1
|
Zhang Q, He J, Zhu D, Chen Y, Fu M, Lu S, Qiu Y, Zhou G, Yang G, Jiang Z. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid Interface Sci 2025; 335:103337. [PMID: 39547125 DOI: 10.1016/j.cis.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
To date, genetically modified organoids are emerging as a promising 3D modeling tool aimed at solving genetically relevant clinical and biomedical problems for regenerative medicine and tissue engineering. As an optimal vehicle for gene delivery, genetically modified organoids can enhance or reduce the expression of target genes through virus and non-virus-based gene transfection methods to achieve tissue regeneration. Animal experiments and preclinical studies have demonstrated the beneficial role of genetically modified organoids in various aspects of organ regeneration, including thymus, lacrimal glands, brain, lung, kidney, photoreceptors, etc. Furthermore, the technology offers a potential treatment option for various diseases, such as Fabry disease, non-alcoholic steatohepatitis, and Lynch syndrome. Nevertheless, the uncertain safety of genetic modification, the risk of organoid application, and bionics of current genetically modified organoids are still challenging. This review summarizes the researches on genetically modified organoids in recent years, and describes the transfection methods and functions of genetically modified organoids, then introduced their applications at length. Also, the limitations and future development directions of genetically modified organoids are included.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Shifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yuesheng Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guodong Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
2
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
3
|
Lee MM, Chou YX, Huang SH, Cheng HT, Liu CH, Huang GJ. Renoprotective Effects of Brown-Strain Flammulina velutipes Singer in Chronic Kidney Disease-Induced Mice Through Modulation of Oxidative Stress and Inflammation and Regulation of Renal Transporters. Int J Mol Sci 2024; 25:12096. [PMID: 39596166 PMCID: PMC11593982 DOI: 10.3390/ijms252212096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Cisplatin, widely used in chemotherapy, acts through mechanisms such as oxidative stress to damage the DNA and cause the apoptosis of cancer cells. Although effective, cisplatin treatment is associated with considerable side effects including chronic kidney disease (CKD). Studies on brown-strain Flammulina velutipes Singer (FVB) have shown its significant antioxidant and immunomodulatory effects. High-performance liquid chromatography (HPLC) confirmed that the FVB extract contained gallic acid and quercetin. This study investigated whether FVB extract can improve and protect against cisplatin-induced CKD in mice. C57BL/6 mice were used as an animal model, and CKD was induced through intraperitoneal cisplatin injection. FVB was orally administered to the mice for 14 consecutive days. N-acetylcysteine (NAC) was administered in the positive control group. Organ pathology and serum biochemical analyses were conducted after the mice were sacrificed. Significant dose-dependent differences were discovered in body mass, kidney mass, histopathology, renal function, inflammatory factors, and antioxidant functions among the different groups. FVB extract reduced the severity of cisplatin-induced CKD in pathways related to inflammation, autophagy, apoptosis, fibrosis, oxidative stress, and organic ion transport proteins; FVB extract, thus, displays protective physiological activity in kidney cells. Additionally, orally administered high doses of the FVB extract resulted in significantly superior renal function, inflammatory factors, antioxidative activity, and fibrotic pathways. This study establishes a strategy for future clinical adjunctive therapy using edible-mushroom-derived FVB extract to protect kidney function.
