revealed increased abundance of DAPs involved in energy production and conversion, amino acid transport and metabolism, and lipid transport and metabolism in positive-RADG beef steers. The results of this study revealed key metabolic pathways and proteins associated with divergent RADG phenotype in beef cattle which give more insight into the biological basis of feed efficiency in crossbred beef cattle.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Anjola Adewoye
- Department of Chemistry, West Virginia University, Morgantown, WV, United States
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
21
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Zanirati G, dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Paula Gabrielli dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA;
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| |
Collapse
|
23
|
Li X, Zhang C, Yue W, Jiang Y. Modulatory effects of cancer stem cell-derived extracellular vesicles on the tumor immune microenvironment. Front Immunol 2024; 15:1362120. [PMID: 38962016 PMCID: PMC11219812 DOI: 10.3389/fimmu.2024.1362120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei, China
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
25
|
Papakonstantinou E, Dragoumani K, Mitsis T, Chrousos GP, Vlachakis D. Milk exosomes and a new way of communication between mother and child. EMBNET.JOURNAL 2024; 29:e1050. [PMID: 38845751 PMCID: PMC11155261 DOI: 10.14806/ej.29.0.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Extracellular vesicles are a heterogeneous group of lipid-bound vesicles released by cells into the extracellular space. EVs are an important mediator of intercellular communications and carry a wide variety of molecules that exert a biological function, such as lipids, nucleic acids, proteins, ions, and adenosine triphosphate (ATP). Extracellular vesicles are classified into microvesicles, exosomes, and apoptotic bodies depending on their biogenesis and size. Exosomes are spherical lipid-bilayer vesicles with a diameter of about 40 to 100 nm. Exosomes originate from intracellular endosomal compartments, while microvesicles originated directly from a cell's plasma membrane and apoptotic bodies originate from cells undergoing apoptosis and are released via outward blebbing and fragmentation of the plasma membrane. Specifically, exosomes have garnered great attention since they display great potential as both biomarkers and carriers of therapeutic molecules.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- School of Informatics, Faculty of Natural & Mathematical Sciences, King's College London, London, U.K
| |
Collapse
|
26
|
Cao H, Li W, Zhang H, Hong L, Feng X, Gao X, Li H, Lv N, Liu M. Bio-nanoparticles loaded with synovial-derived exosomes ameliorate osteoarthritis progression by modifying the oxidative microenvironment. J Nanobiotechnology 2024; 22:271. [PMID: 38769545 PMCID: PMC11103857 DOI: 10.1186/s12951-024-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND AIMS Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1β group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1β group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.
Collapse
Affiliation(s)
- Haifei Cao
- Department of Orthopaedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Wanxin Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Hao Zhang
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Xiaoxiao Feng
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China
| | - Nanning Lv
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China.
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China.
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People's Hospital of Lianyungang, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China.
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, 222003, China.
