1
|
Pederson JP, McDaniel JG. PyDFT-QMMM: A modular, extensible software framework for DFT-based QM/MM molecular dynamics. J Chem Phys 2024; 161:034103. [PMID: 39007371 DOI: 10.1063/5.0219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
PyDFT-QMMM is a Python-based package for performing hybrid quantum mechanics/molecular mechanics (QM/MM) simulations at the density functional level of theory. The program is designed to treat short-range and long-range interactions through user-specified combinations of electrostatic and mechanical embedding procedures within periodic simulation domains, providing necessary interfaces to external quantum chemistry and molecular dynamics software. To enable direct embedding of long-range electrostatics in periodic systems, we have derived and implemented force terms for our previously described QM/MM/PME approach [Pederson and McDaniel, J. Chem. Phys. 156, 174105 (2022)]. Communication with external software packages Psi4 and OpenMM is facilitated through Python application programming interfaces (APIs). The core library contains basic utilities for running QM/MM molecular dynamics simulations, and plug-in entry-points are provided for users to implement custom energy/force calculation and integration routines, within an extensible architecture. The user interacts with PyDFT-QMMM primarily through its Python API, allowing for complex workflow development with Python scripting, for example, interfacing with PLUMED for free energy simulations. We provide benchmarks of forces and energy conservation for the QM/MM/PME and alternative QM/MM electrostatic embedding approaches. We further demonstrate a simple example use case for water solute in a water solvent system, for which radial distribution functions are computed from 100 ps QM/MM simulations; in this example, we highlight how the solvation structure is sensitive to different basis-set choices due to under- or over-polarization of the QM water molecule's electron density.
Collapse
Affiliation(s)
- John P Pederson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
2
|
Gajst J, Semelak JA, Scherlis D, Olabe JA, Marcolongo JP. Inorganic Polysulfides in Solution: Structural Properties and Conformational Isomerism. Inorg Chem 2024; 63:12385-12398. [PMID: 38771732 DOI: 10.1021/acs.inorgchem.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
We present a comprehensive theoretical examination of the structural properties of dianionic polysulfides [Sn]2- (n = 2-6), their conjugated monoacids [HSn]- (n = 2-6), and a selection of 1e--oxidized radical anions [Sn]•- (n = 2-4), in aqueous and dimethyl sulfoxide (DMSO) solutions. We investigated the structures and stabilities of various conformational isomers within these families of compounds by employing Quantum Mechanics-Molecular Mechanics (QM-MM) Molecular Dynamics (MD) simulations. The explicit inclusion of solvent molecules in the calculations revealed stable conformational structures that were previously unreported and might have appreciable concentrations in real systems. The interconversions between the isomeric structures proceed on the order of hundreds of picoseconds and are energetically similar to the isomerization processes in substituted cyclohexanes. We also conducted a detailed analysis of the stability of different isomers of the radical anion [S4]•- in solution. Our findings highlight the significant influence of the solvent on the isomerizations, a result that could be particularly relevant for enhancing the performance of metal-sulfur batteries.
Collapse
Affiliation(s)
- Joaquín Gajst
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires - CONICET, Pabellón 2, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires - CONICET, Pabellón 2, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires - CONICET, Pabellón 2, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - José A Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires - CONICET, Pabellón 2, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P Marcolongo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires - CONICET, Pabellón 2, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Messias A, Capece L, De Simone G, Coletta M, Ascenzi P, Estrin DA. Mechanism of Peroxynitrite Interaction with Ferric M. tuberculosis Nitrobindin: A Computational Study. Inorg Chem 2024; 63:9907-9918. [PMID: 38754069 DOI: 10.1021/acs.inorgchem.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO-) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins. The value of the second-order rate constant of Nbs increases as the pH decreases; this suggests that Nb(III) preferentially reacts with peroxynitrous acid (ONOOH), although ONOO- is more nucleophilic. In this work, we shed light on the molecular basis of the ONOO- and ONOOH reactivity of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) by dissecting the ligand migration toward the active site, the water molecule release, and the ligand binding process by computer simulations. Classical molecular dynamics simulations were performed by employing a steered molecular dynamics approach and the Jarzynski equality to obtain ligand migration free energy profiles for both ONOO- and ONOOH. Our results indicate that ONOO- and ONOOH migration is almost unhindered, consistent with the exposed metal center of Mt-Nb(III). To further analyze the ligand binding process, we computed potential energy profiles for the displacement of the Fe(III)-coordinated water molecule using a hybrid QM/MM scheme at the DFT level and a nudged elastic band approach. These results indicate that ONOO- exhibits a much larger barrier for ligand displacement than ONOOH, suggesting that water displacement is assisted by protonation of the leaving group by the incoming ONOOH.
