1
|
Sardiña P, Sharp S, Saaristo M, Coggan T, Hoak M, Leahy P. A quantitative classification method of land uses and assessment of per-and poly-fluoroalkyl substances (PFAS) occurrence in freshwater environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125272. [PMID: 39515568 DOI: 10.1016/j.envpol.2024.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
We developed a quantitative method for classifying land uses for PFAS-related investigations in freshwater environments and determined PFAS ambient concentrations associated with specific land-use classes. Furthermore, our study presents a comprehensive assessment of the ambient occurrence and risks of PFAS mixtures beyond the usually studied PFOS-PFOA mixtures. Eighty-five inland (freshwater only) sites were sampled for water, sediment, and riparian soil in Victoria, south-east Australia, and analyzed for 33 PFAS. PFAS were detected in 91% of water samples, 34% of sediment samples, and 28% of riparian soil samples. Four land-use classes were defined: remote, agricultural, mixed, and urban. In the remote land-use class, only PFOS was detected at a low ambient concentration (0.0002 μg/L) in one water sample. Short-chain PFCA were frequently detected in the agricultural and mixed water samples. PFBA had the highest median ambient concentration in both land uses (ca. 0.01 μg/L), contributing to both ΣPFAS (40%) and ΣPFCA (50%) concentrations. In the urban land-use class, several congeners (PFBA, PFPeA, PFHxA, PFOA, PFHxS, and PFOS) had median ambient concentrations at or close to 0.01 μg/L and contributed similarly to ΣPFAS (10-20%). Elevated risk to the aquatic environment was found only for PFOS in two mixed and eight urban sites. This pattern was consistent with the finding for PFAS mixtures, where the elevated risk was driven by PFOS at those same sites. Our study provides critical information about environmentally relevant ambient concentrations and PFAS mixtures. This information, together with the land-use classification approach presented herein, can be used as reference levels for several critical purposes, including identifying PFAS-contaminated sites, informing land use planning and development decisions, setting standards and guidelines, and tracking changes over time.
Collapse
Affiliation(s)
- Paula Sardiña
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia.
| | - Simon Sharp
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Minna Saaristo
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Timothy Coggan
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Molly Hoak
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| | - Paul Leahy
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria, 3085, Australia
| |
Collapse
|
2
|
Qie M, Jia X, Li X, Li Y, Wu X, Shi Y, Cai Y. Spatial distribution, source, and fate of per- and polyfluoroalkyl substances in the surrounding environment of closed and converted fluorochemical factories in Fujian, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172766. [PMID: 38670387 DOI: 10.1016/j.scitotenv.2024.172766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Following the closure of perfluorooctanesulfonic acid (PFOS) production to comply with the Stockholm Convention regulations or restrictions, manufacturers have shifted to developing short-chain alternatives like perfluorobutane sulfonic acid (PFBS). However, limited research has been conducted to evaluate the impact of this transition on the surrounding environment. This study focused on the spatial distribution, source, and fate of 18 per- and polyfluoroalkyl substances (PFAS) in the surrounding environment of the closure and transformation of two PFAS manufacturing plants in Fujian, China. The total concentrations of PFAS in surface water, sediment, and fish were within the range of 48.9-72,400 ng/L, 0.930-57.6 ng/g dw, and 3.33-1245 ng/g dw, respectively. The predominant compounds were PFBS, PFOS, and perfluorooctanoic acid (PFOA) among the three matrices. Principal component analysis highlighted significant differences in PFAS profiles across different regions of the Futun River, suggesting diverse sources of PFAS. Source apportionment indicated that despite being closed or converted for almost three years, the two factories still significantly impacted the surrounding environment. The shutdown factory mainly released PFAS characterized by perfluoroalkyl sulfonic acids. In contrast, the PFAS were released from conversion plant with the fingerprint being PFBS and perfluoroalkyl carboxylic acids. The conversion of the factories has resulted in the coexistence of long-chain and short-chain PFAS, which has complicated the composition of PFAS in the environment. As sewage treatment plant could not effectively remove PFBS and perfluorobutanoic acid (PFBA) in wastewater, and due to their strong migration ability, these chemicals had a wider impact range, increasing the difficulty of environmental restoration and management. Risk assessment showed that PFAS downstream of the two factories posed high or moderate ecological risks. Specifically, PFBS, PFOS, and PFOA displayed the highest risk quotients and should be paid further attention.
Collapse
Affiliation(s)
- Mengjie Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Barreca S, Mancuso MMM, Sacristán D, Pace A, Savoca D, Orecchio S. Determination of Perfluorooctanoic Acid (PFOA) in the Indoor Dust Matter of the Sicily (Italy) Area: Analysis and Exposure Evaluations. TOXICS 2023; 12:28. [PMID: 38250983 PMCID: PMC10819494 DOI: 10.3390/toxics12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Perfluorooctanoic acid (PFOA) in environmental matrices is increasingly being studied due to its environmental persistence, global occurrence, bioaccumulation, and associated human health risks. Some indoor environments can significantly impact the health of occupants due to pollutants in indoor air and household dust. To investigate the potential exposure of individuals to PFOA in specific confined environments, this study reports an analytical method and results concerning the determination of PFOA in household dust, used as a passive sampler. To the best of our knowledge, this paper represents one of the first studies concerning PFOA concentrations in indoor dust collected in the south of Italy, within the European region. A total of twenty-three dust samples were collected from two different areas of Sicily (Palermo and Milena), extracted, and analyzed by an UHPLC-QTOF-MS/MS system. Finally, PFOA exposure was estimated using a new index (Indoor PFOA Exposure Index, IPEX) that incorporates the PFOA levels in dust, exposure time, and the correlation between the PFOA in dust and blood. It was then compared across four different exposure groups, revealing that PFOA exposure for people working in chemistry laboratories was evaluated to be ten times higher than the exposure for homemakers.
Collapse
Affiliation(s)
- Salvatore Barreca
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Michele Marco Mizio Mancuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
| | - Daniel Sacristán
- Department of Plant Biology, University of Valencia Córdoba, 46100 Valencia, Spain;
- Department of Soil and Environmental Quality Department, Centro de Investigaciones sobre Desertificación-CIDE (CSIC-Universitat de València-Generalitat Valenciana), Carretera Moncada-Náquera km 4.5, 46113 Valencia, Spain
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
- NBFC—National Biodiversity Future Center, 90123 Palermo, Italy
| | - Santino Orecchio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
| |
Collapse
|
4
|
Bedi M, Sapozhnikova Y, Taylor RB, Ng C. Per- and polyfluoroalkyl substances (PFAS) measured in seafood from a cross-section of retail stores in the United States. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132062. [PMID: 37480610 DOI: 10.1016/j.jhazmat.2023.132062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Seafood is a dominant source of human exposure to per- and polyfluoroalkyl substances (PFAS). Existing studies on foodborne PFAS exposure have focused on only a subset of these compounds. Here, we conducted a pilot study to screen 33 PFAS in 46 seafood samples from a cross-section of national and local stores in the US. Low levels of 8 PFAS were measured in 74% of the samples, predominated by PFHxS (59%). Total PFAS ranged between 0.12 and 20 ng/g; highest levels were measured in Estonia-sourced smelt. The highest median levels were of PFOA (0.84 ng/g) with elevated concentrations found in Chinese clams (2.4 ng/g), which exceeds the EU established maximum limits (MLs). Measured levels of PFHxS, PFOA, and PFNA also exceeded MLs in 24%, 7%, and 5% of the samples, respectively. For average consumption levels, exposures were below the EU established tolerable weekly intakes (TWIs). However, for more frequent consumption of flounder, catfish, and cod, exposures exceeded regulations, which warrants identifying vulnerable high seafood consuming populations. Accidental PFBS cross contamination from sample storage bags resulted in 100% detection in samples, highlighting the problem with post-purchase food handling practices such as storage and cooking that could also have a substantial impact on human exposure, potentially in larger amounts than the (sea)food itself.