| |
Collapse
|
27
|
Sanchez-Manas JM, Perez de Gracia N, Perales S, Martinez-Galan J, Torres C, Real PJ. Potential clinical applications of extracellular vesicles in pancreatic cancer: exploring untapped opportunities from biomarkers to novel therapeutic approaches. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:180-200. [PMID: 39698536 PMCID: PMC11648502 DOI: 10.20517/evcna.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 12/20/2024]
Abstract
Pancreatic cancer is a highly lethal and metastatic malignancy, mainly because it often remains undetected until advanced stages due to the limitations of current diagnostic methods, rendering currently available therapies ineffective. Therefore, it is imperative to identify useful biomarkers for early diagnosis and new therapeutic targets for pancreatic cancer. Recently, extracellular vesicles have emerged as promising biomarkers for the diagnosis and prognosis of pancreatic cancer. Given their presence in various bodily fluids, extracellular vesicles offer a non-invasive approach through liquid biopsy to detect and monitor cancer progression. In this review, we comprehensively examine the multifaceted roles of extracellular vesicles in the progression of cancer, while also exploring their potential as diagnostic, prognostic, and therapeutic biomarkers in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Jose Manuel Sanchez-Manas
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Authors contributed equally
| | - Natalia Perez de Gracia
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Authors contributed equally
| | - Sonia Perales
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
| | - Joaquina Martinez-Galan
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
- Department of Medical Oncology, Virgen de las Nieves University Hospital, Granada 18014, Spain
| | - Carolina Torres
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada 18016, Spain
| | - Pedro J. Real
- Gene Regulation, Stem Cells & Development lab, GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS, Granada 18016, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18012, Spain
| |
Collapse
|
28
|
Arrè V, Mastrogiacomo R, Balestra F, Serino G, Viti F, Rizzi F, Curri ML, Giannelli G, Depalo N, Scavo MP. Unveiling the Potential of Extracellular Vesicles as Biomarkers and Therapeutic Nanotools for Gastrointestinal Diseases. Pharmaceutics 2024; 16:567. [PMID: 38675228 PMCID: PMC11055174 DOI: 10.3390/pharmaceutics16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs), acting as inherent nanocarriers adept at transporting a range of different biological molecules such as proteins, lipids, and genetic material, exhibit diverse functions within the gastroenteric tract. In states of normal health, they participate in the upkeep of systemic and organ homeostasis. Conversely, in pathological conditions, they significantly contribute to the pathogenesis of gastrointestinal diseases (GIDs). Isolating EVs from patients' biofluids facilitates the discovery of new biomarkers that have the potential to offer a rapid, cost-effective, and non-invasive method for diagnosing and prognosing specific GIDs. Furthermore, EVs demonstrate considerable therapeutic potential as naturally targeted physiological carriers for the intercellular delivery of therapeutic cargo molecules or as nanoscale tools engineered specifically to regulate physio-pathological conditions or disease progression. Their attributes including safety, high permeability, stability, biocompatibility, low immunogenicity, and homing/tropism capabilities contribute to their promising clinical therapeutic applications. This review will delve into various examples of EVs serving as biomarkers or nanocarriers for therapeutic cargo in the context of GIDs, highlighting their clinical potential for both functional and structural gastrointestinal conditions. The versatile and advantageous properties of EVs position them as promising candidates for innovative therapeutic strategies in advancing personalized medicine approaches tailored to the gastroenteric tract, addressing both functional and structural GIDs.
Collapse
Affiliation(s)
- Valentina Arrè
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Federica Viti
- Institute of Biophysics—National Research Council (IBF-CNR), Via De Marini 6, 16149 Genova, Italy;
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| |
Collapse
|
29
|