Collapse
Affiliation(s)
- Min-Min Lee
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Yun-Xuan Chou
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Sheng-Hsiung Huang
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan;
| | - Hsu-Tang Cheng
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Surgery, Asia University Hospital, Taichung 413, Taiwan
| | - Chung-Hsiang Liu
- Department of Neurology, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
4
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
5
|
Ma C, Banan Sadeghian R, Negoro R, Fujimoto K, Araoka T, Ishiguro N, Takasato M, Yokokawa R. Efficient proximal tubule-on-chip model from hiPSC-derived kidney organoids for functional analysis of renal transporters. iScience 2024; 27:110760. [PMID: 39286490 PMCID: PMC11403423 DOI: 10.1016/j.isci.2024.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Renal transporters play critical roles in predicting potential drug-drug interactions. However, current in vitro models often fail to adequately express these transporters, particularly solute carrier proteins, including organic anion transporters (OAT1/3), and organic cation transporter 2 (OCT2). Here, we developed a hiPSC-derived kidney organoids-based proximal tubule-on-chip (OPTC) model that emulates in vivo renal physiology to assess transporter function. Compared to chips based on immortalized cells, OPTC derived from the two most commonly used differentiation protocols exhibited significant improvement in expression level and polarity of OAT1/3 and OCT2. Hence, the OPTC demonstrates enhanced functionality in efflux and uptake assessments, and nephrotoxicity. Furthermore, these functionalities are diminished upon adding inhibitors during substrate-inhibitor interactions, which were closer to in vivo observations. Overall, these results support that OPTC can reliably assess the role of renal transporters in drug transport and nephrotoxicity, paving the way for personalized models to assess renal transport and disease modeling.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | | | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co. Ltd, Kobe, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
6
|
Ahammed B, Kalangi SK. A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology. ACS OMEGA 2024; 9:30087-30096. [PMID: 39035960 PMCID: PMC11256333 DOI: 10.1021/acsomega.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Organoid technology, revolutionizing biomedical research, offers a transformative approach to studying human developmental biology, disease pathology, and drug discovery. Originating from the pioneering work of Henry Van Peters Wilson in 1907 and evolving through subsequent breakthroughs, organoids are three-dimensional structures derived from stem cells or tissue explants that mimic the architecture and function of organs in vitro. With the ability to model various organs such as intestine, liver, brain, kidney, and more, organoids provide unprecedented insights into organ development, disease mechanisms, and drug responses. This review highlights the historical context, generation methods, applications, and challenges of organoid technology. Furthermore, it discusses recent advancements, including strategies to address hypoxia-induced cell death and enhance vascularization within organoids, aiming to refine their physiological relevance and unlock their full potential in personalized medicine and organ transplantation.
Collapse
Affiliation(s)
- Basheer Ahammed
- West BC Colony,
Guduru, Kurnool, Andhra Pradesh 518466, India
| | - Suresh K. Kalangi
- Molecular
Microbiology and Immunology Division, CSIR—Central Drug Research
Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Meijer T, da Costa Pereira D, Klatt OC, Buitenhuis J, Jennings P, Wilmes A. Characterization of Organic Anion and Cation Transport in Three Human Renal Proximal Tubular Epithelial Models. Cells 2024; 13:1008. [PMID: 38920639 PMCID: PMC11202273 DOI: 10.3390/cells13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.
Collapse
Affiliation(s)
- Tamara Meijer
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Olivia C. Klatt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Joanne Buitenhuis
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Paul Jennings
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Liang KX. The application of brain organoid for drug discovery in mitochondrial diseases. Int J Biochem Cell Biol 2024; 170:106556. [PMID: 38423381 DOI: 10.1016/j.biocel.2024.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Mitochondrial diseases are difficult to treat due to the complexity and multifaceted nature of mitochondrial dysfunction. Brain organoids are three-dimensional (3D) structures derived from human pluripotent stem cells designed to mimic brain-like development and function. Brain organoids have received a lot of attention in recent years as powerful tools for modeling human diseases, brain development, and drug screening. Screening compounds for mitochondrial diseases using brain organoids could provide a more physiologically relevant platform for drug discovery. Brain organoids offer the possibility of personalized medicine because they can be derived from patient-specific cells, allowing testing of drugs tailored to specific genetic mutations. In this article, we highlight how brain organoids offer a promising avenue for screening compounds for mitochondrial diseases and address the challenges and limitations associated with their use. We hope this review will provide new insights into the further progress of brain organoids for mitochondrial screening studies.