Collapse
Affiliation(s)
- Andresa Messias
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Luciana Capece
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, I-00146 Roma, Italy
| | - Massimo Coletta
- IRCCS Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, I-00146 Roma, Italy
- Accademia Nazionale dei Lincei, Via della Lungara, 10, 00165 Roma, Italy
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
4
|
Sastre S, Manta B, Semelak JA, Estrin D, Trujillo M, Radi R, Zeida A. Catalytic Mechanism of Mycobacterium tuberculosis Methionine Sulfoxide Reductase A. Biochemistry 2024; 63:533-544. [PMID: 38286790 DOI: 10.1021/acs.biochem.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The oxidation of Met to methionine sulfoxide (MetSO) by oxidants such as hydrogen peroxide, hypochlorite, or peroxynitrite has profound effects on protein function. This modification can be reversed by methionine sulfoxide reductases (msr). In the context of pathogen infection, the reduction of oxidized proteins gains significance due to microbial oxidative damage generated by the immune system. For example, Mycobacterium tuberculosis (Mt) utilizes msrs (MtmsrA and MtmsrB) as part of the repair response to the host-induced oxidative stress. The absence of these enzymes makes Mycobacteria prone to increased susceptibility to cell death, pointing them out as potential therapeutic targets. This study provides a detailed characterization of the catalytic mechanism of MtmsrA using a comprehensive approach, including experimental techniques and theoretical methodologies. Confirming a ping-pong type enzymatic mechanism, we elucidate the catalytic parameters for sulfoxide and thioredoxin substrates (kcat/KM = 2656 ± 525 M-1 s-1 and 1.7 ± 0.8 × 106 M-1 s-1, respectively). Notably, the entropic nature of the activation process thermodynamics, representing ∼85% of the activation free energy at room temperature, is underscored. Furthermore, the current study questions the plausibility of a sulfurane intermediate, which may be a transition-state-like structure, suggesting the involvement of a conserved histidine residue as an acid-base catalyst in the MetSO reduction mechanism. This mechanistic insight not only advances our understanding of Mt antioxidant enzymes but also holds implications for future drug discovery and biotechnological applications.
Collapse
Affiliation(s)
- Santiago Sastre
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Programa de Doctorado en Química, Facultad de Química, Universidad de la República, Gral Flores 2124, CP 11800 Montevideo, Uruguay
| | - Bruno Manta
- Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
- Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Gral Las Heras 1925, CP 11600 Montevideo, Uruguay
| | - Jonathan A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Intendente Güiraldes 2160, CP C1428EGA Buenos Aires, Argentina
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Intendente Güiraldes 2160, CP C1428EGA Buenos Aires, Argentina
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Gral Flores 2125, CP 11800 Montevideo, Uruguay
| |
Collapse
|
5
|
Messias A, Pasquadibisceglie A, Alonso de Armiño D, De Simone G, Polticelli F, Coletta M, Ascenzi P, Estrin DA. Nitric oxide binding to ferrous nitrobindins: A computer simulation investigation. J Inorg Biochem 2023; 248:112336. [PMID: 37572543 DOI: 10.1016/j.jinorgbio.2023.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Nitrobindins (Nbs) represent an evolutionary conserved all-β-barrel heme-proteins displaying a highly solvent-exposed heme-Fe(III) atom, coordinated by a proximal His residue. Interestingly, even if the distal side is exposed to the solvent, the value of the second order rate constants for ligand binding to the ferrous derivative is almost one order of magnitude lower than those reported for myoglobins (Mbs). Noteworthy, nitric oxide binding to the sixth coordination position of the heme-Fe(II)-atom causes the cleavage or the severe weakening of the proximal His-Fe(II) bond. Here, we provide a computer simulation investigation to shed light on the molecular basis of ligand binding kinetics, by dissecting the ligand binding process into the ligand migration and the bond formation steps. Classical molecular dynamics simulations were performed employing a steered molecular dynamics approach and the Jarzinski equality to obtain ligand migration free energy profiles. The formation of the heme-Fe(II)-NO bond took into consideration the iron atom displacement from the heme plane. The ligand migration is almost unhindered, and the low rate constant for NO binding is due to the large displacement of the Fe(II) atom with respect to the heme plane responsible for the barrier for the Fe(II)-NO bond formation. In addition, we investigated the weakening and breaking of the proximal His-Fe(II) bond, observed experimentally upon NO binding, by means of a combination of classical molecular dynamics simulations and quantum-classical (QM-MM) optimizations. In both human and M. tuberculosis Nbs, a stable alternative conformation of the proximal His residue interacting with a network of water molecules was observed.