Chen YQ, Zhou YQ, Wei Q, Xie XY, Liu XZ, Li DW, Shen ZA. [Effects of gelatin methacrylate anhydride hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells in the treatment of full-thickness skin defect wounds in mice]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:323-332. [PMID: 38664026 DOI: 10.3760/cma.j.cn501225-20231218-00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Objective: To investigate the effects of gelatin methacrylate anhydride (GelMA) hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUCMSCs-sEVs) in the treatment of full-thickness skin defect wounds in mice. Methods: This study was an experimental study. hUCMSCs-sEVs were extracted by ultracentrifugation, their morphology was observed through transmission electron microscope, and the expression of CD9, CD63, tumor susceptibility gene 101 (TSG101), and calnexin was detected by Western blotting. The human umbilical vein endothelial cells (HUVECs), the 3rd and 4th passages of human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs) were all divided into blank control group (routinely cultured) and hUCMSC-sEV group (cultured with the cell supernatant containing hUCMSCs-sEVs). The cell scratch test was performed and the cell migration rates at 6, 12, and 24 h after scratching were calculated, the cell Transwell assay was performed and the number of migration cells at 12 h after culture was calculated, and the proportion of proliferating cells was detected by 5-acetylidene-2'-deoxyuridine and Hoechst staining at 24 h after culture, with sample numbers being all 3. The simple GelMA hydrogel and the GelMA hydrogel loaded with hUCMSCs-sEVs (hereinafter referred to as hUCMSC-sEV/GelMA hydrogel) were prepared. Then the micromorphology of 2 kinds of hydrogels was observed under scanning electron microscope, the distribution of hUCMSCs-sEVs was observed by laser scanning confocal microscope, and the cumulative release rates of hUCMSCs-sEVs at 0 (immediately), 2, 4, 6, 8, 10, and 12 d after soaking hUCMSC-sEV/GelMA hydrogel in phosphate buffer solution (PBS) were measured and calculated by protein colorimetric quantification (n=3). Twenty-four 6-week-old male C57BL/6J mice were divided into PBS group, hUCMSC-sEV alone group, GelMA hydrogel alone group, and hUCMSC-sEV/GelMA hydrogel group according to the random number table, with 6 mice in each group, and after the full-thickness skin defect wounds on the back of mice in each group were produced, the wounds were performed with PBS injection, hUCMSC-sEV suspenson injection, simple GelMA coverage, and hUCMSC-sEV/GelMA hydrogel coverage, respectively. Wound healing was observed on post injury day (PID) 0 (immediately), 4, 8, and 12, and the wound healing rates on PID 4, 8, and 12 were calculated, and the wound tissue was collected on PID 12 for hematoxylin-eosin staining to observe the structure of new tissue, with sample numbers being both 6. Results: The extracted hUCMSCs-sEVs showed a cup-shaped structure and expressed CD9, CD63, and TSG101, but barely expressed calnexin. At 6, 12, and 24 h after scratching, the migration rates of HEKs (with t values of 25.94, 20.98, and 20.04, respectively), HDFs (with t values of 3.18, 5.68, and 4.28, respectively), and HUVECs (with t values of 4.32, 19.33, and 4.00, respectively) in hUCMSC-sEV group were significantly higher than those in blank control group (P<0.05). At 12 h after culture, the numbers of migrated HEKs, HDFs, and HUVECs in hUCMSC-sEV group were 550±23, 235±9, and 856±35, respectively, which were significantly higher than 188±14, 97±6, and 370±32 in blank control group (with t values of 22.95, 23.13, and 17.84, respectively, P<0.05). At 24 h after culture, the proportions of proliferating cells of HEKs, HDFs, and HUVECs in hUCMSC-sEV group were significantly higher than those in blank control group (with t values of 22.00, 13.82, and 32.32, respectively, P<0.05). The inside of simple GelMA hydrogel showed a loose and porous sponge-like structure, and hUCMSCs-sEVs was not observed in it. The hUCMSC-sEV/GelMA hydrogel had the same sponge-like structure, and hUCMSCs-sEVs were uniformly distributed in clumps. The cumulative release rate curve of hUCMSCs-sEVs from hUCMSC-sEV/GelMA hydrogel tended to plateau at 2 d after soaking, and the cumulative release rate of hUCMSCs-sEVs was (59.2±1.8)% at 12 d after soaking. From PID 0 to 12, the wound areas of mice in the 4 groups gradually decreased. On PID 4, 8, and 12, the wound healing rates of mice in hUCMSC-sEV/GelMA hydrogel group were significantly higher than those in the other 3 groups (P<0.05); the wound healing rates of mice in GelMA hydrogel alone group and hUCMSC-sEV alone group were significantly higher than those in PBS group (P<0.05). On PID 8 and 12, the wound healing rates of mice in hUCMSC-sEV alone group were significantly higher than those in GelMA hydrogel alone group (P<0.05). On PID 12, the wounds of mice in hUCMSC-sEV/GelMA hydrogel group showed the best wound epithelization, loose and orderly arrangement of dermal collagen, and the least number of inflammatory cells, while the dense arrangement of dermal collagen and varying degrees of inflammatory cell infiltration were observed in the wounds of mice in the other 3 groups. Conclusions: hUCMSCs-sEVs can promote the migration and proliferation of HEKs, HDFs, and HUVECs which are related to skin wound healing, and slowly release in GelMA hydrogel. The hUCMSC-sEV/GelMA hydrogel as a wound dressing can significantly improve the healing speed of full-thickness skin defect wounds in mice.