Collapse
|
9
|
Yang X, Delsante M, Daneshpajouhnejad P, Fenaroli P, Mandell KP, Wang X, Takahashi S, Halushka MK, Kopp JB, Levi M, Rosenberg AZ. Bile Acid Receptor Agonist Reverses Transforming Growth Factor-β1-Mediated Fibrogenesis in Human Induced Pluripotent Stem Cells-Derived Kidney Organoids. J Transl Med 2024; 104:100336. [PMID: 38266922 DOI: 10.1016/j.labinv.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-β1 (TGF-β1) induced the production of extracellular matrix. TGF-β1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-β1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Marco Delsante
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Paride Fenaroli
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Scuola di Specializione in Nefrologia, University of Parma, Parma, Italy
| | | | - Xiaoxin Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shogo Takahashi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
10
|
Oishi H, Tabibzadeh N, Morizane R. Advancing preclinical drug evaluation through automated 3D imaging for high-throughput screening with kidney organoids. Biofabrication 2024; 16:10.1088/1758-5090/ad38df. [PMID: 38547531 PMCID: PMC11304660 DOI: 10.1088/1758-5090/ad38df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
High-throughput drug screening is crucial for advancing healthcare through drug discovery. However, a significant limitation arises from availablein vitromodels using conventional 2D cell culture, which lack the proper phenotypes and architectures observed in three-dimensional (3D) tissues. Recent advancements in stem cell biology have facilitated the generation of organoids-3D tissue constructs that mimic human organsin vitro. Kidney organoids, derived from human pluripotent stem cells, represent a significant breakthrough in disease representation. They encompass major kidney cell types organized within distinct nephron segments, surrounded by stroma and endothelial cells. This tissue allows for the assessment of structural alterations such as nephron loss, a characteristic of chronic kidney disease. Despite these advantages, the complexity of 3D structures has hindered the use of organoids for large-scale drug screening, and the drug screening pipelines utilizing these complexin vitromodels remain to be established for high-throughput screening. In this study, we address the technical limitations of kidney organoids through fully automated 3D imaging, aided by a machine-learning approach for automatic profiling of nephron segment-specific epithelial morphometry. Kidney organoids were exposed to the nephrotoxic agent cisplatin to model severe acute kidney injury. An U.S. Food and Drug Administration (FDA)-approved drug library was tested for therapeutic and nephrotoxicity screening. The fully automated pipeline of 3D image acquisition and analysis identified nephrotoxic or therapeutic drugs during cisplatin chemotherapy. The nephrotoxic potential of these drugs aligned with previousin vivoand human reports. Additionally, Imatinib, a tyrosine kinase inhibitor used in hematological malignancies, was identified as a potential preventive therapy for cisplatin-induced kidney injury. Our proof-of-concept report demonstrates that the automated screening process, using 3D morphometric assays with kidney organoids, enables high-throughput screening for nephrotoxicity and therapeutic assessment in 3D tissue constructs.
Collapse
Affiliation(s)
- Haruka Oishi
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Nahid Tabibzadeh
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, United States of America
| |
Collapse
|
11
|
Dilmen E, Orhon I, Jansen J, Hoenderop JGJ. Advancements in kidney organoids and tubuloids to study (dys)function. Trends Cell Biol 2024; 34:299-311. [PMID: 37865608 DOI: 10.1016/j.tcb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
The rising prevalence of kidney diseases urges the need for novel therapies. Kidney organoids and tubuloids are advanced in vitro models and have recently been described as promising tools to study kidney (patho)physiology. Recent developments have shown their application in disease modeling, drug screening, and nephrotoxicity. These applications rely on their ability to mimic (dys)function in vitro including endocrine activity and drug, electrolyte, and water transport. This review provides an overview of these emerging kidney models and focuses on the most recent developments that utilize their functional capabilities. In addition, we cover current limitations and provide future perspectives for this rapidly evolving field, including what these functional properties mean for translational and personalized medicine now and in the future.
