1
|
Batiuk A, Höpfler M, Almeida AC, Teoh En-Jie D, Vadas O, Vartholomaiou E, Hegde RS, Lin Z, Gasic I. Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay. Nat Commun 2024; 15:9963. [PMID: 39551769 PMCID: PMC11570694 DOI: 10.1038/s41467-024-54036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation. Here, we investigate how cells regulate TTC5 activity. Biochemical and structural proteomic approaches reveal that under normal conditions, soluble αβ-tubulins bind to and sequester TTC5, preventing it from engaging nascent tubulins at translating ribosomes. We identify the flexible C-terminal tail of TTC5 as a molecular switch, toggling between soluble αβ-tubulin-bound and nascent tubulin-bound states. Loss of sequestration by soluble αβ-tubulins constitutively activates TTC5, leading to diminished tubulin mRNA levels and compromised microtubule-dependent chromosome segregation during cell division. Our findings provide a paradigm for how cells regulate the activity of a specificity factor to adapt posttranscriptional regulation of gene expression to cellular needs.
Collapse
Affiliation(s)
- Alina Batiuk
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Markus Höpfler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ana C Almeida
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Deryn Teoh En-Jie
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Oscar Vadas
- Proteins, Peptides and RNA to Protein Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Zhewang Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Ivana Gasic
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Pietsch N, Chen CY, Kupsch S, Bacmeister L, Geertz B, Herrera-Rivero M, Siebels B, Voß H, Krämer E, Braren I, Westermann D, Schlüter H, Mearini G, Schlossarek S, van der Velden J, Caporizzo MA, Lindner D, Prosser BL, Carrier L. Chronic Activation of Tubulin Tyrosination Improves Heart Function. Circ Res 2024; 135:910-932. [PMID: 39279670 PMCID: PMC11465905 DOI: 10.1161/circresaha.124.324387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that microtubule detyrosination (dTyr-MT) is markedly elevated in heart failure. Acute reduction of dTyr-MT by inhibition of the detyrosinase (VASH [vasohibin]/SVBP [small VASH-binding protein] complex) or activation of the tyrosinase (TTL [tubulin tyrosine ligase]) markedly improved contractility and reduced stiffness in human failing cardiomyocytes and thus posed a new perspective for HCM treatment. In this study, we tested the impact of chronic tubulin tyrosination in an HCM mouse model (Mybpc3 knock-in), in human HCM cardiomyocytes, and in SVBP-deficient human engineered heart tissues (EHTs). METHODS Adeno-associated virus serotype 9-mediated TTL transfer was applied in neonatal wild-type rodents, in 3-week-old knock-in mice, and in HCM human induced pluripotent stem cell-derived cardiomyocytes. RESULTS We show (1) TTL for 6 weeks dose dependently reduced dTyr-MT and improved contractility without affecting cytosolic calcium transients in wild-type cardiomyocytes; (2) TTL for 12 weeks reduced the abundance of dTyr-MT in the myocardium, improved diastolic filling, compliance, cardiac output, and stroke volume in knock-in mice; (3) TTL for 10 days normalized cell area in HCM human induced pluripotent stem cell-derived cardiomyocytes; (4) TTL overexpression activated transcription of tubulins and other cytoskeleton components but did not significantly impact the proteome in knock-in mice; (5) SVBP-deficient EHTs exhibited reduced dTyr-MT levels, higher force, and faster relaxation than TTL-deficient and wild-type EHTs. RNA sequencing and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-deficient versus TTL-deficient EHTs. CONCLUSIONS This study provides the first proof of concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the nonsarcomeric cytoskeleton in heart disease.
Collapse
Affiliation(s)
- Niels Pietsch
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Christina Y. Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
- Now with Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (C.Y.C.)
| | - Svenja Kupsch
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (S.K.)
| | - Lucas Bacmeister
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (M.H.-R.)
