1
|
Vennelakanti V, Jeon M, Kulik HJ. How Do Differences in Electronic Structure Affect the Use of Vanadium Intermediates as Mimics in Nonheme Iron Hydroxylases? Inorg Chem 2024; 63:4997-5011. [PMID: 38428015 DOI: 10.1021/acs.inorgchem.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
We study active-site models of nonheme iron hydroxylases and their vanadium-based mimics using density functional theory to determine if vanadyl is a faithful structural mimic. We identify crucial structural and energetic differences between ferryl and vanadyl isomers owing to the differences in their ground electronic states, i.e., high spin (HS) for Fe and low spin (LS) for V. For the succinate cofactor bound to the ferryl intermediate, we predict facile interconversion between monodentate and bidentate coordination isomers for ferryl species but difficult rearrangement for vanadyl mimics. We study isomerization of the oxo intermediate between axial and equatorial positions and find the ferryl potential energy surface to be characterized by a large barrier of ca. 10 kcal/mol that is completely absent for the vanadyl mimic. This analysis reveals even starker contrasts between Fe and V in hydroxylases than those observed for this metal substitution in nonheme halogenases. Analysis of the relative bond strengths of coordinating carboxylate ligands for Fe and V reveals that all of the ligands show stronger binding to V than Fe owing to the LS ground state of V in contrast to the HS ground state of Fe, highlighting the limitations of vanadyl mimics of native nonheme iron hydroxylases.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mugyeom Jeon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Krishnan A, Waheed SO, Varghese A, Cherilakkudy FH, Schofield CJ, Karabencheva-Christova TG. Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH. Chem Sci 2024; 15:3466-3484. [PMID: 38455014 PMCID: PMC10915816 DOI: 10.1039/d3sc05974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford OX1 3TA Oxford UK
| | | |
Collapse
|
3
|
Ali HS, de Visser SP. Catalytic divergencies in the mechanism of L-arginine hydroxylating nonheme iron enzymes. Front Chem 2024; 12:1365494. [PMID: 38406558 PMCID: PMC10884159 DOI: 10.3389/fchem.2024.1365494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Many enzymes in nature utilize a free arginine (L-Arg) amino acid to initiate the biosynthesis of natural products. Examples include nitric oxide synthases, which generate NO from L-Arg for blood pressure control, and various arginine hydroxylases involved in antibiotic biosynthesis. Among the groups of arginine hydroxylases, several enzymes utilize a nonheme iron(II) active site and let L-Arg react with dioxygen and α-ketoglutarate to perform either C3-hydroxylation, C4-hydroxylation, C5-hydroxylation, or C4-C5-desaturation. How these seemingly similar enzymes can react with high specificity and selectivity to form different products remains unknown. Over the past few years, our groups have investigated the mechanisms of L-Arg-activating nonheme iron dioxygenases, including the viomycin biosynthesis enzyme VioC, the naphthyridinomycin biosynthesis enzyme NapI, and the streptothricin biosynthesis enzyme OrfP, using computational approaches and applied molecular dynamics, quantum mechanics on cluster models, and quantum mechanics/molecular mechanics (QM/MM) approaches. These studies not only highlight the differences in substrate and oxidant binding and positioning but also emphasize on electronic and electrostatic differences in the substrate-binding pockets of the enzymes. In particular, due to charge differences in the active site structures, there are changes in the local electric field and electric dipole moment orientations that either strengthen or weaken specific substrate C-H bonds. The local field effects, therefore, influence and guide reaction selectivity and specificity and give the enzymes their unique reactivity patterns. Computational work using either QM/MM or density functional theory (DFT) on cluster models can provide valuable insights into catalytic reaction mechanisms and produce accurate and reliable data that can be used to engineer proteins and synthetic catalysts to perform novel reaction pathways.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
5
|
