1
|
Zhang T, Wu J, Wang Y, Zhang H, Zhan X. Alleviating neuronal inflammation induced by Aβ 42 in SH-SY5Y through interaction with polysialic acid-oligomannuronate conjugate. Int J Biol Macromol 2024; 276:133862. [PMID: 39013512 DOI: 10.1016/j.ijbiomac.2024.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Amyloid beta (Aβ) aggregation is one of the distinctive pathological hallmarks of Alzheimer's disease (AD). Therefore, the development of effective inhibitors against Aβ aggregate formation offers great promise for the treatment of AD. In this study, we designed a novel negatively charged functionalized conjugate aimed at inhibiting Aβ42 aggregation and attenuating neurotoxicity by grafting polysialic acid with mannuronate oligosaccharide, a biocompatible glycan extracted from seaweeds, designated as polysialic acid-mannan conjugate (PSA-MOS). ThT, biological microscopy, TEM and CD confirmed the inhibition of Aβ42 aggregation by PSA-MOS, as well as its ability to inhibit the conformational transition of Aβ42 to β-sheet. CCK-8 assay demonstrated that PSA-MOS was not cytotoxic to SH-SY5Y (p < 0.05) and promoted cell proliferation. In the Aβ42-induced SH-SY5Y injury models, PSA-MOS dose-dependently ameliorated cytotoxicity (p < 0.0001) and significantly reduced the levels of inflammatory factors of IL-1β (p < 0.0001), IL-6 (p < 0.0001) and TNF-α (p < 0.05). MD simulations demonstrated that PSA-MOS effectively impeded the α-helix to β-sheet transition of the Aβ42 monomer via electrostatic interactions with its CTR and NTR regions. These findings demonstrate the therapeutic potential of PSA-MOS as promising glycoconjugate for the treatment of AD.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Fioretto BS, Rosa I, Tani A, Andreucci E, Romano E, Sgambati E, Manetti M. Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition. Cells 2024; 13:1067. [PMID: 38920695 PMCID: PMC11201575 DOI: 10.3390/cells13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
3
|
Xu T, Heon-Roberts R, Moore T, Dubot P, Pan X, Guo T, Cairo CW, Holley R, Bigger B, Durcan TM, Levade T, Ausseil J, Amilhon B, Gorelik A, Nagar B, Sturiale L, Palmigiano A, Röckle I, Thiesler H, Hildebrandt H, Garozzo D, Pshezhetsky AV. Secondary deficiency of neuraminidase 1 contributes to CNS pathology in neurological mucopolysaccharidoses via hypersialylation of brain glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.587986. [PMID: 38712143 PMCID: PMC11071461 DOI: 10.1101/2024.04.26.587986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology. Graphical abstract
Collapse
|
4
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
5
|
Schröder LJ, Thiesler H, Gretenkort L, Möllenkamp TM, Stangel M, Gudi V, Hildebrandt H. Polysialic acid promotes remyelination in cerebellar slice cultures by Siglec-E-dependent modulation of microglia polarization. Front Cell Neurosci 2023; 17:1207540. [PMID: 37492129 PMCID: PMC10365911 DOI: 10.3389/fncel.2023.1207540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8-14 and DP24-30) were generated and applied to slice cultures during remyelination. Unlike DP8-14, treatment with DP24-30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24-30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24-30 on remyelination by Siglec-E-dependent microglia regulation.