Collapse
Affiliation(s)
- E Dilmen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Orhon
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Jansen
- Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands; Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany
| | - J G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Tabibzadeh N, Morizane R. Advancements in therapeutic development: kidney organoids and organs on a chip. Kidney Int 2024; 105:702-708. [PMID: 38296026 PMCID: PMC10960684 DOI: 10.1016/j.kint.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024]
Abstract
The use of animal models in therapeutic development has long been the standard practice. However, ethical concerns and the inherent species differences have prompted a reevaluation of the experimental approach in human disease studies. The urgent need for alternative model systems that better mimic human pathophysiology has led to the emergence of organoids, innovative in vitro models, to simulate human organs in vitro. These organoids have gained widespread acceptance in disease models and drug development research. In this mini review, we explore the recent strides made in kidney organoid differentiation and highlight the synergistic potential of incorporating organ-on-chip systems. The emergent use of microfluidic devices reveals the importance of fluid flow in the maturation of kidney organoids and helps decipher pathomechanisms in kidney diseases. Recent research has uncovered their potential applications across a wide spectrum of kidney research areas, including hemodynamic forces at stake in kidney health and disease, immune cell infiltration, or drug delivery and toxicity. This convergence of cutting-edge technologies not only holds promise for expediting therapeutic development but also reflects an acknowledgment of the need to embrace innovative and more human-centric research models.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Centre de Recherche des Cordeliers, INSERM, EMR 8228, Paris, France
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Hu C, Yang S, Zhang T, Ge Y, Chen Z, Zhang J, Pu Y, Liang G. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. ENVIRONMENT INTERNATIONAL 2024; 184:108415. [PMID: 38309193 DOI: 10.1016/j.envint.2024.108415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.
Collapse
Affiliation(s)
- Chengyu Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
14
|
Pahuja A, Goux Corredera I, Moya-Rull D, Garreta E, Montserrat N. Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells. Curr Opin Cell Biol 2024; 86:102306. [PMID: 38194750 DOI: 10.1016/j.ceb.2023.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics.
Collapse
Affiliation(s)
- Anisha Pahuja
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
15
|
Gu Y, Zhang W, Wu X, Zhang Y, Xu K, Su J. Organoid assessment technologies. Clin Transl Med 2023; 13:e1499. [PMID: 38115706 PMCID: PMC10731122 DOI: 10.1002/ctm2.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Despite enormous advances in the generation of organoids, robust and stable protocols of organoids are still a major challenge to researchers. Research for assessing structures of organoids and the evaluations of their functions on in vitro or in vivo is often limited by precision strategies. A growing interest in assessing organoids has arisen, aimed at standardizing the process of obtaining organoids to accurately resemble human-derived tissue. The complex microenvironment of organoids, intricate cellular crosstalk, organ-specific architectures and further complicate functions urgently quest for high-through schemes. By utilizing multi-omics analysis and single-cell analysis, cell-cell interaction mechanisms can be deciphered, and their structures can be investigated in a detailed view by histological analysis. In this review, we will conclude the novel approaches to study the molecular mechanism and cell heterogeneity of organoids and discuss the histological and morphological similarity of organoids in comparison to the human body. Future perspectives on functional analysis will be developed and the organoids will become mature models.
Collapse
Affiliation(s)
- Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Wencai Zhang
- Department of OrthopedicsFirst Affiliated HospitalJinan UniversityGuangzhouChina
| | - Xianmin Wu
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Yuanwei Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopaedicsXinhua Hospital Affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopaedicsXinhua Hospital Affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
| |
Collapse
|
16
|
Singh NK, Kim JY, Jang J, Kim YK, Cho DW. 3D Cell Printing of Advanced Vascularized Proximal Tubule-on-a-Chip for Drug Induced Nephrotoxicity Advancement. ACS APPLIED BIO MATERIALS 2023; 6:3750-3758. [PMID: 37606916 DOI: 10.1021/acsabm.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Renal dysfunction due to drug-induced nephrotoxicity (DIN) affects >20% of the adult population worldwide. The vascularized proximal tubule is a complex structure that is often the primary site of drug-induced kidney injury. Herein, a vascularized proximal tubule-on-a-chip (Vas-POAC) was fabricated, demonstrating improved physiological emulation over earlier single-cell proximal tubule models. A perfusable model of vascularized proximal tubules permits the growth and proliferation of renal proximal tubule cells and adjacent endothelial cells under various conditions. An in vitro Vas-POAC showed mature expressions of the tubule and endothelial cell markers in the mature epithelium and endothelium lumens after 7 days of culture. Expression in the mature proximal tubule epithelium resembled the polarized expression of sodium-glucose cotransporter-2 and the de novo synthesis of ECM proteins. These perfusable Vas-POACs display significantly improved functional properties relative to the proximal tubules-on-a-chip (POAC), which lacks vascular components. Furthermore, the developed Vas-POAC model evaluated the cisplatin-induced nephrotoxicity and revealed enhanced drug receptivity compared to POAC. We further evaluated the capability of the developed proximal tubule model to act as a functional platform that targets screening drug doses that can cause renal proximal tubule injury in adults. Thus, our cell-printed models may prove valuable for screening, thoughtful mechanistic investigations of DIN, and discovery of drugs that interfere with tubule formation.