Collapse
Affiliation(s)
- Megha Bedi
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
6
|
Strynar M, McCord J, Newton S, Washington J, Barzen-Hanson K, Trier X, Liu Y, Dimzon IK, Bugsel B, Zwiener C, Munoz G. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:575-588. [PMID: 37516787 PMCID: PMC10561087 DOI: 10.1038/s41370-023-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples. NTA fills at least a portion of this data gap. OBJECTIVES Entrance into the study of novel PFAS discovery requires identification techniques such as HRMS (e.g., QTOF and Orbitrap) instrumentation. This requires practical knowledge of best approaches depending on the purpose of the analyses. The utility of HRMS applications for PFAS discovery is unquestioned and will likely play a significant role in many future environmental and human exposure studies. METHODS/RESULTS PFAS have some characteristics that make them standout from most other chemicals present in samples. Through a series of tell-tale PFAS characteristics (e.g., characteristic mass defect range, homologous series and characteristic fragmentation patterns), and case studies different approaches and remaining challenges are demonstrated. IMPACT STATEMENT The identification of novel PFAS via non-targeted analysis using high resolution mass spectrometry is an important and difficult endeavor. This synopsis document will hopefully make current and future efforts on this topic easier to perform for novice and experienced alike. The typical time devoted to NTA PFAS investigations (weeks to months or more) may benefit from these practical steps employed.
Collapse
Affiliation(s)
- Mark Strynar
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA.
| | - James McCord
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - Seth Newton
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | - John Washington
- USEPA Office of Research and Development Center for Environmental Measurement and Modeling, Durham, NC and Athens, GA, USA
| | | | - Xenia Trier
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Ian Ken Dimzon
- Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Gabriel Munoz
- Université de Montréal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
7
|
Jin B, Liu H, Che S, Gao J, Yu Y, Liu J, Men Y. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. NATURE WATER 2023; 1:451-461. [PMID: 38405335 PMCID: PMC10888525 DOI: 10.1038/s44221-023-00077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/04/2023] [Indexed: 02/27/2024]
Abstract
Chlorinated polyfluorocarboxylic acids (Cl-PFCAs) derived from the widely used chlorotrifluoroethylene (CTFE) polymers and oligomers may enter and influence the aquatic environment. Here, we report significant defluorination of Cl-PFCAs by an anaerobic microbial community via novel pathways triggered by anaerobic microbial dechlorination. Cl-PFCAs first underwent microbial reductive, hydrolytic, and eliminative dechlorination, and it was the hydrolytic dechlorination that led to significant spontaneous defluorination. Hydrolytic dechlorination was favored with increased Cl-substitutions. An isolated, highly enriched anaerobic defluorinating culture was dominated by two genomes closest to Desulfovibrio aminophilus and Sporomusa sphaeroides, both of which exhibited active defluorination of CTFE tetramer acid. It implies the critical role played by anaerobic non-respiratory hydrolytic dechlorination in the fate of chlorinated polyfluoro-chemicals in natural and engineered water environments. The greatly enhanced biodegradability by Cl-substitutions also sheds light on the design of cost-effective treatment biotechnologies, as well as alternative PFAS that are readily biodegradable and less toxic.
Collapse
Affiliation(s)
- Bosen Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Huaqing Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Shun Che
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, 92521, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
| |
Collapse
|
8
|
Chen Y, Zhang H, Liu Y, Bowden JA, Tolaymat TM, Townsend TG, Solo-Gabriele HM. Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. CHEMOSPHERE 2023; 318:137903. [PMID: 36669537 PMCID: PMC10536789 DOI: 10.1016/j.chemosphere.2023.137903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), found in many consumer products, are commonly disposed of in landfills at the end of their service lives. To identify landfill liquids that should be prioritized for treatment, this study aimed to evaluate PFAS levels in different aqueous samples from landfills and identify relationships between PFAS and landfill characteristics. Twenty-six PFAS including 11 perfluoroalkyl carboxylic acids (PFCAs), 7 perfluoroalkyl sulfonates (PFSAs), and 8 perfluoroalkyl acid precursors (PFAA-precursors) were measured in municipal solid waste (MSW) leachate, construction and demolition debris (CDD) leachate, municipal solid waste incineration (MSWI) ash leachate, gas condensate, stormwater, and groundwater from landfills. Based on the median, results show that PFAS levels in MSW leachate were the highest (10,000 ng L-1), CDD leachate were intermediate (6200 ng L-1), and MSWI ash leachate were the lowest (1300 ng L-1) among the leachates evaluated. PFAS levels in gas condensate (7000 ng L-1) were similar to MSW leachate. PFAS in stormwater and groundwater were low (medians were less than 500 ng L-1). Dominant subgroups included PFCAs and PFAA-precursors in all leachates. PFSAs were also found in CDD leachate, PFAA-precursors in gas condensate, and PFCAs in stormwater and groundwater. Landfill characteristics significantly correlated with ∑26PFAS included waste proportions (percentage of MSWI ash in landfill, |rs| = 0.22), operational status (active or not, |rs| = 0.27) and rainfall (30-d cumulative rainfall, |rs| = 0.39). The results from this study can be used to prioritize which landfills and which reservoir of liquids (and corresponding subgroup of PFAS) to target for PFAS management.
Collapse
Affiliation(s)
- Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Thabet M Tolaymat
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, Florida 33146, United States.
| |
Collapse
|
9
|
Labine LM, Oliveira Pereira EA, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Comparison of sub-lethal metabolic perturbations of select legacy and novel perfluorinated alkyl substances (PFAS) in Daphnia magna. ENVIRONMENTAL RESEARCH 2022; 212:113582. [PMID: 35661729 DOI: 10.1016/j.envres.2022.113582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of pollutants of concern due to their ubiquitous presence, persistence, and toxicity in aquatic environments. Legacy PFAS pollutants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been more widely studied in aquatic environments. However, replacement PFAS, such as ammonium perfluoro (2-methyl-3-oxahexanoate; GenX) are increasingly being detected with little known information surrounding their toxicity. Here, Daphnia magna, a model organism for freshwater ecotoxicology was used to compare the acute sub-lethal toxicity of PFOS, PFOA, GenX, and PFAS mixtures. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the targeted polar metabolic profile extracted from single Daphnia was quantified to investigate perturbations in the exposure groups versus the unexposed organisms. Multivariate statistical analyses demonstrated significant non-monotonic separation in PFOA, GenX, and PFAS mixture exposures. Sub-lethal exposure to concentrations of PFOS did not lead to significant separation in multivariate analyses. Univariate statistics and pathway analyses were used to elucidate the mode of action of PFAS exposure. Exposure to all individual PFAS led to significant perturbations in many amino acids including cysteine, histidine, tryptophan, glycine, and serine. These perturbations are consistent with biochemical pathway disruptions in the pantothenate and Coenzyme A (CoA) biosynthesis, thiamine metabolism, histidine metabolism, and aminoacyl-tRNA biosynthesis pathways. Overall, the collected metabolomic data is consistent with disruptions in energy metabolism and protein synthesis as the primary mode of action of sub-lethal PFAS exposure. Secondary modes of action among individual pollutant exposures demonstrated that the structural properties (carboxylic acid vs. sulfonic acid group) may play a role in the metabolic perturbations observed. Sub-lethal exposure to PFAS mixtures highlighted a mixed response when compared to the individual pollutants (PFOS, PFOA, and GenX). Overall, this study emphasizes the niche capability of environmental metabolomics to differentiate secondary modes of action from metabolic perturbations in both single pollutant and pollutant mixtures within the same chemical class.