Gérard E, Mokkawes T, Johannissen LO, Warwicker J, Spiess RR, Blanford CF, Hay S, Heyes DJ, de Visser SP. How Is Substrate Halogenation Triggered by the Vanadium Haloperoxidase from Curvularia inaequalis? ACS Catal 2023; 13:8247-8261. [PMID: 37342830 PMCID: PMC10278073 DOI: 10.1021/acscatal.3c00761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Vanadium haloperoxidases (VHPOs) are unique enzymes in biology that catalyze a challenging halogen transfer reaction and convert a strong aromatic C-H bond into C-X (X = Cl, Br, I) with the use of a vanadium cofactor and H2O2. The VHPO catalytic cycle starts with the conversion of hydrogen peroxide and halide (X = Cl, Br, I) into hypohalide on the vanadate cofactor, and the hypohalide subsequently reacts with a substrate. However, it is unclear whether the hypohalide is released from the enzyme or otherwise trapped within the enzyme structure for the halogenation of organic substrates. A substrate-binding pocket has never been identified for the VHPO enzyme, which questions the role of the protein in the overall reaction mechanism. Probing its role in the halogenation of small molecules will enable further engineering of the enzyme and expand its substrate scope and selectivity further for use in biotechnological applications as an environmentally benign alternative to current organic chemistry synthesis. Using a combined experimental and computational approach, we elucidate the role of the vanadium haloperoxidase protein in substrate halogenation. Activity studies show that binding of the substrate to the enzyme is essential for the reaction of the hypohalide with substrate. Stopped-flow measurements demonstrate that the rate-determining step is not dependent on substrate binding but partially on hypohalide formation. Using a combination of molecular mechanics (MM) and molecular dynamics (MD) simulations, the substrate binding area in the protein is identified and even though the selected substrates (methylphenylindole and 2-phenylindole) have limited hydrogen-bonding abilities, they are found to bind relatively strongly and remain stable in a binding tunnel. A subsequent analysis of the MD snapshots characterizes two small tunnels leading from the vanadate active site to the surface that could fit small molecules such as hypohalide, halide, and hydrogen peroxide. Density functional theory studies using electric field effects show that a polarized environment in a specific direction can substantially lower barriers for halogen transfer. A further analysis of the protein structure indeed shows a large dipole orientation in the substrate-binding pocket that could enable halogen transfer through an applied local electric field. These findings highlight the importance of the enzyme in catalyzing substrate halogenation by providing an optimal environment to lower the energy barrier for this challenging aromatic halide insertion reaction.
Collapse
Affiliation(s)
- Emilie
F. Gérard
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| | - Thirakorn Mokkawes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jim Warwicker
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester 13 9PL, United
Kingdom
| | - Reynard R. Spiess
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Christopher F. Blanford
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Kastner DW, Nandy A, Mehmood R, Kulik HJ. Mechanistic Insights into Substrate Positioning That Distinguish Non-heme Fe(II)/α-Ketoglutarate-Dependent Halogenases and Hydroxylases. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Shen C, Dagnaw WM, Fong CW, Lau KC, Chow CF. Selective functionalization of C(sp 3)-H bonds: catalytic chlorination and bromination by Iron III-acacen-halide under ambient condition. Chem Commun (Camb) 2022; 58:10627-10630. [PMID: 36069398 DOI: 10.1039/d2cc02924c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative catalytic halogenations of the C(sp3)-H bond of alkanes promoted by FeIII(acacen)Cl (1III-Cl) and FeIII(acacen)Br (1III-Br) in the presence of trifluoroacetic acid (TFA) were investigated. Four major steps were involved: (i) formation of [FeV(acacen)(oxo)X] species (X = Cl or Br), (ii) hydrogen-atom transfer, (iii) halogen atom rebound, and (iv) regeneration of 1III-Cl or 1III-Br. TFA played a significant role in (i) forming the high-valent iron-oxo intermediate and (ii) generating the reaction selectivity.
Collapse
Affiliation(s)
- Chang Shen
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
| | - Wasihun Menberu Dagnaw
- Department of Chemistry, The City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, SAR, China.
| | - Ching Wai Fong
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
| | - Kai Chung Lau
- Department of Chemistry, The City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, SAR, China.
| | - Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China.
| |
Collapse
|
8
|
Gérard EF, Yadav V, Goldberg DP, de Visser SP. What Drives Radical Halogenation versus Hydroxylation in Mononuclear Nonheme Iron Complexes? A Combined Experimental and Computational Study. J Am Chem Soc 2022; 144:10752-10767. [PMID: 35537044 PMCID: PMC9228086 DOI: 10.1021/jacs.2c01375] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Nonheme iron halogenases
are unique enzymes in nature that selectively
activate an aliphatic C–H bond of a substrate to convert it
into C–X (X = Cl/Br, but not F/I). It is proposed that they
generate an FeIII(OH)(X) intermediate in their catalytic
cycle. The analogous FeIII(OH) intermediate in nonheme
iron hydroxylases transfers OH• to give alcohol
product, whereas the halogenases transfer X• to
the carbon radical substrate. There remains significant debate regarding
what factors control their remarkable selectivity of the halogenases.