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster, Germany (M.H.-R.)
| | - Bente Siebels
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Krämer
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, Department of Experimental Pharmacology and Toxicology (I.B.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics (B.S., H.V., H.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Jolanda van der Velden
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands (J.v.d.V.)
| | - Matthew A. Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
- Now with Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT (M.A.C.)
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center (S.K., L.B., D.W., D.L.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Now with Faculty of Medicine, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Germany (L.B., D.W., D.L.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (C.Y.C., M.A.C., B.L.P.)
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology (N.P., B.G., E.K., G.M., S.S., L.C.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany (N.P., D.W., G.M., S.S., D.L., L.C.)
| |
Collapse
|
3
|
Frisk C, Ekström M, Eriksson MJ, Corbascio M, Hage C, Persson H, Linde C, Persson B. Characteristics of gene expression in epicardial adipose tissue and subcutaneous adipose tissue in patients at risk for heart failure undergoing coronary artery bypass grafting. BMC Genomics 2024; 25:938. [PMID: 39375631 PMCID: PMC11457432 DOI: 10.1186/s12864-024-10851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Epicardial adipose tissue (EAT) surrounds the heart and is hypothesised to play a role in the development of heart failure (HF). In this study, we first investigated the differences in gene expression between epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) in patients undergoing elective coronary artery bypass graft (CABG) surgery (n = 21; 95% male). Secondly, we examined the association between EAT and SAT in patients at risk for HF stage A (n = 12) and in pre-HF patients, who show signs but not symptoms of HF, stage B (n = 9). RESULTS The study confirmed a distinct separation between EAT and SAT. In EAT 17 clusters of genes were present, of which several novel gene modules are associated with characteristics of HF. Notably, seven gene modules showed significant correlation to measures of HF, such as end diastolic left ventricular posterior wall thickness, e'mean, deceleration time and BMI. One module was particularly distinct in EAT when compared to SAT, featuring key genes such as FLT4, SEMA3A, and PTX3, which are implicated in angiogenesis, inflammation regulation, and tissue repair, suggesting a unique role in EAT linked to left ventricular dysfunction. Genetic expression was compared in EAT across all pre-HF and normal phenotypes, revealing small genetic changes in the form of 18 differentially expressed genes in ACC/AHA Stage A vs. Stage B. CONCLUSIONS The roles of subcutaneous and epicardial fat are clearly different. We highlight the gene expression difference in search of potential modifiers of HF progress. The true implications of our findings should be corroborated in other studies since HF ACC/AHA stage B patients are common and carry a considerable risk for progression to symptomatic HF.
Collapse
Affiliation(s)
- Christoffer Frisk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden
| | - Mattias Ekström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | - Matthias Corbascio
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, S-171 76, Sweden
- Department of Thoracic Surgery, Karolinska University Hospital, Stockholm, S-171 76, Sweden
| | - Camilla Hage
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Hans Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, S-182 88, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, S-182 88, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, Stockholm, S-171 77, Sweden
- Karolinska University Hospital, Heart and Vascular Theme, Stockholm, S-171 76, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, S-751 24, Sweden.