Collapse
Affiliation(s)
- Andresa Messias
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | | | - Diego Alonso de Armiño
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146 Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146 Roma, Italy
| | | | - Paolo Ascenzi
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
6
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
7
|
Córdova JA, Palermo JC, Estrin DA, Bari SE, Capece L. Binding mechanism of disulfide species to ferric hemeproteins: The case of metmyoglobin. J Inorg Biochem 2023; 247:112313. [PMID: 37467661 DOI: 10.1016/j.jinorgbio.2023.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
The interactions of the heme iron of hemeproteins with sulfide and disulfide compounds are of potential interest as physiological signaling processes. While the interaction with hydrogen sulfide has been described computationally and experimentally, the reaction with disulfide, and specifically the molecular mechanism for ligand binding has not been studied in detail. In this work, we study the association process for disulfane and its conjugate base disulfanide at different pH conditions. Additionally, by means of advanced sampling techniques based on multiple steered molecular dynamics, we provide free energy profiles for ligand migration for both acid/base species, showing a similar behavior to the previously reported for the related H2S/HS¯ pair. Finally, we studied the ligand interchange reaction (H2O/H2S, HS¯ and H2O/HSSH, HSS¯) by means of hybrid quantum mechanics-molecular mechanics calculations. We show that the anionic species are able to displace more efficiently the H2O bound to the iron, and that the H-bond network in the distal cavity can help the neutral species to perform the reaction. Altogether, we provide a molecular explanation for the experimental information and show that the global association process depends on a fine balance between the migration towards the active site and the ligand interchange reaction.
Collapse
Affiliation(s)
- Jonathan Alexis Córdova
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| | - Luciana Capece
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina..
| |
Collapse
|
8
|
Semelak JA, Zeida A, Foglia NO, Estrin DA. Minimum Free Energy Pathways of Reactive Processes with Nudged Elastic Bands. J Chem Theory Comput 2023; 19:6273-6293. [PMID: 37647166 DOI: 10.1021/acs.jctc.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The determination of minimum free energy pathways (MFEP) is one of the most widely used strategies to study reactive processes. For chemical reactions in complex environments, the combination of quantum mechanics (QM) with a molecular mechanics (MM) representation is usually necessary in a hybrid QM/MM framework. However, even within the QM/MM approximation, the affordable sampling of the phase space is, in general, quite restricted. To reduce drastically the computational cost of the simulations, several methods such as umbrella sampling require performing a priori a selection of a reaction coordinate. The quality of the computed results, in an affordable computational time, is intimately related to the reaction coordinate election which is, in general, a nontrivial task. In this work, we provide an approach to model reactive processes in complex environments that does not require the a priori selection of a reaction coordinate. The proposed methodology combines QM/MM simulations with an extrapolation of the nudged elastic bands (NEB) method to the free energy surface (FENEB). We present and apply our own FENEB scheme to optimize MFEP in different reactive processes, using QM/MM frameworks at semiempirical and density functional theory levels. Our implementation is based on performing the FENEB optimization by uncoupling the optimization of the band in a perpendicular and tangential direction. In each step, a full optimization with the spring force is performed, which guarantees that the images remain evenly distributed. The robustness of the method and the influence of sampling on the quality of the optimized MFEP and its associated free energy barrier are studied. We show that the FENEB method provides a good estimation of the reaction barrier even with relatively short simulation times, supporting that its combination with QM/MM frameworks provides an adequate tool to study chemical processes in complex environments.
Collapse
Affiliation(s)
- Jonathan A Semelak
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Nicolás O Foglia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Clemente CM, Capece L, Martí MA. Best Practices on QM/MM Simulations of Biological Systems. J Chem Inf Model 2023; 63:2609-2627. [PMID: 37100031 DOI: 10.1021/acs.jcim.2c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.