Collapse
Affiliation(s)
- Lisa M Labine
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada, M4V 1M2
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada, A1B 3X7
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
10
|
Zhang H, Chen Y, Liu Y, Bowden JA, Townsend TG, Solo-Gabriele HM. Do PFAS changes in landfill leachate treatment systems correlate with changes in physical chemical parameters? WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:49-59. [PMID: 35926281 DOI: 10.1016/j.wasman.2022.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found at relatively elevated concentrations in landfill leachates. Some landfill facilities treat physical-chemical parameters of their leachates using on-site leachate treatment systems before discharge. The objective of this study was to evaluate whether changes in physical-chemical parameters of leachate at on-site treatment systems (including bulk measurements, oxygen demanding components, and metals) were associated with concentration changes in PFAS. Leachates were evaluated at 15 on-site treatment facilities which included pond systems, aeration tanks, powdered activated carbon (PAC), sand filtration, reverse osmosis (RO) and combination treatment processes. Results show that most physical-chemical parameters and PFAS were significantly reduced in RO systems (over 90 %). For pond systems, statistically significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and the changes in pH, alkalinity, ammonia, and some metals. Significant correlations were also found between ∑8PFAAs precursors changes and specific conductivity (SPC), pH, alkalinity, ammonia, and metals changes. For aeration tank systems, significant correlations (rs > 0.6, p < 0.05) were observed between ∑26PFAS changes and changes in total dissolved solids and zinc, and between the changes of ∑8PFAAs precursors and field pH. These correlations are believed to be associated with rainfall dilution and precipitation of calcium carbonate and other metals as leachate is introduced to the atmosphere.
Collapse
Affiliation(s)
- Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
11
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
12
|
Neuwald IJ, Hübner D, Wiegand HL, Valkov V, Borchers U, Nödler K, Scheurer M, Hale SE, Arp HPH, Zahn D. Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6380-6390. [PMID: 35507024 DOI: 10.1021/acs.est.1c07949] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been a focal point of environmental chemistry and chemical regulation in recent years, culminating in a shift from individual PFAS regulation toward a PFAS group regulatory approach in Europe. PFASs are a highly diverse group of substances, and knowledge about this group is still scarce beyond the well-studied, legacy long-chain, and short-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs). Herein, quantitative and semiquantitative data for 43 legacy short-chain and ultra-short-chain PFASs (≤2 perfluorocarbon atoms for PFCAs, ≤3 for PFSAs and other PFASs) in 46 water samples collected from 13 different sources of German drinking water are presented. The PFASs considered include novel compounds like hexafluoroisopropanol, bis(trifluoromethylsulfonyl)imide, and tris(pentafluoroethyl)trifluorophosphate. The ultra-short-chain PFASs trifluoroacetate, perfluoropropanoate, and trifluoromethanesulfonate were ubiquitous and present at the highest concentrations (98% of sum target PFAS concentrations). "PFAS total" parameters like the adsorbable organic fluorine (AOF) and total oxidizable precursor (TOP) assay were found to provide only an incomplete picture of PFAS contamination in these water samples by not capturing these highly prevalent ultra-short-chain PFASs. These ultra-short-chain PFASs represent a major challenge for drinking water production and show that regulation in the form of preventive measures is required to manage them.
Collapse
Affiliation(s)
- Isabelle J Neuwald
- Hochschule Fresenius gemGmbH, Limburger Straße 2, Idstein 65510, Germany
| | - Daniel Hübner
- Hochschule Fresenius gemGmbH, Limburger Straße 2, Idstein 65510, Germany
| | - Hanna L Wiegand
- IWW Zentrum Wasser, Moritzstraße 26, Mülheim an der Ruhr 45476, Germany
| | - Vassil Valkov
- IWW Zentrum Wasser, Moritzstraße 26, Mülheim an der Ruhr 45476, Germany
| | - Ulrich Borchers
- IWW Zentrum Wasser, Moritzstraße 26, Mülheim an der Ruhr 45476, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Sarah E Hale
- Norwegian Geotechnical Institute, Postboks 3930 Ulleval Stadion, Oslo 0806, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute, Postboks 3930 Ulleval Stadion, Oslo 0806, Norway
- Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Daniel Zahn
- Hochschule Fresenius gemGmbH, Limburger Straße 2, Idstein 65510, Germany
| |
Collapse
|
13
|
Dixit F, Munoz G, Mirzaei M, Barbeau B, Liu J, Duy SV, Sauvé S, Kandasubramanian B, Mohseni M. Removal of Zwitterionic PFAS by MXenes: Comparisons with Anionic, Nonionic, and PFAS-Specific Resins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6212-6222. [PMID: 35533009 DOI: 10.1021/acs.est.1c03780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zwitterionic per- and polyfluoroalkyl substances are increasingly detected in aquatic environments. The magnitude of their concentration and increased frequency of detection worldwide raise questions on their presence in drinking water and associated health risk. Scientific knowledge on the identification of treatment technologies to effectively capture such zwitterionic PFAS from contaminated water sources remains largely unknown. In this study, we investigated the application of anionic organic scavenger ion exchange (IX) resins (A860), nonionic IX resins (XAD 4 and XAD 7), PFAS-specific resins (A694 and A592), and Ti3C2 MXenes (novel two-dimensional metal carbides) for the removal of select fluorotelomer zwitterionic PFAS from natural waters. The cumulative removal of zwitterionic PFAS at pH ∼ 7 follows the order: Ti3C2 MXenes > A694 > A592 > A860 > XAD 4 ∼ XAD 7. Ti3C2 MXenes were able to capture >75% of the total influent zwitterionic PFAS and the performance remained consistent in natural and synthetic water. Ti3C2 MXenes also exhibited efficient regeneration (>90% recovery) with 0.4 M Na2SO3 solution, while the regeneration efficacy of other IX resins generally remained below 20%. Treatment with ∼180 J/cm2 UV dosage in the 0.4 M Na2SO3 regenerant brine solution yielded >99.9% reduction in the zwitterionic PFAS concentration indicating that UV-sulfite systems exhibit promising potential for the treatment of zwitterionic PFAS concentrates.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Mahboubeh Mirzaei
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Ecole Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0G4, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), 411025 Pune, India
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
14
|
Martinez B, Da Silva BF, Aristizabal-Henao JJ, Denslow ND, Osborne TZ, Morrison ES, Bianchi TS, Bowden JA. Increased levels of perfluorooctanesulfonic acid (PFOS) during Hurricane Dorian on the east coast of Florida. ENVIRONMENTAL RESEARCH 2022; 208:112635. [PMID: 34990607 DOI: 10.1016/j.envres.2021.112635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/01/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals commonly found in everyday consumer products and are an emerging concern due to their ubiquitous presence in ecosystems around the world. PFAS exposure, which often occurs through contaminated water, has been linked to several adverse health effects in humans and wildlife. PFAS can be transported in surface water and storm runoff in the nearshore environment. Episodic events, such as hurricanes, are projected to increase in frequency and intensity, and a critical unanswered question is: how do episodic events influence the concentrations and distributions of emerging contaminants, such as PFAS, in coastal systems? Here, we investigated the impact of the 2019 Hurricane Dorian on the Florida coast to assess how natural disasters, such as hurricanes, influence the fate and transport of PFAS in surface water. Water samples collected throughout the St. Augustine Intracoastal waterway before, during, and after the storm were analyzed and compared with baseline concentrations. Ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used in the detection and quantification of 23 and 17 PFAS, respectively. Perfluorooctane sulfonic acid (PFOS) was the compound with the highest concentration across all sampling sites. Mean PFOS levels showed the highest increase of 177% during the hurricane and returned to baseline levels after two days. Our findings highlight the need for continued research focused on understanding how large storms near all coastlines can impact the transport of environmental pollutants, such as PFOS, that can have adverse effects on human and environmental health. Further monitoring of PFAS in coastal systems is necessary to identify potential PFAS hotspots, investigate the impacts of episodic events on PFAS transport, develop mitigation practices capable of reducing the risk of PFAS exposure.