| |
Collapse
|
4
|
Wu Q, Wang Y, Liu J, Guan X, Chang X, Liu Z, Liu R. Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies. Int J Biochem Cell Biol 2024; 175:106650. [PMID: 39237031 DOI: 10.1016/j.biocel.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Collapse
Affiliation(s)
- Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Liu W, Zhang Y, Nie Y, Liu Y, Li Z, Zhang Z, Gong B, Ma M. AGBL2 promotes renal cell carcinoma cells proliferation and migration via α-tubulin detyrosination. Heliyon 2024; 10:e37086. [PMID: 39315218 PMCID: PMC11417249 DOI: 10.1016/j.heliyon.2024.e37086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background AGBL2's role in tumorigenesis and cancer progression has been reported in several cancer studies, and it is closely associated with α-tubulin detyrosination. The roles of AGBL2 and α-tubulin detyrosination in renal cell carcinoma (RCC) pathogenesis remain unclear and require further investigation. Methods In this study, we conducted an analysis of AGBL2 expression differences between renal clear cell carcinoma tissues and normal tissues using data from The Cancer Genome Atlas (TCGA). We performed a comprehensive prognostic analysis of AGBL2 in Kidney Renal Clear Cell Carcinoma (KIRC) using univariate and multivariate Cox regression. Based on the results of the Cox analysis, we constructed a prognostic model to assess its predictive capabilities. Receiver Operating Characteristic (ROC) analysis confirmed the diagnostic value of AGBL2 in renal cancer. We conducted further validation by analyzing cancer tissue samples and renal cancer cell lines, which confirmed the role of AGBL2 in promoting RCC cell proliferation and migration through in vitro experiments. Additionally, we verified the impact of AGBL2's detyrosination on α-tubulin using the tubulin carboxypeptidase (TCP) inhibitor parthenolide. Finally, we performed sequencing analysis on AGBL2 knockdown 786-O cells to investigate the correlation between AGBL2, immune infiltration, and AKT phosphorylation. Moreover, we experimentally demonstrated the enhancing effect of AGBL2 on AKT phosphorylation. Results TCGA analysis revealed a significant increase in AGBL2 expression in RCC patients, which was correlated with poorer overall survival (OS), disease-specific survival (DSS), and progression-free intervals (PFI). According to the analysis results, we constructed column-line plots to predict the 1-, 3-, and 5-year survival outcomes in RCC patients. Additionally, the calibration plots assessing the model's performance exhibited favorable agreement with the predicted outcomes. And the ROC curves showed that AGBL2 showed good diagnostic performance in KIRC (AUC = 0.836)). Cell phenotyping assays revealed that AGBL2 knockdown in RCC cells significantly inhibited cell proliferation and migration. Conversely, overexpression of AGBL2 resulted in increased cell proliferation and migration in RCC cells. We observed that AGBL2 is predominantly located in the nucleus and can elevate the detyrosination level of α-tubulin in RCC cells. Moreover, the enhancement of RCC cell proliferation and migration by AGBL2 was partially inhibited after treatment with the TCP inhibitor parthenolide. Analysis of the sequencing data revealed that AGBL2 is associated with a diverse array of biological processes, encompassing signal transduction and immune infiltration. Interestingly, AGBL2 expression exhibited a negative correlation with the majority of immune cell infiltrations. Additionally, AGBL2 was found to enhance the phosphorylation of AKT in RCC cells. Conclusion Our study suggests that AGBL2 fosters RCC cell proliferation and migration by enhancing α-tubulin detyrosination. Moreover, elevated AGBL2 expression increases phosphorylation of AKT in RCC cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yifei Zhang
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yechen Nie
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yifu Liu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongqi Li
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhicheng Zhang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Binbin Gong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ming Ma
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
| |
Collapse
|
6
|