Collapse
Affiliation(s)
- Camila M Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
10
|
Bustamante CM, Gadea ED, Todorov TN, Scherlis DA. Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations. J Phys Chem Lett 2022; 13:11601-11609. [PMID: 36480910 DOI: 10.1021/acs.jpclett.2c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy manipulation, including lasers and high-speed emitting devices in the case of superradiance or optical energy storage in that of subradiance. The employment of molecules as the building pieces in these developments requires a precise understanding of the roles of separation, orientation, spatial distribution, and applied fields, which remains challenging for theory and experiments. These questions are addressed here through ab initio quantum dynamics simulations of collective emission on the basis of a novel semiclassical formalism and time-dependent density functional theory. By establishing the configurations leading to decoherence and how the fine-tuning of a pulse can accumulate or release optical energy in H2 arrays, this report provides fundamental insight toward the design of real superradiant and subradiant devices.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EHA, Argentina
| | - Esteban D Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EHA, Argentina
| | - Tchavdar N Todorov
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, BelfastBT7 1NN, United Kingdom
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EHA, Argentina
| |
Collapse
|
11
|
Morzan UN, Díaz Mirón G, Grisanti L, González Lebrero MC, Kaminski Schierle GS, Hassanali A. Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule? J Phys Chem B 2022; 126:7203-7211. [PMID: 36128666 DOI: 10.1021/acs.jpcb.2c04280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While in the vast majority of cases fluorescence in biological matter has been attributed to aromatic or conjugated groups, peptides associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, or Huntington's, have been recently shown to display an intrinsic visible fluorescence even in the absence of aromatic residues. This has called the attention of researchers from many different fields, trying to understand the origin of this peculiar behavior and, at the same time, motivating the search for novel strategies to control the optical properties of new biophotonic materials. Today, after nearly 15 years of its discovery, there is a growing consensus about the mechanism underlying this phenomenon, namely, that electronic interactions between non-optically active molecules can result in supramolecular assemblies that are fluorescent. Despite this progress, many aspects of this phenomenon remain uncharted territory. In this Perspective, we lay down the state-of-the-art in the field highlighting the open questions from both experimental and theoretical fronts in this fascinating emerging area of non-aromatic fluorescence.
Collapse
Affiliation(s)
- Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gonzalo Díaz Mirón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Luca Grisanti
- Division of Theoretical Physics, Ruđer Bos̆cković Institute, Bijenic̆ka cesta 54, 10000 Zagreb, Croatia
| | - Mariano C González Lebrero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ali Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
12
|
Sevalkar RR, Glasgow JN, Pettinati M, Marti MA, Reddy VP, Basu S, Alipour E, Kim-Shapiro DB, Estrin DA, Lancaster JR, Steyn AJC. Mycobacterium tuberculosis DosS binds H 2S through its Fe 3+ heme iron to regulate the DosR dormancy regulon. Redox Biol 2022; 52:102316. [PMID: 35489241 PMCID: PMC9062744 DOI: 10.1016/j.redox.2022.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) senses and responds to host-derived gasotransmitters NO and CO via heme-containing sensor kinases DosS and DosT and the response regulator DosR. Hydrogen sulfide (H2S) is an important signaling molecule in mammals, but its role in Mtb physiology is unclear. We have previously shown that exogenous H2S can modulate expression of genes in the Dos dormancy regulon via an unknown mechanism(s). Here, we test the hypothesis that Mtb senses and responds to H2S via the DosS/T/R system. Using UV-Vis and EPR spectroscopy, we show that H2S binds directly to the ferric (Fe3+) heme of DosS (KDapp = 5.30 μM) but not the ferrous (Fe2+) form. No interaction with DosT(Fe2+-O2) was detected. We found that the binding of sulfide can slowly reduce the DosS heme iron to the ferrous form. Steered Molecular Dynamics simulations show that H2S, and not the charged HS- species, can enter the DosS heme pocket. We also show that H2S increases DosS autokinase activity and subsequent phosphorylation of DosR, and H2S-mediated increases in Dos regulon gene expression is lost in Mtb lacking DosS. Finally, we demonstrate that physiological levels of H2S in macrophages can induce DosR regulon genes via DosS. Overall, these data reveal a novel mechanism whereby Mtb senses and responds to a third host gasotransmitter, H2S, via DosS(Fe3+). These findings highlight the remarkable plasticity of DosS and establish a new paradigm for how bacteria can sense multiple gasotransmitters through a single heme sensor kinase.