Collapse
Affiliation(s)
- Brian Martinez
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Bianca F Da Silva
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Todd Z Osborne
- Whitney Laboratory for Marine Biosciences, University of Florida, Gainesville, FL, USA
| | - Elise S Morrison
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Thomas S Bianchi
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - John A Bowden
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, an increasing amount of short-chain perfluoroalkyl substance (PFAS) alternatives has been used in industrial and commercial products. However, short-chain PFASs remain persistent, potentially toxic, and extremely mobile, posing potential threats to human health because of their widespread pollution and accumulation in the water cycle. This study systematically summarized the removal effect, operation conditions, treating time, and removal mechanism of various low carbon treatment techniques for short-chain PFASs, involving adsorption, advanced oxidation, and other practices. By the comparison of applicability, pros, and cons, as well as bottlenecks and development trends, the most widely used and effective method was adsorption, which could eliminate short-chain PFASs with a broad range of concentrations and meet the low-carbon policy, although the adsorbent regeneration was undesirable. In addition, advanced oxidation techniques could degrade short-chain PFASs with low energy consumption but unsatisfied mineralization rates. Therefore, combined with the actual situation, it is urgent to enhance and upgrade the water treatment techniques to improve the treatment efficiency of short-chain PFASs, for providing a scientific basis for the effective treatment of PFASs pollution in water bodies globally.
Collapse
|
16
|
Cheng B, Alapaty K, Zartarian V, Poulakos A, Strynar M, Buckley T. Per- and polyfluoroalkyl substances exposure science: current knowledge, information needs, future directions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2021; 0:1-16. [PMID: 34956374 PMCID: PMC8697342 DOI: 10.1007/s13762-021-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances have been documented at all spatial scales with concerns of adverse ecological and human health effects. Human exposures and relative pathway contributions depend on the specific population, their exposure scenarios, and pathways of local sources. OBJECTIVES Provide a narrative overview of (1) current per- and polyfluoroalkyl substances knowledge for sources, concentrations, and exposures; (2) critical per- and polyfluoroalkyl substances exposure information gaps and needs, and (3) United States Environmental Protection Agency's strategies and action plans in collaboration with other federal, industrial, and academic partners. METHODS A literature review was conducted for per- and polyfluoroalkyl substances (primarily perfluorooctane sulfonate and perfluorooctanoic acid) compounds in blood, water, soil, house dust, indoor and outdoor air, consumer products, food, and fish, as well as per- and polyfluoroalkyl substances exposure modeling. RESULTS Large variability exists in measured per- and polyfluoroalkyl substances environmental concentrations and human exposures. Literature indicated that ingestion of food ("background"), drinking water ("contaminated" scenarios), and house dust (for children) are main pathways for perfluorooctane sulfonate and perfluorooctanoic acid. DISCUSSION Needs for addressing critical data gaps are identified. More information is available on long-chain per- and polyfluoroalkyl substances than for replacement and emerging compounds. A large-scale research effort by the United States Environmental Protection Agency and other federal agencies is underway for a better understanding of per- and polyfluoroalkyl substances exposures.
Collapse
Affiliation(s)
- B. Cheng
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Research Participant at U.S. EPA, Research Triangle Park, NC, USA
| | - K. Alapaty
- Office of Research and Development, Atmospheric and Environmental Systems Modeling Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Room E211-A, Research Triangle Park, NC, USA
| | - V. Zartarian
- Office of Research and Development, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Boston, MA, USA
| | - A. Poulakos
- Office of Research and Development, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Boston, MA, USA
- LinTech Global, Inc., 5 Post Office Square, Boston, MA, USA
| | - M. Strynar
- Office of Research and Development, Atmospheric and Environmental Systems Modeling Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Room E211-A, Research Triangle Park, NC, USA
| | - T. Buckley
- Office of Research and Development, Atmospheric and Environmental Systems Modeling Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Room E211-A, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Brennan NM, Evans AT, Fritz MK, Peak SA, von Holst HE. Trends in the Regulation of Per- and Polyfluoroalkyl Substances (PFAS): A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10900. [PMID: 34682663 PMCID: PMC8536021 DOI: 10.3390/ijerph182010900] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022]
Abstract
Products containing per- and polyfluoroalkyl substances (PFAS) have been used for decades in industrial and consumer products. These compounds are persistent in the environment, bioaccumulative, and some are toxic to humans and other animals. Since the early 2000s, laws, policies, and regulations have been implemented to reduce the prevalence of PFAS in the environment and exposures to PFAS. We conducted a scoping literature review to identify how PFAS are regulated internationally, at the U.S. national level, and at the U.S. state level, as well as drivers of and challenges to implementing PFAS regulations in the U.S. This review captured peer-reviewed scientific literature (e.g., PubMed), grey literature databases (e.g., SciTech Premium Collection), Google searches, and targeted websites (e.g., state health department websites). We identified 454 relevant documents, of which 61 discussed the non-U.S. PFAS policy, 214 discussed the U.S. national-level PFAS policy, and 181 discussed the U.S. state-level PFAS policy. The drivers of and challenges to PFAS regulation were identified through qualitative analysis. The drivers of PFAS policy identified were political support for regulation, social awareness of PFAS, economic resource availability, and compelling scientific evidence. The challenges to implementing PFAS regulations were political limitations, economic challenges, unclear scientific evidence, and practical challenges. The implications for PFAS policy makers and other stakeholders are discussed.
Collapse
Affiliation(s)
| | - Abigail Teresa Evans
- Battelle Memorial Institute, Columbus, OH 43201, USA; (N.M.B.); (M.K.F.); (S.A.P.); (H.E.v.H.)
| | | | | | | |
Collapse
|
18
|
Lenka SP, Kah M, Padhye LP. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. WATER RESEARCH 2021; 199:117187. [PMID: 34010737 DOI: 10.1016/j.watres.2021.117187] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/26/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) comprise more than 4,000 anthropogenically manufactured compounds with widescale consumer and industrial applications. This critical review compiles the latest information on the worldwide distribution of PFAS and evaluates their fate in wastewater treatment plants (WWTPs). A large proportion (>30%) of monitoring studies in WWTPs were conducted in China, followed by Europe (30%) and North America (16%), whereas information is generally lacking for other parts of the world, including most of the developing countries. Short and long-chain perfluoroalkyl acids (PFAAs) were widely detected in both the influents (up to 1,000 ng/L) and effluents (15 to >1,500 ng/L) of WWTPs. To date, limited data is available regarding levels of PFAS precursors and ultra-short chain PFAS in WWTPs. Most WWTPs exhibited low removal efficiencies for PFAS, and many studies reported an increase in the levels of PFAAs after wastewater treatment. The analysis of the fate of various classes of PFAS at different wastewater treatment stages (aerobic and/aerobic biodegradation, photodegradation, and chemical degradation) revealed biodegradation as the primary mechanism responsible for the transformation of PFAS precursors to PFAAs in WWTPs. Remediation studies at full scale and laboratory scale suggest advanced processes such as adsorption using ion exchange resins, electrochemical degradation, and nanofiltration are more effective in removing PFAS (~95-100%) than conventional processes. However, the applicability of such treatments for real-world WWTPs faces significant challenges due to the scaling-up requirements, mass-transfer limitations, and management of treatment by-products and wastes. Combining more than one technique for effective removal of PFAS, while addressing limitations of the individual treatments, could be beneficial. Considering environmental concentrations of PFAS, cost-effectiveness, and ease of operation, nanofiltration followed by adsorption using wood-derived biochar and/or activated carbons could be a viable option if introduced to conventional treatment systems. However, the large-scale applicability of the same needs to be further verified.