Collapse
Affiliation(s)
- Y Q Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Y Q Zhou
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Q Wei
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - X Y Xie
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - X Z Liu
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - D W Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Z A Shen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| |
Collapse
|
30
|
Erana-Perez Z, Igartua M, Santos-Vizcaino E, Hernandez RM. Genetically engineered loaded extracellular vesicles for drug delivery. Trends Pharmacol Sci 2024; 45:350-365. [PMID: 38508958 DOI: 10.1016/j.tips.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The use of extracellular vesicles (EVs) for drug delivery is being widely explored by scientists from several research fields. To fully exploit their therapeutic potential, multiple methods for loading EVs have been developed. Although exogenous methods have been extensively utilized, in recent years the endogenous method has gained significant attention. This approach, based on parental cell genetic engineering, is suitable for loading large therapeutic biomolecules such as proteins and nucleic acids. We review the most commonly used EV loading methods and emphasize the inherent advantages of the endogenous method over the others. We also examine the most recent advances and applications of this innovative approach to inform on the diverse therapeutic opportunities that lie ahead in the field of EV-based therapies.
Collapse
Affiliation(s)
- Zuriñe Erana-Perez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
31
|
Chen Y, Zhang H. [Research progress in targeted delivery of inner ear using nanocarriers]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:348-353. [PMID: 38563182 PMCID: PMC11387296 DOI: 10.13201/j.issn.2096-7993.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/04/2024]
Abstract
Various inner ear diseases such as sensorineural deafness and Meniere's disease bring about problems such as speech communication disorders and decreased work efficiency, which seriously affect the life quality of patients. Due to the special anatomical structure and blood-labyrinth barrier in the inner ear, the current drug administration methods are often unable to achieve satisfactory results. Nanocarriers are the forefront and hot spot of nanotechnology research. In recent years, a lot of research progress has been made in the field of targeted delivery of the inner ear, which is expected to be eventually applied to the treatment of clinical diseases of the inner ear. This review focuses on the advantages, main research achievements and limitations of various nanocarriers in the targeted delivery of the inner ear, hoping to provide new ideas for related research.
Collapse
Affiliation(s)
- Yaoheng Chen
- Department of Otolaryngology Head and Neck Surgery,Affiliated Zhujiang Hospital of Southern Medical University;Department of Southern Medical University Hearing Research Center,Guangzhou,510220,China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery,Affiliated Zhujiang Hospital of Southern Medical University;Department of Southern Medical University Hearing Research Center,Guangzhou,510220,China
| |
Collapse
|
32
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
33
|
Li E, Xu J, Liu N, Xiong Q, Zhang W, Gong Y, Zhang L, He Y, Ge H, Xiao X. Application Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells in Renal Diseases. Stem Cells 2024; 42:216-229. [PMID: 38035715 DOI: 10.1093/stmcls/sxad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
The high prevalence and complex etiology of renal diseases already impose a heavy disease burden on patients and society. In certain kidney diseases such as acute kidney injury and chronic kidney disease, current treatments are limited to slowing rather than stabilizing or reversing disease progression. Therefore, it is crucial to study the pathological mechanisms of kidney disease and discover new therapeutic targets and effective therapeutic drugs. As cell-free therapeutic strategies are continually being developed, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have emerged as a hot topic for research in the field of renal diseases. Studies have demonstrated that MSC-EVs not only reproduce the therapeutic effects of MSCs but also localize to damaged kidney tissue. Compared to MSCs, MSC-EVs have several advantages, including ease of preservation, low immunogenicity, an inability to directly form tumors, and ease of artificial modification. Exploring the detailed mechanisms of MSC-EVs by developing standardized culture, isolation, purification, and drug delivery strategies will help facilitate their clinical application in kidney diseases. Here, we provide a comprehensive overview of studies about MSC-EVs in kidney diseases and discuss their limitations at the human nephrology level.