The reactivity of the complexes FeIII(BNPAPh2O)(OH)(X) (X = Cl, Br) with a secondary carbon radical (R•) is described. It is found that X• transfer occurs
with a secondary carbon radical, as opposed to OH• transfer with tertiary radicals. Comprehensive computational studies
involving density functional theory were carried out to examine the
possible origins of this selectivity. The calculations reproduce the
experimental findings, which indicate that halogen transfer is not
observed for the tertiary radicals because of a nonproductive equilibrium
that results from the endergonic nature of these reactions, despite
a potentially lower reaction barrier for the halogenation pathway.
In contrast, halogen transfer is favored for secondary carbon radicals,
for which the halogenated product complex is thermodynamically more
stable than the reactant complex. These results are rationalized by
considering the relative strengths of the C–X bonds that are
formed for tertiary versus secondary carbon centers. The computational
analysis also shows that the reaction barrier for halogen transfer
is significantly dependent on secondary coordination sphere effects,
including steric and H-bonding interactions.
Collapse
Affiliation(s)
- Emilie F Gérard
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
9
|
Wojdyla Z, Borowski T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry 2022; 28:e202104106. [PMID: 34986268 DOI: 10.1002/chem.202104106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
10
|
Tao Y, Li Z, Zhang Y, Sun K, Liu Z. Determining the inherent selectivity for carbon radical hydroxylation versus halogenation with high-spin oxoiron(iv)-halide complexes: a concerted rebound step. RSC Adv 2022; 12:9891-9897. [PMID: 35424943 PMCID: PMC8963258 DOI: 10.1039/d2ra01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
A synthetic iron model can process both halogenation and hydroxylation with vague selectivity, which is different from halogenase even though these structures are used for the simulation of halogenase. The key factor of the synthetic oxo-iron model mediated hydroxylation or the halogenation is still under debate. Herein density functional theory calculation is used to investigate the hydroxylation versus halogenation of propylene by the complex [FeIV(O)(TQA)(X)]+ (X = F, Cl, Br). Our results suggest that a concerted rebound mechanism (between the -X and the hydroxyl ligands after the hydrogen abstraction) leads to the formation of two different kinds of products. DFT calculation for the hydroxylation versus halogenation of propylene by [FeIV(O)(TQA)X]+ (X = F, Cl and Br) reveals that after hydrogen abstraction, halogen and oxygen rebound reactions are a synergistic process.![]()
Collapse
Affiliation(s)
- Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| | - Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Yiman Zhang
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| | - Kexi Sun
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| | - Zhaojun Liu
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University Luoyang 471934 China
| |
Collapse
|
11
|
Mehmood R, Vennelakanti V, Kulik HJ. Spectroscopically Guided Simulations Reveal Distinct Strategies for Positioning Substrates to Achieve Selectivity in Nonheme Fe(II)/α-Ketoglutarate-Dependent Halogenases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Papadopoulou A, Meierhofer J, Meyer F, Hayashi T, Schneider S, Sager E, Buller R. Re‐Programming and Optimization of a
L
‐Proline
cis
‐4‐Hydroxylase for the
cis
‐3‐Halogenation of its Native Substrate. ChemCatChem 2021. [DOI: 10.1002/cctc.202100591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis Institute of Chemistry and Biotechnology Zurich University of Applied Sciences 8820 Wädenswil Switzerland
| | - Jasmin Meierhofer
- Competence Center for Biocatalysis Institute of Chemistry and Biotechnology Zurich University of Applied Sciences 8820 Wädenswil Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis Institute of Chemistry and Biotechnology Zurich University of Applied Sciences 8820 Wädenswil Switzerland
| | - Takahiro Hayashi
- Competence Center for Biocatalysis Institute of Chemistry and Biotechnology Zurich University of Applied Sciences 8820 Wädenswil Switzerland
- Current address: Science & Innovation Center Mitsubishi Chemical Corporation Yokohama Kanagawa 227-8502 Japan
| | - Samuel Schneider
- Competence Center for Biocatalysis Institute of Chemistry and Biotechnology Zurich University of Applied Sciences 8820 Wädenswil Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis Institute of Chemistry and Biotechnology Zurich University of Applied Sciences 8820 Wädenswil Switzerland
| |
Collapse
|
15
|
Density Functional Theory Study into the Reaction Mechanism of Isonitrile Biosynthesis by the Nonheme Iron Enzyme ScoE. Top Catal 2021. [DOI: 10.1007/s11244-021-01460-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe nonheme iron enzyme ScoE catalyzes the biosynthesis of an isonitrile substituent in a peptide chain. To understand details of the reaction mechanism we created a large active site cluster model of 212 atoms that contains substrate, the active oxidant and the first- and second-coordination sphere of the protein and solvent. Several possible reaction mechanisms were tested and it is shown that isonitrile can only be formed through two consecutive catalytic cycles that both use one molecule of dioxygen and α-ketoglutarate. In both cycles the active species is an iron(IV)-oxo species that in the first reaction cycle reacts through two consecutive hydrogen atom abstraction steps: first from the N–H group and thereafter from the C–H group to desaturate the NH-CH2 bond. The alternative ordering of hydrogen atom abstraction steps was also tested but found to be higher in energy. Moreover, the electronic configurations along that pathway implicate an initial hydride transfer followed by proton transfer. We highlight an active site Lys residue that is shown to donate charge in the transition states and influences the relative barrier heights and bifurcation pathways. A second catalytic cycle of the reaction of iron(IV)-oxo with desaturated substrate starts with hydrogen atom abstraction followed by decarboxylation to give isonitrile directly. The catalytic cycle is completed with a proton transfer to iron(II)-hydroxo to generate the iron(II)-water resting state. The work is compared with experimental observation and previous computational studies on this system and put in a larger perspective of nonheme iron chemistry.