Collapse
Affiliation(s)
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
19
|
Kabiri S, Centner M, McLaughlin MJ. Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilised using common adsorbents: 1. Effects of perturbations in pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144857. [PMID: 33446338 DOI: 10.1016/j.scitotenv.2020.144857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The global problem of groundwater being contaminated with per- and polyfluoroalkyl substances (PFASs) originating from highly contaminated soils has created a need to remediate these locations. In situ immobilisation of PFASs in soil by applying sorbents is often a preferred low-cost technique to reduce their mobility and leaching to groundwater, but the long-term efficacy of sorbents has not yet been investigated. In this study, the longevity of remediation of two different soils by two common sorbents (RemBind®, and pulverized activated carbon, Filtrasorb™ 400) was assessed. Regulatory agencies often rely on standardised leaching procedures to assess the risk of contaminant mobility in soils. Hence, the Australian Standard Leaching Procedure and the U.S. EPA Leaching Environmental Assessment Framework were applied to quantify the desorption/leaching of a wide range of PFASs from unremediated and remediated soils under a range of pH conditions (pH 2 to 12). Ease of desorption and subsequent leaching from the unremediated soils was related to C-chain length; while short-chain PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. Desorption of long-chain PFASs was also pH dependent in unremediated soils, with desorption being greater at high pH. Both sorbents retained PFASs strongly in the remediated soils (> 99% for most PFASs) across a broad range of pH conditions, with only small differences between the sorbents in terms of efficacy. Both sorbents showed better retention of PFASs under low pH conditions. Remediation of PFAS-contaminated soils with these sorbents could be considered robust and durable in terms of changes in soil pH, with little risk of subsequent PFASs desorption under normal environmental pH conditions. Ultimately, to give regulators and site owners the greatest level of confidence that immobilisation is stable for the longer term, it should also be tested under repeated cycles of leaching and under different conditions.
Collapse
Affiliation(s)
- Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, SA 5064, Australia.
| | - Marc Centner
- ALS, Life Sciences Division, 277 Woodpark Road Smithfield, NSW 2164, Australia
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
20
|
Leang AL, Meyer JE, Manahan CC, Delistraty DA, Rieck RJ, Powell TP, Smith MN, Perkins MS. Regulation of Persistent Chemicals in Hazardous Waste: A Case Study of Washington State, USA. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:455-464. [PMID: 33150999 DOI: 10.1002/ieam.4365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Despite ongoing controversy, several strategic frameworks for defining chemicals of concern (e.g., persistent, bioaccumulative, toxic [PBT]; persistent, mobile, toxic [PMT]; persistent organic pollutant [POP]) share persistence as a key criterion. Persistence should be considered over the entire chemical life cycle from production to disposal, including hazardous waste management. As a case study, we evaluate persistence criteria in hazardous waste regulations in Washington state, USA, illustrate impacts on reported waste, and propose refinements in these criteria. Although Washington state defines persistence based on half-life (>1 y) and specific chemical groups that exceed summed concentration thresholds in waste (i.e., >0.01% halogenated organic compounds [HOCs] and >1.0% polycyclic aromatic hydrocarbons [PAHs]), persistence is typically addressed with HOC and PAH evaluation but seldom with half-life estimation. Notably, persistence is considered (with no specific criteria) in corresponding federal regulations in the United States (Resource Conservation and Recovery Act). Consequently, businesses in Washington state report annual amounts of state hazardous waste (including persistent waste) separately from federal hazardous waste. Total state-only waste, and total state and federal waste combined, nearly doubled (by weight) from 2008 to 2018. For the period 2016 to 2018, persistence criteria captured 17% of state-only waste and 2% of total state and federal waste combined. Two recommendations are proposed to improve persistence criteria in hazardous waste regulations. First, Washington state should consider aligning its half-life criterion with federal and European Union PBT definitions (e.g., 60-120 d) for consistency and provide specific methods for half-life estimation. Second, the state should consider expanding its list of persistent chemical groups (e.g., siloxanes, organometallics) with protective concentration thresholds. Ultimately, to the extent possible, Washington state should strive toward harmonizing persistence in hazardous waste regulations with corresponding criteria in global PBT, PMT, and POP frameworks. Integr Environ Assess Manag 2021;17:455-464. © 2020 SETAC.
Collapse
Affiliation(s)
- Amy L Leang
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Bellevue, Washington, USA
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, Washington, USA
| | - Justin E Meyer
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Bellevue, Washington, USA
| | - Craig C Manahan
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Olympia, Washington, USA
| | - Damon A Delistraty
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Spokane, Washington, USA
| | - Robert J Rieck
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Olympia, Washington, USA
| | - Teague P Powell
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Olympia, Washington, USA
| | - Marissa N Smith
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Olympia, Washington, USA
| | - Myles S Perkins
- Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Bellevue, Washington, USA
| |
Collapse
|
21
|
Göckener B, Weber T, Rüdel H, Bücking M, Kolossa-Gehring M. Human biomonitoring of per- and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. ENVIRONMENT INTERNATIONAL 2020; 145:106123. [PMID: 32949877 DOI: 10.1016/j.envint.2020.106123] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 05/20/2023]
Abstract
The findings of per- and polyfluoroalkyl substances (PFAS) in humans and the environment all over the world have raised concerns and public awareness for this group of man-made chemicals. In the last three decades, this led to different regulatory restrictions for specific PFAS as well as shifts in the production and usage of these substances. In this study, we analyzed the PFAS levels of 100 human blood plasma samples collected from 2009 to 2019 for the German Environmental Specimen Bank (ESB) to further elucidate the time course of exposure towards this substance group as shown by Schröter-Kermani et al., (2013) with samples from 1982 to 2010. A spectrum of 37 PFAS, including perfluorocarboxylic (PFCA) and -sulfonic acids (PFSA) as well as potential precursors and substitutes like ADONA, GenX or F-53B was analyzed by UHPLC coupled with high-resolution mass spectrometry. Validation was successful for 33 of the substances. The two legacy substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were detected in every sample of the 2009-2019 dataset and showed the highest concentrations with ranges of 0.27-14.0 ng/mL and 1.21-14.1 ng/mL, respectively. A significant portion of total PFOS analytes was present as branched isomers (mean: 34 ± 7%). High detection frequencies of 95% and 82% were also found for perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA), respectively, but in lower concentrations (PFHxS: <LOQ - 4.62 ng/mL; PFNA: <LOQ - 3.66 ng/mL) than PFOA and PFOS. Besides other PFCA and PFSA only 8:2 fluorotelomer sulfonic acid (8:2 FtS) and N-methyl perfluorooctane sulfonamidoacetic acid were detected in very few samples. In combination with the previous results from 1982 to 2010, declining temporal trends were observed for all PFAS (PFOA, PFNA, PFHxS, and PFOS) frequently detected in the ESB samples. The results of this study indicate a decrease in human exposure to known PFAS in Germany over the last three decades and emphasize the importance of long-term human biomonitoring studies for investigating the effects of chemical regulation.