Collapse
Affiliation(s)
- Enhui Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jia Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ning Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qi Xiong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weiwei Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yizi Gong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yikai He
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
34
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
36
|
Li Y, Qian Y, Wang N, Qiu D, Cao H, Wang Y, Luo H, Shen X, Cui H, Wang J, Zhu H. The functions and applications of extracellular vesicles derived from Mycobacterium tuberculosis. Biomed Pharmacother 2023; 168:115767. [PMID: 37865994 DOI: 10.1016/j.biopha.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) originating from bacteria function critical roles in bacterial biologic physiology and host-pathogen interactions. Mycobacterium tuberculosis (M. tuberculosis) produces EVs both in vitro and in vivo, with membrane-bound nanoparticles facilitating the transmission of biological molecules including lipids, proteins, nucleic acids and glycolipids, while interacting remotely with the host. Although studies of EVs in mycobacterial infections is still in its infancy, it has already revealed an entirely new aspect of M. tuberculosis-host interactions that may have implications for tuberculosis (TB) pathogenesis. In this review, we discuss the significant functions of M. tuberculosis EVs in elucidating the mechanisms underlying vesicle biogenesis and modulating cellular immune responses, as well as the recent advances and challenges in the development of novel preventive and therapeutic or diagnostic strategies against TB.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Yingfen Qian
- Department of Clinical Laboratory, The Fourth People's Hospital of Kunshan, Suzhou, Jiangsu 215300, PR China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child health hospital Maternal and Child heath hospital of Nanchang college, Nanchang 215300, PR China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Yihua Wang
- Department of Clinical Laboratory, Kunshan Jinxi People's Hospital, Suzhou 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, Kunshan Second People's Hospital, Suzhou 215300, PR China
| | - Xiaodong Shen
- Penglang Community Health Service Center of Kunshan Economic and Technological Development Zone, Suzhou 215300, PR China
| | - Hanwei Cui
- Department of Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, PR China.
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China.
| | - Hong Zhu
- Department of Clinical Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China.
| |
Collapse
|
37
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
38
|
Fyfe J, Dye D, Razak NBA, Metharom P, Falasca M. Immune evasion on the nanoscale: Small extracellular vesicles in pancreatic ductal adenocarcinoma immunity. Semin Cancer Biol 2023; 96:36-47. [PMID: 37748738 DOI: 10.1016/j.semcancer.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer alarmingly expanding in our modern societies that is still proving to be very challenging to counteract. This disease constitutes a quintessential example of the multiple interactions existing between the tumour and its surrounding microenvironment. In particular, PDAC is characterized by a very immunosuppressive environment that favours cancer growth and makes this cancer type very resistant to immunotherapy. The primary tumour releases many factors that influence both the microenvironment and the immune landscape. Extracellular vesicles (EVs), recently identified as indispensable entities ensuring cell-to-cell communication in both physiological and pathological processes, seem to play a pivotal function in ensuring the delivery of these factors to the tumour-surrounding tissues. In this review, we summarize the present understanding on the crosstalk among tumour cells and the cellular immune microenvironment emphasizing the pro-malignant role played by extracellular vesicles. We also discuss how a greater knowledge of the roles of EVs in tumour immune escape could be translated into clinical applications.