Collapse
|
16
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
17
|
Ali HS, Henchman RH, Warwicker J, de Visser SP. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme? J Phys Chem A 2021; 125:1720-1737. [DOI: 10.1021/acs.jpca.1c00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
18
|
Chowdhury AS, Ali HS, Faponle AS, de Visser SP. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT JE. Phys Chem Chem Phys 2021; 22:27178-27190. [PMID: 33226036 DOI: 10.1039/d0cp05169a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 enzymes are versatile biocatalysts found in most forms of life. Generally, the cytochrome P450s react with dioxygen and hence are haem-based mono-oxygenases; however, in specific isozymes, H2O2 rather than O2 is used and these P450s act as peroxygenases. The P450 OleTJE is a peroxygenase that binds long to medium chain fatty acids and converts them to a range of products originating from Cα-hydroxylation, Cβ-hydroxylation, Cα-Cβ desaturation and decarboxylation of the substrate. There is still controversy regarding the details of the reaction mechanism of P450 OleTJE; how the products are formed and whether the product distributions can be influenced by external perturbations. To gain further insights into the structure and reactivity of P450 OleTJE, we set up a range of large active site model complexes as well as full enzymatic structures and did a combination of density functional theory studies and quantum mechanics/molecular mechanics calculations. In particular, the work focused on the mechanisms leading to these products under various reaction conditions. Thus, for a small cluster model, we find a highly selective Cα-hydroxylation pathway that is preferred over Cβ-H hydrogen atom abstraction by at least 10 kcal mol-1. Introduction of polar residues to the model, such as an active site protonated histidine residue or through external electric field effects, lowers the Cβ-H hydrogen atom abstraction barriers are lowered, while a full QM/MM model brings the Cα-H and Cβ-H hydrogen atom abstraction barriers within 1 kcal mol-1. Our studies; therefore, implicate that environmental effects in the second-coordination sphere can direct and guide selectivities in enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Ahmed Shahria Chowdhury
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
19
|
Yadav V, Siegler MA, Goldberg DP. Temperature-Dependent Reactivity of a Non-heme Fe III(OH)(SR) Complex: Relevance to Isopenicillin N Synthase. J Am Chem Soc 2021; 143:46-52. [PMID: 33356198 DOI: 10.1021/jacs.0c09688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-heme iron complexes with cis-FeIII(OH)(SAr/OAr) coordination were isolated and examined for their reactivity with a tertiary carbon radical. The sulfur-ligated complex shows a temperature dependence on •OH versus ArS• transfer, whereas the oxygen-ligated complex does not. These results provide the first working model for C-S bond formation in isopenicillin N synthase and indicate that kinetic control may be a key factor in the selectivity of non-heme iron "rebound" processes.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Latifi R, Minnick JL, Quesne MG, de Visser SP, Tahsini L. Computational studies of DNA base repair mechanisms by nonheme iron dioxygenases: selective epoxidation and hydroxylation pathways. Dalton Trans 2020; 49:4266-4276. [PMID: 32141456 DOI: 10.1039/d0dt00007h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA base repair mechanisms of alkylated DNA bases is an important reaction in chemical biology and particularly in the human body. It is typically catalyzed by an α-ketoglutarate-dependent nonheme iron dioxygenase named the AlkB repair enzyme. In this work we report a detailed computational study into the structure and reactivity of AlkB repair enzymes with alkylated DNA bases. In particular, we investigate the aliphatic hydroxylation and C[double bond, length as m-dash]C epoxidation mechanisms of alkylated DNA bases by a high-valent iron(iv)-oxo intermediate. Our computational studies use quantum mechanics/molecular mechanics methods on full enzymatic structures as well as cluster models on active site systems. The work shows that the iron(iv)-oxo species is rapidly formed after dioxygen binding to an iron(ii) center and passes a bicyclic ring structure as intermediate. Subsequent cluster models explore the mechanism of substrate hydroxylation and epoxidation of alkylated DNA bases. The work shows low energy barriers for substrate activation and consequently energetically feasible pathways are predicted. Overall, the work shows that a high-valent iron(iv)-oxo species can efficiently dealkylate alkylated DNA bases and return them into their original form.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Matthew G Quesne
- Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon, OX110FA, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, 131 Princess Street, Manchester M1 7DN, UK.