Collapse
Affiliation(s)
- Lara-Jasmin Schröder
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Translational Medicine, Novartis Institute for Biomedical Research, Novartis, Basel, Switzerland
| | - Viktoria Gudi
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
| | - Herbert Hildebrandt
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Shinde P, Kiepas A, Zhang L, Sudhir S, Konstantopoulos K, Stamatos NM. Polysialylation controls immune function of myeloid cells in murine model of pneumococcal pneumonia. Cell Rep 2023; 42:112648. [PMID: 37339052 PMCID: PMC10592499 DOI: 10.1016/j.celrep.2023.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
Polysialic acid (polySia) is a post-translational modification of a select group of cell-surface proteins that guides cellular interactions. As the overall impact of changes in expression of this glycan on leukocytes during infection is not known, we evaluate the immune response of polySia-deficient ST8SiaIV-/- mice infected with Streptococcus pneumoniae (Spn). Compared with wild-type (WT) mice, ST8SiaIV-/- mice are less susceptible to infection and clear Spn from airways faster, with alveolar macrophages demonstrating greater viability and phagocytic activity. Leukocyte pulmonary recruitment, paradoxically, is diminished in infected ST8SiaIV-/- mice, corroborated by adoptive cell transfer, microfluidic migration experiments, and intravital microscopy, and possibly explained by dysregulated ERK1/2 signaling. PolySia is progressively lost from neutrophils and monocytes migrating from bone marrow to alveoli in Spn-infected WT mice, consistent with changing cellular functions. These data highlight multidimensional effects of polySia on leukocytes during an immune response and suggest therapeutic interventions for optimizing immunity.
Collapse
Affiliation(s)
- Prajakta Shinde
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lei Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shreya Sudhir
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nicholas M Stamatos
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Gretenkort L, Thiesler H, Hildebrandt H. Neuroimmunomodulatory properties of polysialic acid. Glycoconj J 2023; 40:277-294. [PMID: 37171513 DOI: 10.1007/s10719-023-10120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Polymeric sialic acid (polysialic acid, polySia) is a remarkable posttranslational modification of only few select proteins. The major, and most prominent polySia protein carrier is the neural cell adhesion molecule NCAM. Here, the key functions of polySia are to regulate interactions of NCAM and to balance cellular interactions in brain development and plasticity. During recent years, however, increasing evidence points towards a role of polySia in the modulation of immune responses. These immunomodulatory functions can be mediated by polySia on proteins other than NCAM, presented either on the cell surface or released into the extracellular space. This perspective review summarizes our current knowledge and addresses major open questions on polySia and polySia receptors in modulating innate immune responses in the brain.
Collapse
Affiliation(s)
- Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
8
|
Gonzalez-Gil A, Li TA, Kim J, Schnaar RL. Human sialoglycan ligands for immune inhibitory Siglecs. Mol Aspects Med 2023; 90:101110. [PMID: 35965135 DOI: 10.1016/j.mam.2022.101110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Most human Siglecs (sialic acid binding immunoglobulin-like lectins) are expressed on the surfaces of overlapping subsets of immune cells, and most carry immunoreceptor tyrosine-based inhibitory domains on their intracellular motifs. When immune inhibitory Siglecs bind to complementary sialoglycans in their local milieu, engagement results in down-regulation of the immune response. Siglecs have come under scrutiny as potential targets of drugs to modify the course of inflammation (and other immune system responses) and as immune checkpoints in cancer. Human Siglecs bind to endogenous human sialoglycans. The identities of these endogenous human sialoglycan immune regulators are beginning to emerge, along with some general principles that may inform future investigations in this area. Among these principles is the finding that a cell type or tissue may express a ligand for a particular Siglec on a single or a very few of its sialoglycoproteins. The selected protein carrier for a particular Siglec may be unique in a certain tissue, but vary tissue-to-tissue. The binding affinity of endogenous Siglec ligands may surpass that of its binding to synthetic sialoglycan determinants by several orders of magnitude. Since most human Siglecs have evolved rapidly and are distinct from those in most other mammals, this review describes endogenous human Siglec ligands for several human immune inhibitory Siglecs. As the identities of these immune regulatory sialoglycan ligands are defined, additional opportunities to target Siglecs therapeutically may emerge.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Jean Kim