Collapse
Affiliation(s)
- Jordan Fyfe
- Metabolic Signalling Group, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Danielle Dye
- Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
39
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
40
|
Ouyang X, Jia N, Luo J, Li L, Xue J, Bu H, Xie G, Wan Y. DNA Nanoribbon-Assisted Intracellular Biosynthesis of Fluorescent Gold Nanoclusters for Cancer Cell Imaging. JACS AU 2023; 3:2566-2577. [PMID: 37772173 PMCID: PMC10523492 DOI: 10.1021/jacsau.3c00365] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023]
Abstract
Metal nanoclusters (NCs) have emerged as a promising class of fluorescent probes for cellular imaging due to their high resistance to photobleaching and low toxicity. Nevertheless, their widespread use in clinical diagnosis is limited by their unstable intracellular fluorescence. In this study, we develop an intracellularly biosynthesized fluorescent probe, DNA nanoribbon-gold NCs (DNR/AuNCs), for long-term cellular tracking. Our results show that DNR/AuNCs exhibit a 4-fold enhancement of intracellular fluorescence intensity compared to free AuNCs. We also investigated the mechanism underlying the fluorescence enhancement of AuNCs by DNRs. Our findings suggest that the higher synthesis efficiency and stability of AuNCs in the lysosome may contribute to their fluorescence enhancement, which enables long-term (up to 15 days) fluorescence imaging of cancer cells (enhancement of ∼60 times compared to free AuNCs). Furthermore, we observe similar results with other metal NCs, confirming the generality of the DNR-assisted biosynthesis approach for preparing highly bright and stable fluorescent metal NCs for cancer cell imaging.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Nan Jia
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Jing Luo
- Key
Laboratory of Resource Biology and Biotechnology in Western China
(Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, PR China
| | - Le Li
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Jiangshan Xue
- Key
Laboratory of Resource Biology and Biotechnology in Western China
(Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, PR China
| | - Huaiyu Bu
- Key
Laboratory of Resource Biology and Biotechnology in Western China
(Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, PR China
| | - Gang Xie
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Ying Wan
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| |
Collapse
|
41
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
42
|
Qian W, Xu Y, Wen W, Huang L, Guo Z, Zhu W, Li Y. Exosomal miR-103a-3p from Crohn's Creeping Fat-Derived Adipose-Derived Stem Cells Contributes to Intestinal Fibrosis by Targeting TGFBR3 and Activating Fibroblasts. J Crohns Colitis 2023; 17:1291-1308. [PMID: 36897738 DOI: 10.1093/ecco-jcc/jjad042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mesenteric adipose tissue hypertrophy is a hallmark of Crohn's disease [CD], and creeping fat [CF] is unique to CD. Adipose-derived stem cells [ASCs] from inflammatory tissue exhibited altered biological functions. The role of ASCs isolated from CF in intestinal fibrosis and the potential mechanism remain unclear. METHODS ASCs were isolated from CF [CF-ASCs] and disease-unaffected mesenteric adipose tissue [Ctrl-ASCs] of patients with CD. A series of in vitro and in vivo experiments were conducted to study the effects of exosomes from CF-ASCs [CF-Exos] on intestinal fibrosis and fibroblast activation. A micro-RNA microarray analysis was performed. Western blot, luciferase assay and immunofluorescence were performed to further detect the underlying mechanisms. RESULTS The results indicated that CF-Exos promoted intestinal fibrosis by activating fibroblasts in a dose-dependent manner. They continuously promoted progression of intestinal fibrosis even after dextran sulphate sodium withdrawal. Further analysis showed that exosomal miR-103a-3p was enriched in CF-Exos and participated in exosome-mediated fibroblast activation. TGFBR3 was identified as a target gene of miR-103a-3p. Mechanistically, CF-ASCs released exosomal miR-103a-3p and promoted fibroblast activation by targeting TGFBR3 and promoting Smad2/3 phosphorylation. We also found that the expression of miR-103a-3p in diseased intestine was positively associated with the degree of CF and fibrosis score. CONCLUSION Our findings show that exosomal miR-103a-3p from CF-ASCs promotes intestinal fibrosis by activating fibroblasts via TGFBR3 targeting, suggesting that CF-ASCs are potential therapeutic targets for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, No. 305 East Zhongshan Road, Nanjing, PR China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, PR China