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
21
|
Dixit VA, Warwicker J, Visser SP. How Do Metal Ions Modulate the Rate‐Determining Electron‐Transfer Step in Cytochrome P450 Reactions? Chemistry 2020; 26:15270-15281. [DOI: 10.1002/chem.202003024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmacy Birla Institute of Technology and Sciences Pilani (BITS-Pilani) Vidya Vihar Campus 41 Pilani 333031 Rajasthan India
| | - Jim Warwicker
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M17DN United Kingdom
- Department of Chemistry The University of Manchester Oxford Road Manchester M139PL United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M17DN United Kingdom
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL United Kingdom
| |
Collapse
|
22
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Ali HS, Henchman RH, de Visser SP. Lignin Biodegradation by a Cytochrome P450 Enzyme: A Computational Study into Syringol Activation by GcoA. Chemistry 2020; 26:13093-13102. [PMID: 32613677 PMCID: PMC7590115 DOI: 10.1002/chem.202002203] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/12/2022]
Abstract
A recently characterized cytochrome P450 isozyme GcoA activates lignin components through a selective O-demethylation or alternatively an acetal formation reaction. These are important reactions in biotechnology and, because lignin is readily available; it being the main component in plant cell walls. In this work we present a density functional theory study on a large active site model of GcoA to investigate syringol activation by an iron(IV)-oxo heme cation radical oxidant (Compound I) leading to hemiacetal and acetal products. Several substrate-binding positions were tested and full energy landscapes calculated. The study shows that substrate positioning determines the product distributions. Thus, with the phenol group pointing away from the heme, an O-demethylation is predicted, whereas an initial hydrogen-atom abstraction of the weak phenolic O-H group would trigger a pathway leading to ring-closure to form acetal products. Predictions on how to engineer P450 GcoA to get more selective product distributions are given.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Richard H. Henchman
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
24
|
Louka S, Barry SM, Heyes DJ, Mubarak MQE, Ali HS, Alkhalaf LM, Munro AW, Scrutton NS, Challis GL, de Visser SP. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. J Am Chem Soc 2020; 142:15764-15779. [PMID: 32811149 PMCID: PMC7586343 DOI: 10.1021/jacs.0c05070] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
cytochromes P450 are heme-dependent enzymes that catalyze many
vital reaction processes in the human body related to biodegradation
and biosynthesis. They typically act as mono-oxygenases; however,
the recently discovered P450 subfamily TxtE utilizes O2 and NO to nitrate aromatic substrates such as L-tryptophan.
A direct and selective aromatic nitration reaction may be useful in
biotechnology for the synthesis of drugs or small molecules. Details
of the catalytic mechanism are unknown, and it has been suggested
that the reaction should proceed through either an iron(III)-superoxo
or an iron(II)-nitrosyl intermediate. To resolve this controversy,
we used stopped-flow kinetics to provide evidence for a catalytic
cycle where dioxygen binds prior to NO to generate an active iron(III)-peroxynitrite
species that is able to nitrate l-Trp efficiently. We show
that the rate of binding of O2 is faster than that of NO
and also leads to l-Trp nitration, while little evidence
of product formation is observed from the iron(II)-nitrosyl complex.