Collapse
Affiliation(s)
- Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Martín Pettinati
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Marcelo A Marti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Dario A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Jack R Lancaster
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
13
|
Yusef Buey M, Mineva T, Rapacioli M. Coupling density functional based tight binding with class 1 force fields in a hybrid QM/MM scheme. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02878-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
Intrinsic fluorescence of nonaromatic amino acids is a puzzling phenomenon with an enormous potential in biophotonic applications. The physical origins of this effect, however, remain elusive. Herein, we demonstrate how specific hydrogen bond networks can modulate fluorescence. We highlight the key role played by short hydrogen bonds, present in the protein structure, on the ensuing fluorescence. We provide detailed experimental and molecular evidence to explain these unusual nonaromatic optical properties. Our findings should benefit the design of novel optically active biomaterials for applications in biosensing and imaging. Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.
Collapse
|
15
|
Pedron FN, Issoglio F, Estrin DA, Scherlis DA. Electron transfer pathways from quantum dynamics simulations. J Chem Phys 2021; 153:225102. [PMID: 33317287 DOI: 10.1063/5.0023577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, -1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.
Collapse
Affiliation(s)
- F N Pedron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - F Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - D A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - D A Scherlis
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| |
Collapse
|
16
|
Bustamante CM, Gadea ED, Horsfield A, Todorov TN, González Lebrero MC, Scherlis DA. Dissipative Equation of Motion for Electromagnetic Radiation in Quantum Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:087401. [PMID: 33709735 DOI: 10.1103/physrevlett.126.087401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The dynamical description of the radiative decay of an electronically excited state in realistic many-particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for C^{2+}, B^{+}, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in accord with experimental values of 0.57±0.02, 0.86±0.07, and 1.77-2.5 ns. Hence, the present development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| | - Esteban D Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| | - Andrew Horsfield
- Department of Materials, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tchavdar N Todorov
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Mariano C González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
| |
Collapse
|
17
|
Díaz Mirón G, González Lebrero MC. Fluorescence Quantum Yields in Complex Environments from QM-MM TDDFT Simulations: The Case of Indole in Different Solvents. J Phys Chem A 2020; 124:9503-9512. [PMID: 33166141 DOI: 10.1021/acs.jpca.0c06631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence is commonly exploited to probe microscopic properties. An important example is tryptophan in protein environments, where variations in fluorescence quantum yield, and in absorption and emission maxima, are used as indicators of changes in the environment. Modeling the fluorescence quantum yield requires the determination of both radiative and nonradiative decay constants, both on the potential energy surface of the excited fluorophore. Furthermore, the inclusion of complex environments implies their accurate representation as well as extensive configurational sampling. In this work, we present and test various methodologies based on time-dependent density functional theory (TDDFT) and quantum mechanics/molecular mechanics (QM/MM) dynamics that take all of these requirements into account to provide a quantitative prediction of the effect of the environment on the fluorescence quantum yield of indole, a tryptophan fluorophore. This investigation paves the way for applications to the realistic spectroscopic characterization of the local protein environment of tryptophan from computer simulations.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina.,Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Mariano C González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina.,Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
18
|
Morzan UN, Videla PE, Soley MB, Nibbering ETJ, Batista VS. Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Condensed Matter Section The Abdus Salam International Center for Theoretical Physics Strada Costiera 11 34151 Trieste Italy
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
| | - Pablo E. Videla
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Energy Sciences Institute Yale University P.O. Box 27394 West Haven CT 06516-7394 USA
| | - Micheline B. Soley
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Yale Quantum Institute Yale University P.O. Box 208334 New Haven CT 06520-8263 USA
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy Max Born Strasse 2A 12489 Berlin Germany
| | - Victor S. Batista
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Energy Sciences Institute Yale University P.O. Box 27394 West Haven CT 06516-7394 USA
| |
Collapse
|
19
|
Morzan UN, Videla PE, Soley MB, Nibbering ETJ, Batista VS. Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X-Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2020; 59:20044-20048. [PMID: 32691867 PMCID: PMC7693200 DOI: 10.1002/anie.202007192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Ultrafast UV-pump/soft-X-ray-probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1 Π1 excited state, with emphasis on the transient response in the soft-X-ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K-edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I-CN bond cleavage process. The simulated UV-pump/soft-X-ray-probe spectra exhibit detailed dynamical information, including a time-domain signature for coherent vibration associated with the photogenerated CN fragment.