Collapse
Affiliation(s)
- Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Till Weber
- German Environment Agency (Umweltbundesamt), Corrensplatz 1, 14195 Berlin, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Mark Bücking
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Monash University, School of Chemistry, 13 Rainforest Walk, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
22
|
Kotthoff M, Fliedner A, Rüdel H, Göckener B, Bücking M, Biegel-Engler A, Koschorreck J. Per- and polyfluoroalkyl substances in the German environment - Levels and patterns in different matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140116. [PMID: 32559548 DOI: 10.1016/j.scitotenv.2020.140116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment mostly originate from emissions of previously unregulated PFAS. However, there are also many documented incidents of accidental releases. To track such releases, it is essential to distinguish between typical background contamination and legally relevant incidents. This requires a comprehensive overview of all PFAS present in the environment, which is currently only possible to a limited extent due to the large variety of individual compounds. In the present study, a multimethod for capturing 41 PFAS including perfluoroalkyl acid (PFAA) precursors is introduced. The applicability of the method was tested on terrestrial, freshwater and marine samples from the German Environmental Specimen Bank (ESB), thereby providing a rough overview of PFAS contamination in German environment. Special focus was put on soil samples from ESB sites across Germany in comparison to soil samples from a polluted site in south-west Germany. The method was successfully applied to environmental samples. In total, 31 PFAS were detected, among them PFAA precursors and fluorinated ethers. Substance patterns differed between sites and matrices. In ESB soil samples from 2014 (n = 11), the sum of all captured PFAS ranged between 0.75 and 19.5 μg kg-1 dry weight (dw), while concentrations between 416 μg kg-1 and 3530 μg kg-1 were detected in samples from the incident site (n = 10). In other matrices, total PFAS concentrations were magnitudes lower. Highest concentrations were observed for PFOS in bream livers from the Saale (226 μg kg-1). Given the heterogeneous patterns, it will require further broadly-based monitoring data to allow for a solid estimation of relevant background levels. The data provided here may support the differentiation between background levels and hotspot contaminations.
Collapse
Affiliation(s)
- Matthias Kotthoff
- Hamm-Lippstadt University of Applied Sciences, Marker Allee 76-78, 59063 Hamm, Germany.
| | - Annette Fliedner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Mark Bücking
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | | | - Jan Koschorreck
- German Environment Agency, Bismarckplatz 1, 14193 Berlin, Germany
| |
Collapse
|
23
|
Guardian MGE, Boongaling EG, Bernardo-Boongaling VRR, Gamonchuang J, Boontongto T, Burakham R, Arnnok P, Aga DS. Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries. CHEMOSPHERE 2020; 256:127115. [PMID: 32454354 DOI: 10.1016/j.chemosphere.2020.127115] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 05/06/2023]
Abstract
The present study focuses on the determination of the occurrence and levels of per- and polyfluoroalkyl substances (PFASs) in the drinking and source water from the Philippines and Thailand. A total of 46 samples (18 commercial bottled waters, 5 drinking water from vending machine (re-fill stations) and 23 source water) were analyzed using liquid chromatography with tandem high-resolution mass spectrometry. Using the targeted method, 12 different PFASs were detected in the drinking water samples with total quantifiable PFASs (∑PFASs) levels ranging from 7.16 to 59.49 ng/L; 15 PFASs were detected in source water with ∑PFASs ranging from 15.55 to 65.65 ng/L. A 100% detection frequency was observed for perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorosulfonic acid (PFOS) in all water samples. Six other PFASs, not included in the targeted analysis, were detected using the suspect screening approach. For the first time, the presence of 2-(N-methylperfluorooctanesulfonamido) acetic acid (N-MeFOSAA) in drinking water is reported, and 3 novel PFASs (C5H5OF8, C6H4O2F6, and C9H2O2F16) were detected using suspect screening in source water. Combined results from target and suspect screening analysis showed that PFASs detected were predominantly (52%) short-chain (with fluorinated alkyl chain of ≤6) which could be explained by their high mobility in the environment. The detected PFASs levels in drinking water will not likely pose immediate health risk to consumers according to US EPA health advisory for PFOS and PFOA of 70 ng/L, but inclusion of bottled and drinking water from re-fill stations in monitoring programs is warranted.
Collapse
Affiliation(s)
- Mary Grace E Guardian
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States
| | - Edison G Boongaling
- BEST Environmental Services & Testing Corp., Prime Building, Barangay Salawag, Dasmariñas, Cavite, 4114, Philippines
| | | | - Jirasak Gamonchuang
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prapha Arnnok
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States.
| |
Collapse
|
24
|
Azab S, Hum R, Britz‐McKibbin P. Rapid biomonitoring of perfluoroalkyl substance exposures in serum by multisegment injection-nonaqueous capillary electrophoresis-tandem mass spectrometry. ANALYTICAL SCIENCE ADVANCES 2020; 1:173-182. [PMID: 38716130 PMCID: PMC10989087 DOI: 10.1002/ansa.202000053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a major contaminant class due to their ubiquitous prevalence, persistence, and putative endocrine disrupting activity that may contribute to chronic disease risk notably with exposures early in life. Herein, multisegment injection-nonaqueous capillary electrophoresis-tandem mass spectrometry (MSI-NACE-MS/MS) is introduced as a high throughput approach for PFAS screening in serum samples following a simple methyl-tert-butyl ether (MTBE) liquid extraction. Separation and ionization conditions were optimized to quantify low nanomolar concentration levels of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) from serum extracts when using multiple reaction monitoring under negative ion mode conditions. Multiplexed separations of PFOA and PFOS were achieved with excellent throughput (<3 min/sample), adequate concentration sensitivity (LOD ∼ 20 nM, S/N = 3) and good technical precision over three consecutive days of analysis (mean CV = 9.1%, n = 84). Accurate quantification of PFASs was demonstrated in maternal serum samples (n = 16) when using MSI-CE-MS/MS following pre-column sample enrichment with median concentrations of 3.46 nM (0.7-9.0 nM) and 3.29 nM (1.5-6.6 nM) for PFOA and PFOS, respectively. This was lower than average PFAS exposures measured in pregnant women who had serum collected prior to 2009 likely due to subsequent phase out of their production. Overall, this method offers a convenient approach for large-scale biomonitoring of environmental exposures to legacy PFASs and their emerging replacements that is relevant to maternal health and chronic disease risk assessment in children.
Collapse
Affiliation(s)
- Sandi Azab
- Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonOntarioCanada
- Department of PharmacognosyAlexandria UniversityAlexandriaEgypt
| | - Rebecca Hum
- Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Philip Britz‐McKibbin
- Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
25
|
Sheriff I, Debela SA, Kabia OA, Ntoutoume CE, Turay MJ. The phase out of and restrictions on per-and polyfluoroalkyl substances: Time for a rethink. CHEMOSPHERE 2020; 251:126313. [PMID: 32143075 DOI: 10.1016/j.chemosphere.2020.126313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Industrial manufacture boom in the past decades had resulted in the release of new chemicals to the environment. A group of manmade chemicals called per-and polyfluoroalkyl substances (PFASs) are among these chemicals that have gained traction in recent years which are used in myriad consumer and industrial products worldwide. Since some PFASs are persistent, bioaccumulative, and toxic in nature, series of programs and regulatory initiatives have been introduced to end their production; and gradually replacing them with short chain alternatives. However, concerns have been expressed in the scientific literature about the characteristics and effects of some of these short chain alternatives on environmental and living systems. Here, we suggest that professional scientific bodies should be part of the review process of alternatives short chain PFASs, owing to their immeasurable contribution to knowledge and understanding of these chemicals. Per and poly fluoroalkyl substances are understudied and poorly regulated in developing countries. Therefore, in order for these countries to contribute meaningfully to the global regulatory initiatives on PFASs, transfer of technology and capacity building must be explicitly considered, given the developed competencies, technical expertise and skills that are required for evidence-based policy development and implementation. Furthermore, the issue of transparency of the production and use of PFASs which some companies consider as confidential business information (CBI) must be closely paid attention to by regulators. Confidential business information if not properly addressed may undermine regulatory and risk reduction measures as it may limit most of the relevant information pertaining to PFASs.