| |
Collapse
|
43
|
Patel U, Susman D, Allan AL. Influence of Extracellular Vesicles on Lung Stromal Cells during Breast Cancer Metastasis. Int J Mol Sci 2023; 24:11801. [PMID: 37511559 PMCID: PMC10380344 DOI: 10.3390/ijms241411801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is a prominent cause of cancer diagnosis and death in women globally, with over 90% of deaths being attributed to complications that arise from metastasis. One of the common locations for breast cancer metastasis is the lung, which is associated with significant morbidity and mortality. Curative treatments for metastatic breast cancer patients are not available and the molecular mechanisms that underlie lung metastasis are not fully understood. In order to better treat these patients, identifying events that occur both prior to and during metastatic spread to the lung is essential. Several studies have demonstrated that breast cancer-derived extracellular vesicles secreted from the primary breast tumor play a key role in establishing the lung pre-metastatic niche to support colonization of metastatic tumor cells. In this review, we summarize recent work supporting the influence of extracellular vesicles on stromal components of the lung to construct the pre-metastatic niche and support metastasis. Furthermore, we discuss the potential clinical applications of utilizing extracellular vesicles for diagnosis and treatment. Together, this review highlights the dynamic nature of extracellular vesicles, their roles in breast cancer metastasis to the lung, and their value as potential biomarkers and therapeutics for cancer prevention.
Collapse
Affiliation(s)
- Urvi Patel
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada
| | - David Susman
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada
| | - Alison L Allan
- Departments of Anatomy & Cell Biology and Oncology, Western University, London, ON N6A 5W9, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
44
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
45
|
Chen J, Wang M, Zhang Y, Zhu F, Xu Y, Yi G, Zheng R, Wu B. Platelet extracellular vesicles: Darkness and light of autoimmune diseases. Int Rev Immunol 2023; 43:63-73. [PMID: 37350464 DOI: 10.1080/08830185.2023.2225551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune diseases are characterized by a breakdown of immune tolerance, leading to inflammation and irreversible end-organ tissue damage. Platelet extracellular vesicles are cellular elements that are important in blood circulation and actively participate in inflammatory and immune responses through intercellular communication and interactions between inflammatory cells, immune cells, and their secreted factors. Therefore, platelet extracellular vesicles are the "accelerator" in the pathological process of autoimmune diseases; however, this robust set of functions of platelet extracellular vesicles has also prompted new advances in therapeutic strategies for autoimmune diseases. In this review, we update fundamental mechanisms based on platelet extracellular vesicles communication function in autoimmune diseases. We also focus on the potential role of platelet extracellular vesicles for the treatment of autoimmune diseases. Some recent studies have found that antiplatelet aggregation drugs, specific biological agents can reduce the release of platelet extracellular vesicles. Platelet extracellular vesicles can also serve as vehicles to deliver drugs to targeted cells. It seems that we can try to silence or inhibit microRNA carried by platelet extracellular vesicles transcription and regulate the target cells to treat autoimmune diseases as platelet extracellular vesicles can transfer microRNA to other cells to regulate immune-inflammatory responses. Hopefully, the information presented here will provide hope for patients with autoimmune diseases.