Collapse
Affiliation(s)
- Narendra K Singh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University (OHSU), Portland, Oregon 97201, United States
- Cancer Early Detection Advanced Research Center (CEDAR), OHSU-Knight Cancer Institute, Portland, Oregon 97201, United States
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon 16247, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Dilz J, Auge I, Groeneveld K, Reuter S, Mrowka R. A proof-of-concept assay for quantitative and optical assessment of drug-induced toxicity in renal organoids. Sci Rep 2023; 13:6167. [PMID: 37061575 PMCID: PMC10105743 DOI: 10.1038/s41598-023-33110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Kidneys are complex organs, and reproducing their function and physiology in a laboratory setting remains difficult. During drug development, potential compounds may exhibit unexpected nephrotoxic effects, which imposes a significant financial burden on pharmaceutical companies. As a result, there is an ongoing need for more accurate model systems. The use of renal organoids to simulate responses to nephrotoxic insults has the potential to bridge the gap between preclinical drug efficacy studies in cell cultures and animal models, and the stages of clinical trials in humans. Here we established an accessible fluorescent whole-mount approach for nuclear and membrane staining to first provide an overview of the organoid histology. Furthermore, we investigated the potential of renal organoids to model responses to drug toxicity. For this purpose, organoids were treated with the chemotherapeutic agent doxorubicin for 48 h. When cell viability was assessed biochemically, the organoids demonstrated a significant, dose-dependent decline in response to the treatment. Confocal microscopy revealed visible tubular disintegration and a loss of cellular boundaries at high drug concentrations. This observation was further reinforced by a dose-dependent decrease of the nuclear area in the analyzed images. In contrast to other approaches, in this study, we provide a straightforward experimental framework for drug toxicity assessment in renal organoids that may be used in early research stages to assist screen for potential adverse effects of compounds.
Collapse
Affiliation(s)
- Jasmin Dilz
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany.
| | - Isabel Auge
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany
| | - Kathrin Groeneveld
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany
| | - Stefanie Reuter
- ThIMEDOP, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany
| | - Ralf Mrowka
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany.
- ThIMEDOP, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany.
| |
Collapse
|
18
|
Konoe R, Morizane R. Strategies for Improving Vascularization in Kidney Organoids: A Review of Current Trends. BIOLOGY 2023; 12:503. [PMID: 37106704 PMCID: PMC10135596 DOI: 10.3390/biology12040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Kidney organoids possess the potential to revolutionize the treatment of renal diseases. However, their growth and maturation are impeded by insufficient growth of blood vessels. Through a PubMed search, we have identified 34 studies that attempted to address this challenge. Researchers are exploring various approaches including animal transplantation, organ-on-chips, and extracellular matrices (ECMs). The most prevalent method to promote the maturation and vascularization of organoids involves transplanting them into animals for in vivo culture, creating an optimal environment for organoid growth and the development of a chimeric vessel network between the host and organoids. Organ-on-chip technology permits the in vitro culture of organoids, enabling researchers to manipulate the microenvironment and investigate the key factors that influence organoid development. Lastly, ECMs have been discovered to aid the formation of blood vessels during organoid differentiation. ECMs from animal tissue have been particularly successful, although the underlying mechanisms require further research. Future research building upon these recent studies may enable the generation of functional kidney tissues for replacement therapies.
Collapse
Affiliation(s)
| | - Ryuji Morizane
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|