Pietsch N, Chen CY, Kupsch S, Bacmeister L, Geertz B, Herera-Rivero M, Voß H, Krämer E, Braren I, Westermann D, Schlüter H, Mearini G, Schlossarek S, van der Velden J, Caporizzo MA, Lindner D, Prosser BL, Carrier L. Chronic activation of tubulin tyrosination in HCM mice and human iPSC-engineered heart tissues improves heart function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542365. [PMID: 37292763 PMCID: PMC10245930 DOI: 10.1101/2023.05.25.542365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rationale: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular (LV) hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that -α-tubulin detyrosination (dTyr-tub) is markedly elevated in heart failure. Acute reduction of dTyr-tub by inhibition of the detyrosinase (VASH/SVBP complex) or activation of the tyrosinase (tubulin tyrosine ligase, TTL) markedly improved contractility and reduced stiffness in human failing cardiomyocytes, and thus poses a new perspective for HCM treatment. Objective: In this study, we tested the impact of chronic tubulin tyrosination in a HCM mouse model ( Mybpc3 -knock-in; KI), in human HCM cardiomyocytes and in SVBP-deficient human engineered heart tissues (EHTs). Methods and Results: AAV9-mediated TTL transfer was applied in neonatal wild-type (WT) rodents and 3-week-old KI mice and in HCM human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We show that i) TTL for 6 weeks dose-dependently reduced dTyr-tub and improved contractility without affecting cytosolic calcium transients in WT cardiomyocytes; ii) TTL for 12 weeks improved diastolic filling, cardiac output and stroke volume and reduced stiffness in KI mice; iii) TTL for 10 days normalized cell hypertrophy in HCM hiPSC-cardiomyocytes; iv) TTL induced a marked transcription and translation of several tubulins and modulated mRNA or protein levels of components of mitochondria, Z-disc, ribosome, intercalated disc, lysosome and cytoskeleton in KI mice; v) SVBP-deficient EHTs exhibited reduced dTyr-tub levels, higher force and faster relaxation than TTL-deficient and WT EHTs. RNA-seq and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-KO vs. TTL-KO EHTs. Conclusion: This study provides the first proof-of-concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the non-sarcomeric cytoskeleton in heart disease.
Collapse
|
7
|
Luti S, Militello R, Pinto G, Illiano A, Marzocchini R, Santi A, Becatti M, Amoresano A, Gamberi T, Pellegrino A, Modesti A, Modesti PA. Chronic lactate exposure promotes cardiomyocyte cytoskeleton remodelling. Heliyon 2024; 10:e24719. [PMID: 38312589 PMCID: PMC10835305 DOI: 10.1016/j.heliyon.2024.e24719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
We investigated the effect of growing on lactate instead of glucose in human cardiomyocyte assessing their viability, cell cycle activity, oxidative stress and metabolism by a proteomic and metabolomic approach. In previous studies performed on elite players, we found that adaptation to exercise is characterized by a chronic high plasma level of lactate. Lactate is considered not only an energy source but also a signalling molecule and is referred as "lactormone"; heart is one of the major recipients of exogenous lactate. With this in mind, we used a cardiac cell line AC16 to characterize the lactate metabolic profile and investigate the metabolic flexibility of the heart. Interestingly, our data indicated that cardiomyocytes grown on lactate (72 h) show change in several proteins and metabolites linked to cell hypertrophy and cytoskeleton remodelling. The obtained results could help to understand the effect of this metabolite on heart of high-performance athletes.
Collapse
Affiliation(s)
- Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Rosamaria Militello
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Riccardo Marzocchini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Alice Santi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Alessio Pellegrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Loescher CM, Freundt JK, Unger A, Hessel AL, Kühn M, Koser F, Linke WA. Titin governs myocardial passive stiffness with major support from microtubules and actin and the extracellular matrix. NATURE CARDIOVASCULAR RESEARCH 2023; 2:991-1002. [PMID: 39196092 PMCID: PMC11358001 DOI: 10.1038/s44161-023-00348-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/19/2023] [Indexed: 08/29/2024]
Abstract
Myocardial passive stiffness is crucial for the heart's pump function and is determined by mechanical elements, including the extracellular matrix and cytoskeletal filaments; however, their individual contributions are controversially discussed and difficult to quantify. In this study, we targeted the cytoskeletal filaments in a mouse model, which enables the specific, acute and complete cleavage of the sarcomeric titin springs. We show in vitro that each cytoskeletal filament's stiffness contribution varies depending on whether the elastic or the viscous forces are considered and on strain level. Titin governs myocardial elastic forces, with the largest contribution provided at both low and high strain. Viscous force contributions are more uniformly distributed among the microtubules, titin and actin. The extracellular matrix contributes at high strain. The remaining forces after total target element disruption are likely derived from desmin filaments. Our findings answer longstanding questions about cardiac mechanical architecture and allow better targeting of passive myocardial stiffness in heart failure.