Collapse
Affiliation(s)
- Jingru Chen
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Ying Zhang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Fenglin Zhu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Yanqiu Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Guoxiang Yi
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Runxiu Zheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
46
|
Neamati N, Al-e-Ahmad A, Yeganeh F, Asghari SM, Parsian H. Editorial: Extracellular vesicle-derived non-coding RNAs (EV-ncRNAs) and their multifaceted roles in cancer biology. Front Oncol 2023; 13:1185363. [PMID: 37333822 PMCID: PMC10272845 DOI: 10.3389/fonc.2023.1185363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Affiliation(s)
- Nahid Neamati
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Atiyeh Al-e-Ahmad
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Farshid Yeganeh
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S. Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Hadi Parsian
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
47
|
Giusti I, Poppa G, Di Fazio G, D'Ascenzo S, Dolo V. Metastatic Dissemination: Role of Tumor-Derived Extracellular Vesicles and Their Use as Clinical Biomarkers. Int J Mol Sci 2023; 24:ijms24119590. [PMID: 37298540 DOI: 10.3390/ijms24119590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a major cause of mortality in humans; often, rather than the primary tumor, it is the presence of metastases that are the cause of death. Extracellular vesicles (EVs) are small structures released by both normal and cancer cells; regarding the latter, they have been demonstrated to modulate almost all cancer-related processes, such as invasion, angiogenesis induction, drug resistance, and immune evasion. In the last years, it has become clear how EVs are widely involved in metastatic dissemination as well as in pre-metastatic niche (PMN) formation. Indeed, in order to achieve a successful metastatic process, i.e., penetration by cancer cells into distant tissues, the shaping of a favorable environment into those distant tissue, i.e., PMN formation, is mandatory. This process consists of an alteration that takes place in a distant organ and paves the way for the engraftment and growth of circulating tumor cells derived from the tumor primary site. This review focuses on the role of EVs in pre-metastatic niche formation and metastatic dissemination, also reporting the last studies suggesting the EVs role as biomarkers of metastatic diseases, possibly in a liquid biopsy approach.
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giuseppina Poppa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giulia Di Fazio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Sandra D'Ascenzo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
48
|
Mukherjee S, Diéguez C, Fernø J, López M. Obesity wars: hypothalamic sEVs a new hope. Trends Mol Med 2023:S1471-4914(23)00088-6. [PMID: 37210227 DOI: 10.1016/j.molmed.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
49
|
Jo H, Shim K, Jeoung D. Exosomes: Diagnostic and Therapeutic Implications in Cancer. Pharmaceutics 2023; 15:pharmaceutics15051465. [PMID: 37242707 DOI: 10.3390/pharmaceutics15051465] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
Collapse
Affiliation(s)
- Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
50
|
Shulman I, Ageeva T, Kostennikov A, Ogurcov S, Tazetdinova L, Kabdesh I, Rogozhin A, Ganiev I, Rizvanov A, Mukhamedshina Y. Intrathecal Injection of Autologous Mesenchymal Stem-Cell-Derived Extracellular Vesicles in Spinal Cord Injury: A Feasibility Study in Pigs. Int J Mol Sci 2023; 24:ijms24098240. [PMID: 37175946 PMCID: PMC10179045 DOI: 10.3390/ijms24098240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Spinal cord injury (SCI) remains one of the current medical and social problems, as it causes deep disability in patients. The use of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) is one strategy for stimulating the post-traumatic recovery of the structure and function of the spinal cord. Here, we chose an optimal method for obtaining cytochalasin B-induced EVs, including steps with active vortex mixing for 60 s and subsequent filtration to remove nuclei and disorganized inclusions. The therapeutic potential of repeated intrathecal injection of autologous MSC-derived EVs in the subacute period of pig contused SCI was also evaluated for the first time. In this study, we observed the partial restoration of locomotor activity by stimulating the remyelination of axons and timely reperfusion of nervous tissue.
Collapse
Affiliation(s)
- Ilya Shulman
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Tatyana Ageeva
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Leysan Tazetdinova
- Department of Morphology and General Pathology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilyas Kabdesh
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Rogozhin
- Department of Neurology, Kazan State Medical Academy-Branch Campus of the Federal State Budgetary Educational Institution of Father Professional Education, Russian Medical Academy of Continuous Professional Education, 420012 Kazan, Russia
| | - Ilnur Ganiev
- Scientific and Educational Center of Pharmacy, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|