Collapse
Affiliation(s)
- Ishmail Sheriff
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Shihu Campus, 215011, Suzhou, Jiangsu Province, People's Republic of China.
| | - Sisay Abebe Debela
- School of Public and Environmental Health, Hawassa University College of Medicine and Health Science, Hawassa, Ethiopia.
| | - Osman Alhaji Kabia
- Department of Geography and Rural Development, Faculty of Social Sciences, Ernest Bai Koroma University of Science and Technology, Makeni Campus, Sierra Leone.
| | - Charles Evrard Ntoutoume
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Shihu Campus, 215011, Suzhou, Jiangsu Province, People's Republic of China.
| | - Matthew James Turay
- School of Economics, Beijing Technology and Business University, Haidain Province, People's Republic of China.
| |
Collapse
|
26
|
Sonne C, Lam SS, Kim KH, Rinklebe J, Ok YS. Be cautious applying carbon-fluorine bonds in drug delivery. CHEMOSPHERE 2020; 248:125971. [PMID: 32035380 DOI: 10.1016/j.chemosphere.2020.125971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
As reported in Chemosphere by Colles et al. (2020), there are multiple pathways for human exposure to poly- and perfluoroalkyl substances (PFAS). Now, a new chemical formation of C-F bonds in drug delivery lead to concerns for human exposure as these inert chemical formations are resistance to metabolic degradation and excretion.
Collapse
Affiliation(s)
- Christian Sonne
- Aarhus University, Roskilde, Denmark; Henan Agricultural University, China.
| | - Su Shiung Lam
- Universiti Malaysia Terengganu, Malaysia; Henan Agricultural University, China
| | - Ki-Hyun Kim
- Hanyang University, Seoul, Republic of Korea; Henan Agricultural University, China
| | - Jörg Rinklebe
- University of Wuppertal, Wuppertal, Germany; Sejong University, Department of Environment, Energy and Geoinformatics, Seoul 05006, Republic of Korea
| | - Yong Sik Ok
- Henan Agricultural University, China; Korea University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Hyphenated High Performance Liquid Chromatography–Tandem Mass Spectrometry Techniques for the Determination of Perfluorinated Alkylated Substances in Lombardia Region in Italy, Profile Levels and Assessment: One Year of Monitoring Activities During 2018. SEPARATIONS 2020. [DOI: 10.3390/separations7010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this research paper, we report a hyphenated technique based on ultra-high performance liquid chromatography–tandem mass spectrometry for the determination of twelve Perfluorinated Alkylated Substances in surface and groundwater samples from Lombardia Region during the monitoring activities in 2018 as new emerging and toxic pollutants. A green analytic method, developed by using an online Solid Phase Extraction coupled with UHPLC-MS/MS and previously validated, was applied for 4992 determinations conducted on 416 samples from 109 different sampling stations. Among the results, PFOS, PFOA, PFBA, PFBS, PFPeA and PFHxA were identified as the most abundant analytes detected. PFASs concentrations, in most cases, were below the limits of quantification and, in the cases where the limits of quantification have been exceeded, the values found were lower than Italy directive. PFOS is an exception and in fact this compound was detected in 76% of analyzed samples (surface and ground waters). Solid phase extraction with high performance liquid chromatography–tandem Mass Spectrometry has proved to be a very good Hyphenated techniques able to detect low concentrations of pollutants in surface and groundwater samples.
Collapse
|
28
|
Eichler CMA, Little JC. A framework to model exposure to per- and polyfluoroalkyl substances in indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:500-511. [PMID: 32141451 DOI: 10.1039/c9em00556k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) include a wide range of halogenated chemicals, which have been used as water- and stain-resistant coatings for consumer products and industrial purposes. PFAS are persistent in the environment and several are bioaccumulative, and thus relevant for human and environmental health. Given their pervasiveness, we need to understand how we are exposed to PFAS, especially in indoor environments where many people spend most of their time. Research on indoor exposure to semivolatile organic compounds (SVOCs) has progressed rapidly in recent years. Because many PFAS can be considered SVOCs, much of what has been learned about SVOCs may be used to guide research on PFAS exposure in indoor environments. Here, we briefly review what has been done to assess indoor exposure to PFAS. Then, we propose a systematic indoor exposure framework for PFAS based on methods to estimate exposure to SVOCs. We illustrate how critical parameters such as partition coefficients for different media (particles, dust, surfaces, and clothing) for different types of PFAS could be measured, how these measurements can be used in exposure models for PFAS, and how fundamental, predictive relationships might be used to estimate necessary parameters for emerging compounds.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
29
|
Zahn D, Neuwald IJ, Knepper TP. Analysis of mobile chemicals in the aquatic environment-current capabilities, limitations and future perspectives. Anal Bioanal Chem 2020; 412:4763-4784. [PMID: 32086538 DOI: 10.1007/s00216-020-02520-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Abstract
Persistent and mobile water contaminants are rapidly developing into a focal point of environmental chemistry and chemical regulation. Their defining parameter that sets them apart from the majority of regularly monitored and regulated contaminants is their mobility in the aquatic environment, which is intrinsically tied to a high polarity. This high polarity, however, may have severe implications in the analytical process and thus the most polar of these mobile contaminants may not be covered by widely utilized trace-analytical methods, and thus, alternatives are required. In this review, we infer the physical and chemical properties of mobile water contaminants from a set of almost 1800 prioritized REACH chemicals and discuss the implications these substance properties may have on four integral steps of the analytical process: sampling and sample storage, sample pre-treatment, separation and detection. We discuss alternatives to widely utilized trace-analytical methods, examine their application range and limitations, highlight potential analytical techniques on the horizon and emphasize research areas we believe still offer the most room for further improvement. While we have a comprehensive set of analytical methods to cover a large portion of the known mobile chemicals, these methods are still only infrequently utilized. Graphical abstract.
Collapse
Affiliation(s)
- Daniel Zahn
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany.
| | - Isabelle J Neuwald
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany
| | - Thomas P Knepper
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany
| |
Collapse
|
30
|
Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Janousek RM, Lebertz S, Knepper TP. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1936-1945. [PMID: 31219125 DOI: 10.1039/c9em00091g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are applied during the production of various consumer and industrial goods. As a consequence of their use in building materials and fabrics, unreacted nonpolymeric PFASs might enter the environment by evaporation or urban run-off. Since the PFAS content of building materials and industrial fabrics is hardly investigated, studies have to be performed in order to assess their total PFAS load. Building material samples (n = 23) and fabric samples (n = 28) were collected and their PFAS content was investigated. A total of 29 PFASs were analyzed (chain length in the range of C4-C14). PFASs of diverse chain lengths were detected in 53% of the analyzed samples. The sum of PFASs for awning materials and coating samples were amongst the highest. Furthermore, PFASs were detected in the majority of fabrics for maritime applications, public transport seat covers and fluoropolymer facade materials. To the best of our knowledge, this study was the first to investigate the PFAS concentrations in fabrics for maritime applications, fluoropolymer facade materials and coatings for architectural purposes. Thus, new sources of PFASs were identified that might lead to release of PFASs into the environment.