- Department Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Varbanov H, Jia S, Kochlamazashvili G, Bhattacharya S, Buabeid MA, El Tabbal M, Hayani H, Stoyanov S, Sun W, Thiesler H, Röckle I, Hildebrandt H, Senkov O, Suppiramaniam V, Gerardy-Schahn R, Dityatev A. Rescue of synaptic and cognitive functions in polysialic acid-deficient mice and dementia models by short polysialic acid fragments. Neurobiol Dis 2023; 180:106079. [PMID: 36918046 DOI: 10.1016/j.nbd.2023.106079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Dysregulated cortical expression of the neural cell adhesion molecule (NCAM) and deficits of its associated polysialic acid (polySia) have been found in Alzheimer's disease and schizophrenia. However, the functional role of polySia in cortical synaptic plasticity remains poorly understood. Here, we show that acute enzymatic removal of polySia in medial prefrontal cortex (mPFC) slices leads to increased transmission mediated by the GluN1/GluN2B subtype of N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-mediated extrasynaptic tonic currents, and impaired long-term potentiation (LTP). The latter could be fully rescued by pharmacological suppression of GluN1/GluN2B receptors, or by application of short soluble polySia fragments that inhibited opening of GluN1/GluN2B channels. These treatments and augmentation of synaptic NMDARs with the glycine transporter type 1 (GlyT1) inhibitor sarcosine also restored LTP in mice deficient in polysialyltransferase ST8SIA4. Furthermore, the impaired performance of polySia-deficient mice and two models of Alzheimer's disease in the mPFC-dependent cognitive tasks could be rescued by intranasal administration of polySia fragments. Our data demonstrate the essential role of polySia-NCAM in the balancing of signaling through synaptic/extrasynaptic NMDARs in mPFC and highlight the therapeutic potential of short polySia fragments to restrain GluN1/GluN2B-mediated signaling.
Collapse
Affiliation(s)
- Hristo Varbanov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Neurophysiology, Hannover Medical School, OE 4230, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Gaga Kochlamazashvili
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Subhrajit Bhattacharya
- School of Pharmaceutical and Health Sciences, Keck Graduate Institute, Claremont Colleges, Claremont, CA 91711, USA
| | - Manal Ali Buabeid
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Mohamed El Tabbal
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hussam Hayani
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hauke Thiesler
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Iris Röckle
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Herbert Hildebrandt
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Bünteweg 2, 30559 Hannover, Germany
| | - Oleg Senkov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL 36849, USA; College of Science and Mathematics, Kennesaw State University, GA 30144, USA
| | - Rita Gerardy-Schahn
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
10
|
Huang J, Huang J, Zhang G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers (Basel) 2022; 14:5840. [PMID: 36497322 PMCID: PMC9737300 DOI: 10.3390/cancers14235840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sialylation is an enzymatic process that covalently attaches sialic acids to glycoproteins and glycolipids and terminates them by creating sialic acid-containing glycans (sialoglycans). Sialoglycans, usually located in the outmost layers of cells, play crucial biological roles, notably in tumor transformation, growth, metastasis, and immune evasion. Thus, a deeper comprehension of sialylation in cancer will help to facilitate the development of innovative cancer therapies. Cancer sialylation-related articles have consistently increased over the last four years. The primary subjects of these studies are sialylation, cancer, immunotherapy, and metastasis. Tumor cells activate endothelial cells and metastasize to distant organs in part by the interactions of abnormally sialylated integrins with selectins. Furthermore, cancer sialylation masks tumor antigenic epitopes and induces an immunosuppressive environment, allowing cancer cells to escape immune monitoring. Cytotoxic T lymphocytes develop different recognition epitopes for glycosylated and nonglycosylated peptides. Therefore, targeting tumor-derived sialoglycans is a promising approach to cancer treatments for limiting the dissemination of tumor cells, revealing immunogenic tumor antigens, and boosting anti-cancer immunity. Exploring the exact tumor sialoglycans may facilitate the identification of new glycan targets, paving the way for the development of customized cancer treatments.
Collapse
Affiliation(s)
- Jianmei Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu 610041, China
| | - Guonan Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|