Collapse
Affiliation(s)
- Uriel N. Morzan
- Condensed Matter SectionThe Abdus Salam International Center for Theoretical PhysicsStrada Costiera 1134151TriesteItaly
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
| | - Pablo E. Videla
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Energy Sciences InstituteYale UniversityP.O. Box 27394West HavenCT06516-7394USA
| | - Micheline B. Soley
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Department of Chemistry and Chemical BiologyHarvard University12 Oxford StreetCambridgeMA02138USA
- Yale Quantum InstituteYale UniversityP.O. Box 208334New HavenCT06520-8263USA
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyMax Born Strasse 2A12489BerlinGermany
| | - Victor S. Batista
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Energy Sciences InstituteYale UniversityP.O. Box 27394West HavenCT06516-7394USA
| |
Collapse
|
20
|
Benchoam D, Semelak JA, Cuevasanta E, Mastrogiovanni M, Grassano JS, Ferrer-Sueta G, Zeida A, Trujillo M, Möller MN, Estrin DA, Alvarez B. Acidity and nucleophilic reactivity of glutathione persulfide. J Biol Chem 2020; 295:15466-15481. [PMID: 32873707 DOI: 10.1074/jbc.ra120.014728] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Persulfides (RSSH/RSS-) participate in sulfur trafficking and metabolic processes, and are proposed to mediate the signaling effects of hydrogen sulfide (H2S). Despite their growing relevance, their chemical properties are poorly understood. Herein, we studied experimentally and computationally the formation, acidity, and nucleophilicity of glutathione persulfide (GSSH/GSS-), the derivative of the abundant cellular thiol glutathione (GSH). We characterized the kinetics and equilibrium of GSSH formation from glutathione disulfide and H2S. A pKa of 5.45 for GSSH was determined, which is 3.49 units below that of GSH. The reactions of GSSH with the physiologically relevant electrophiles peroxynitrite and hydrogen peroxide, and with the probe monobromobimane, were studied and compared with those of thiols. These reactions occurred through SN2 mechanisms. At neutral pH, GSSH reacted faster than GSH because of increased availability of the anion and, depending on the electrophile, increased reactivity. In addition, GSS- presented higher nucleophilicity with respect to a thiolate with similar basicity. This can be interpreted in terms of the so-called α effect, i.e. the increased reactivity of a nucleophile when the atom adjacent to the nucleophilic atom has high electron density. The magnitude of the α effect correlated with the Brønsted nucleophilic factor, βnuc, for the reactions with thiolates and with the ability of the leaving group. Our study constitutes the first determination of the pKa of a biological persulfide and the first examination of the α effect in sulfur nucleophiles, and sheds light on the chemical basis of the biological properties of persulfides.
Collapse
Affiliation(s)
- Dayana Benchoam
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Jonathan A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Argentina
| | - Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Juan S Grassano
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Argentina
| | - Gerardo Ferrer-Sueta
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías N Möller
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Argentina.
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
21
|
Ramirez FF, Bustamente CM, González Lebrero MC, Scherlis DA. Transport and Spectroscopy in Conjugated Molecules: Two Properties and a Single Rationale. J Chem Theory Comput 2020; 16:2930-2940. [DOI: 10.1021/acs.jctc.9b01122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Francisco F. Ramirez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Carlos M. Bustamente
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
22
|
Foglia NO, Bari SE, Estrin DA. In Silico Insight into the Reductive Nitrosylation of Ferric Hemeproteins. Inorg Chem 2020; 59:3631-3641. [DOI: 10.1021/acs.inorgchem.9b03198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicolás O. Foglia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Quı́mica de los Materiales, Medio Ambiente y Energı́a, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Buenos Aires, Argentina
| | - Sara E. Bari
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Quı́mica de los Materiales, Medio Ambiente y Energı́a, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Darío A. Estrin
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Quı́mica de los Materiales, Medio Ambiente y Energı́a, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Buenos Aires, Argentina
| |
Collapse
|
23
|
Foglia NO, González Lebrero MC, Biekofsky RR, Estrin DA. Reaction Path Analysis from Potential Energy Contributions Using Forces: An Accessible Estimator of Reaction Coordinate Adequacy. J Chem Theory Comput 2020; 16:1618-1629. [PMID: 31999449 DOI: 10.1021/acs.jctc.9b01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calculation of potential energy and free-energy profiles along complex chemical reactions or rare event processes is of great interest because of their importance for many areas in chemistry, molecular biology, and material science. One typical way to generate these profiles is to add a bias potential to modify the energy surface, which can act on a selected degree of freedom in the system. However, in these cases, the quality of the result is strongly dependent on the selection of the degree of freedom over which this bias potential acts. The present work introduces a simple method for the analysis of the degree of freedom selected to describe a chemical process. The proposed methodology is based on the decomposition of contributions to the potential energy profiles by the integration of forces along a reaction path, which allows evaluating the different contributions to the energy change. This could be useful for discriminating the contributions to the energy arising from different regions of the system, which is particularly useful in systems with complex environments that must be represented using hybrid quantum mechanics/molecular mechanics schemes. Furthermore, this methodology allows in generating a quick and simple analysis of the degree of freedom which is used to describe the potential energy profile associated with the reactive process. This is computationally more accessible than the corresponding free-energy profile and can therefore be used as a simple estimator of reaction coordinate adequacy.