Collapse
Affiliation(s)
| | - Stephan Lebertz
- SGS INSTITUT FRESENIUS GmbH, Im Maisel 14, 65232 Taunusstein, Germany
| | | |
Collapse
|
32
|
Coggan TL, Moodie D, Kolobaric A, Szabo D, Shimeta J, Crosbie ND, Lee E, Fernandes M, Clarke BO. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon 2019; 5:e02316. [PMID: 31485522 PMCID: PMC6716228 DOI: 10.1016/j.heliyon.2019.e02316] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 10/31/2022] Open
Abstract
Quantifying the emissions of per- and polyfluoroalkyl substances (PFAS) from Australian wastewater treatment plants (WWTP) is of high importance due to potential impacts on receiving aquatic ecosystems. The new Australian PFAS National Environmental Management Plan recommends 0.23 ng L-1 of PFOS as the guideline value for 99% species protection for aquatic systems. In this study, 21 PFAS from four classes were measured in WWTP solid and aqueous samples from 19 Australian WWTPs. The mean ∑21PFAS was 110 ng L-1 (median: 80 ng L-1; range: 9.3-520 ng L-1) in aqueous samples and 34 ng g-1 dw (median: 12 ng g-1 dw; range: 2.0-130 ng g-1 dw) in WWTP solids. Similar to WWTPs worldwide, perfluorocarboxylic acids were generally higher in effluent, compared to influent. Partitioning to solids within WWTPs increased with increasing fluoroalkyl chain length from 0.05 to 1.22 log units. Many PFAS were highly correlated, and PCA analysis showed strong associations between two groups: odd chained PFCAs, PFHxA and PFSAs; and 6:2 FTS with daily inflow volume and the proportion of trade waste accepted by WWTPs (as % of typical dry inflow). The compounds PFPeA, PFHxA, PFHpA, PFOA, PFNA, and PFDA increased significantly between influent and final effluent. The compounds 6:2 FTS and 8:2 FTS were quantified and F-53B detected and reported in Australian WWTP matrices. The compound 6:2 FTS was an important contributor to PFAS emissions in the studied Australian WWTPs, supporting the need for future research on its sources (including precursor degradation), environmental fate and impact in Australian aquatic environments receiving WWTP effluent.
Collapse
Affiliation(s)
- Timothy L Coggan
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic., 3001, Australia
| | - Damien Moodie
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic., 3001, Australia
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic., 3001, Australia
| | - Drew Szabo
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic., 3001, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic., 3001, Australia
| | - Nicholas D Crosbie
- Applied Research, Melbourne Water Corporation, Docklands, VIC, 3001, Australia.,Faculty of Engineering, University of New South Wales, NSW, 2052, Australia
| | - Elliot Lee
- Water Corporation, Leederville, Western Australia, 6007, Australia
| | - Milena Fernandes
- SA Water, GPO Box 1751, Adelaide SA, 5001, Australia.,College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Bradley O Clarke
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 2476, Melbourne, Vic., 3001, Australia
| |
Collapse
|
33
|
Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TLT, van Leerdam JA, Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA. The role of analytical chemistry in exposure science: Focus on the aquatic environment. CHEMOSPHERE 2019; 222:564-583. [PMID: 30726704 DOI: 10.1016/j.chemosphere.2019.01.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Exposure science, in its broadest sense, studies the interactions between stressors (chemical, biological, and physical agents) and receptors (e.g. humans and other living organisms, and non-living items like buildings), together with the associated pathways and processes potentially leading to negative effects on human health and the environment. The aquatic environment may contain thousands of compounds, many of them still unknown, that can pose a risk to ecosystems and human health. Due to the unquestionable importance of the aquatic environment, one of the main challenges in the field of exposure science is the comprehensive characterization and evaluation of complex environmental mixtures beyond the classical/priority contaminants to new emerging contaminants. The role of advanced analytical chemistry to identify and quantify potential chemical risks, that might cause adverse effects to the aquatic environment, is essential. In this paper, we present the strategies and tools that analytical chemistry has nowadays, focused on chromatography hyphenated to (high-resolution) mass spectrometry because of its relevance in this field. Key issues, such as the application of effect direct analysis to reduce the complexity of the sample, the investigation of the huge number of transformation/degradation products that may be present in the aquatic environment, the analysis of urban wastewater as a source of valuable information on our lifestyle and substances we consumed and/or are exposed to, or the monitoring of drinking water, are discussed in this article. The trends and perspectives for the next few years are also highlighted, when it is expected that new developments and tools will allow a better knowledge of chemical composition in the aquatic environment. This will help regulatory authorities to protect water bodies and to advance towards improved regulations that enable practical and efficient abatements for environmental and public health protection.
Collapse
Affiliation(s)
- F Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain.
| | - J Bakker
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - L Bijlsma
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - J de Boer
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - A M Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - Y Bruinen de Bruin
- European Commission Joint Research Centre, Directorate E - Space, Security and Migration, Italy
| | - S Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, SE-172 13, Sundbyberg, Sweden
| | - J Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - B Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Faculty of Science, Bath, BA2 7AY, United Kingdom
| | - M Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - F J López
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - T L Ter Laak
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J A van Leerdam
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J V Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - E L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - P de Voogt
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090, GE Amsterdam, the Netherlands
| | - E A Hogendoorn
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| |
Collapse
|
34
|
Martin D, Munoz G, Mejia-Avendaño S, Duy SV, Yao Y, Volchek K, Brown CE, Liu J, Sauvé S. Zwitterionic, cationic, and anionic perfluoroalkyl and polyfluoroalkyl substances integrated into total oxidizable precursor assay of contaminated groundwater. Talanta 2019; 195:533-542. [DOI: 10.1016/j.talanta.2018.11.093] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/26/2022]
|
35
|
Ateia M, Maroli A, Tharayil N, Karanfil T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. CHEMOSPHERE 2019; 220:866-882. [PMID: 33395808 DOI: 10.1016/j.chemosphere.2018.12.186] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 05/28/2023]
Abstract
Poly- and perfluorinated substances (PFAS) comprise more than 3000 individual compounds; nevertheless, most studies to date have focused mainly on the fate, transport and remediation of long-chain PFAS (C > 7). The main objective of this article is to provide the first critical review of the peer-reviewed studies on the analytical methods, occurrence, mobility, and treatment for ultra-short-chain PFAS (C = 2-3) and short-chain PFAS (C = 4-7). Previous studies frequently detected ultra-short-chain and short-chain PFAS in various types of aqueous environments including seas, oceans, rivers, surface/urban runoffs, drinking waters, groundwaters, rain/snow, and deep polar seas. Besides, the recent regulations and restrictions on the use of long-chain PFAS has resulted in a significant shift in the industry towards short-chain alternatives. However, our understanding of the environmental fate and remediation of these ultra-short-chain and short-chain PFAS is still fragmentary. We have also covered the handful studies involving the removal of ultra-short and short-chain PFAS and identified the future research needs.
Collapse
Affiliation(s)
- Mohamed Ateia
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Amith Maroli
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, SC 29634, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA.
| |
Collapse
|
36
|
Perfluoroalkyl Substance Assessment in Turin Metropolitan Area and Correlation with Potential Sources of Pollution according to the Water Safety Plan Risk Management Approach. SEPARATIONS 2019. [DOI: 10.3390/separations6010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Per and polyfluoroalkyl substances (PFASs) are a huge class of Contaminants of Emerging Concern, well-known to be persistent, bioaccumulative and toxic. They have been detected in different environmental matrices, in wildlife and even in humans, with drinking water being considered as the main exposure route. Therefore, the present study focused on the estimation of PFAS in the Metropolitan Area of Turin, where SMAT (Società Metropolitana Acque Torino S.p.A.) is in charge of the management of the water cycle and the development of a tool for supporting “smart” water quality monitoring programs to address emerging pollutants’ assessments using multivariate spatial and statistical analysis tools. A new “green” analytical method was developed and validated in order to determine 16 different PFAS in drinking water with a direct injection to the Ultra High Performance Liquid Chromatography tandem Mass Spectrometry (UHPLC-MS/MS) system and without any pretreatment step. The validation of this analytical method resulted in really low Quantification Limits (5 ng L−1), in satisfying recoveries (70%–102%) and in a good linearity (R2 = 0.99) for every compound. Among the results, only 4 compounds and only 6% of the samples showed a pollution level higher than the limits of and Quantification (LOQ). Finally, the correlation study between the assessment findings and the industrial sites which serve as potential sources of pollution in the monitored area was carried out.
Collapse
|