Collapse
Affiliation(s)
| | - Johanna K Freundt
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Michel Kühn
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Franziska Koser
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| |
Collapse
|
9
|
Luciani M, Montalbano M, Troncone L, Bacchin C, Uchida K, Daniele G, Jacobs Wolf B, Butler HM, Kiel J, Berto S, Gensemer C, Moore K, Morningstar J, Diteepeng T, Albayram O, Abisambra JF, Norris RA, Di Salvo TG, Prosser B, Kayed R, del Monte F. Big tau aggregation disrupts microtubule tyrosination and causes myocardial diastolic dysfunction: from discovery to therapy. Eur Heart J 2023; 44:1560-1570. [PMID: 37122097 PMCID: PMC10324644 DOI: 10.1093/eurheartj/ehad205] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.
Collapse
Affiliation(s)
- Marco Luciani
- Center for Translational and Experimental Cardiology, University of Zurich, Rämistrasse 100 8091 Zurich, Switzerland
| | - Mauro Montalbano
- Department of Neurology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1045 USA
| | - Luca Troncone
- Cardiovascular Research Center, Mass General Research Institute, Mass General Brigham, 149 13th St., Boston, MA 02129, USA
| | - Camilla Bacchin
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
| | - Keita Uchida
- Department of Physiology, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | - Gianlorenzo Daniele
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St., Charleston, SC 2942, USA
| | - Helen M Butler
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
| | - Justin Kiel
- Department of Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience Medical, University of South Carolina, 68 President St., Charleston, SC 29425, USA
| | - Cortney Gensemer
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Kelsey Moore
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jordan Morningstar
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Thamonwan Diteepeng
- Center for Translational and Experimental Cardiology, University of Zurich, Rämistrasse 100 8091 Zurich, Switzerland
| | - Onder Albayram
- Department of Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC 29425, USA
| | - José F Abisambra
- Department of Neuroscience, University of Florida Health, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Russell A Norris
- Department of Medicine, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Thomas G Di Salvo
- Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Benjamin Prosser
- Department of Physiology, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | - Rakez Kayed
- Department of Neurology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1045 USA
| | - Federica del Monte
- Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 2942, USA
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, Bologna 40054, Italy
- Massachusetts General Hospital, Harvard Medical School, Mass General Brigham, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
10
|
Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic Res Cardiol 2022; 117:41. [PMID: 36006489 PMCID: PMC9899517 DOI: 10.1007/s00395-022-00952-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
The mechanical environment of the myocardium has a potent effect on cardiomyocyte form and function, yet an understanding of the cardiomyocyte responses to extracellular stiffening remains incomplete. We therefore employed a cell culture substrate with tunable stiffness to define the cardiomyocyte responses to clinically relevant stiffness increments in the absence of cell-cell interactions. When cultured on substrates magnetically actuated to mimic the stiffness of diseased myocardium, isolated rat adult cardiomyocytes exhibited a time-dependent reduction of sarcomere shortening, characterized by slowed contraction and relaxation velocity, and alterations of the calcium transient. Cardiomyocytes cultured on stiff substrates developed increases in viscoelasticity and microtubule detyrosination in association with early increases in the α-tubulin detyrosinating enzyme vasohibin-2 (Vash2). We found that knockdown of Vash2 was sufficient to preserve contractile performance as well as calcium transient properties in the presence of extracellular substrate stiffening. Orthogonal prevention of detyrosination by overexpression of tubulin tyrosine ligase (TTL) was also able to preserve contractility and calcium homeostasis. These data demonstrate that a pathologic increment of extracellular stiffness induces early, cell-autonomous remodeling of adult cardiomyocytes that is dependent on detyrosination of α-tubulin.
Collapse
|
11
|
Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat Rev Cardiol 2022; 19:364-378. [PMID: 35440741 PMCID: PMC9270871 DOI: 10.1038/s41569-022-00692-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|