Collapse
Affiliation(s)
- Nicolás O Foglia
- Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mariano C González Lebrero
- Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Rodolfo R Biekofsky
- Moebius Research Ltd., Systems Biomedicine, 24 Chedworth House, West Green Rd, N15 5EH London, U.K
| | - Darío A Estrin
- Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
24
|
Semelak JA, Battistini F, Radi R, Trujillo M, Zeida A, Estrin DA. Multiscale Modeling of Thiol Overoxidation in Peroxiredoxins by Hydrogen Peroxide. J Chem Inf Model 2019; 60:843-853. [PMID: 31718175 DOI: 10.1021/acs.jcim.9b00817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we employ a multiscale quantum-classical mechanics (QM/MM) scheme to investigate the chemical reactivity of sulfenic acids toward hydrogen peroxide, both in aqueous solution and in the protein environment of the peroxiredoxin alkyl hydroperoxide reductase E from Mycobacterium tuberculosis (MtAhpE). The reaction of oxidation of cysteine with hydrogen peroxides, catalyzed by peroxiredoxins, is usually accelerated several orders of magnitude in comparison with the analogous reaction in solution. The resulting cysteine sulfenic acid is then reduced in other steps of the catalytic cycle, recovering the original thiol. However, under some conditions, the sulfenic acid can react with another equivalent of oxidant to form a sulfinic acid. This process is called overoxidation and has been associated with redox signaling. Herein, we employed a multiscale scheme based on density function theory calculations coupled to the classical AMBER force field, developed in our group, to establish the molecular basis of thiol overoxidation by hydrogen peroxide. Our results suggest that residues that play key catalytic roles in the oxidation of MtAhpE are not relevant in the overoxidation process. Indeed, the calculations propose that the process is unfavored by this particular enzyme microenvironment.
Collapse
Affiliation(s)
- J A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales , Ciudad Universitaria, Pab. 2 , CP 1428 , Buenos Aires , Argentina
| | - F Battistini
- Institute for Research in Biomedicine (IRB Barcelona) , The Barcelona Institute of Science and Technology , 08028 Barcelona , Spain
| | - R Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) , Facultad de Medicina , Av. Gral. Flores 2125 , CP 11800 Montevideo , Uruguay
| | - M Trujillo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) , Facultad de Medicina , Av. Gral. Flores 2125 , CP 11800 Montevideo , Uruguay
| | - A Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) , Facultad de Medicina , Av. Gral. Flores 2125 , CP 11800 Montevideo , Uruguay
| | - D A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales , Ciudad Universitaria, Pab. 2 , CP 1428 , Buenos Aires , Argentina
| |
Collapse
|
25
|
Herrera MG, Noguera ME, Sewell KE, Agudelo Suárez WA, Capece L, Klinke S, Santos J. Structure of the Human ACP-ISD11 Heterodimer. Biochemistry 2019; 58:4596-4609. [PMID: 31664822 DOI: 10.1021/acs.biochem.9b00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.
Collapse
Affiliation(s)
- María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina.,Instituto de Química y Fisicoquímica Biológicas , Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Karl Ellioth Sewell
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| | - William Armando Agudelo Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC) , Av. 50 No. 26-20 , Bogotá D.C. , Colombia.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir , IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM , Av. Patricias Argentinas 435 , C1405BWE Buenos Aires , Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina
| |
Collapse
|
26
|
Ramírez F, Díaz Mirón G, González Lebrero MC, Scherlis DA. QM–MM Ehrenfest dynamics from first principles: photodissociation of diazirine in aqueous solution. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|