To support the experimental studies, we performed density functional
theory studies on large active site cluster models. The studies suggest
a mechanism involving an iron(III)-peroxynitrite that splits homolytically
to form an iron(IV)-oxo heme (Compound II) and a free NO2 radical via a small free energy of activation. The latter activates
the substrate on the aromatic ring, while compound II picks up the ipso-hydrogen to form the product. The calculations give
small reaction barriers for most steps in the catalytic cycle and,
therefore, predict fast product formation from the iron(III)-peroxynitrite
complex. These findings provide the first detailed insight into the
mechanism of nitration by a member of the TxtE subfamily and highlight
how the enzyme facilitates this novel reaction chemistry.
Collapse
Affiliation(s)
- Savvas Louka
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Derren J Heyes
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nigel S Scrutton
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.,ARC Centre for Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Sam P de Visser
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| |
Collapse
|
25
|
Bioengineering of Cytochrome P450 OleT JE: How Does Substrate Positioning Affect the Product Distributions? Molecules 2020; 25:molecules25112675. [PMID: 32526971 PMCID: PMC7321372 DOI: 10.3390/molecules25112675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 02/04/2023] Open
Abstract
The cytochromes P450 are versatile enzymes found in all forms of life. Most P450s use dioxygen on a heme center to activate substrates, but one class of P450s utilizes hydrogen peroxide instead. Within the class of P450 peroxygenases, the P450 OleTJE isozyme binds fatty acid substrates and converts them into a range of products through the α-hydroxylation, β-hydroxylation and decarboxylation of the substrate. The latter produces hydrocarbon products and hence can be used as biofuels. The origin of these product distributions is unclear, and, as such, we decided to investigate substrate positioning in the active site and find out what the effect is on the chemoselectivity of the reaction. In this work we present a detailed computational study on the wild-type and engineered structures of P450 OleTJE using a combination of density functional theory and quantum mechanics/molecular mechanics methods. We initially explore the wild-type structure with a variety of methods and models and show that various substrate activation transition states are close in energy and hence small perturbations as through the protein may affect product distributions. We then engineered the protein by generating an in silico model of the double mutant Asn242Arg/Arg245Asn that moves the position of an active site Arg residue in the substrate-binding pocket that is known to form a salt-bridge with the substrate. The substrate activation by the iron(IV)-oxo heme cation radical species (Compound I) was again studied using quantum mechanics/molecular mechanics (QM/MM) methods. Dramatic differences in reactivity patterns, barrier heights and structure are seen, which shows the importance of correct substrate positioning in the protein and the effect of the second-coordination sphere on the selectivity and activity of enzymes.
Collapse
|
26
|
Yadav V, Rodriguez RJ, Siegler MA, Goldberg DP. Determining the Inherent Selectivity for Carbon Radical Hydroxylation versus Halogenation with Fe III(OH)(X) Complexes: Relevance to the Rebound Step in Non-heme Iron Halogenases. J Am Chem Soc 2020; 142:7259-7264. [PMID: 32281794 DOI: 10.1021/jacs.0c00493] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first structural models of the proposed cis-FeIII(OH)(halide) intermediate in the non-heme iron halogenases were synthesized and examined for their inherent reactivity with tertiary carbon radicals. Selective hydroxylation occurs for these cis-FeIII(OH)(X) (X = Cl, Br) complexes in a radical rebound-like process. In contrast, a cis-FeIII(Cl)2 complex reacts with carbon radicals to give halogenation. These results are discussed in terms of the inherent reactivity of the analogous rebound intermediate in both enzymes and related catalysts.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rodolfo J Rodriguez
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
27
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
28
|
Zhang X, Wang Z, Gao J, Liu W. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5. Phys Chem Chem Phys 2020; 22:8699-8712. [DOI: 10.1039/d0cp00791a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O2 activation in WelO5 (an α-KG dependent halogenase) leads to a Fe(IV)O species with an equatorial conformation. After hydrogen abstraction, the hydroxyl ligand is far from the substrate radical which leads to the chlorination selectivity
Collapse
Affiliation(s)
- Xuan Zhang
- Beijing National Center for Molecular Sciences
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Zikuan Wang
- Beijing National Center for Molecular Sciences
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences
- Shandong University
- Qingdao 266237
- P. R. China
| |
Collapse
|
29
|
Mubarak MQE, Visser SP. Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
30
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
31
|
Mubarak MQE, de Visser SP. Second-Coordination Sphere Effect on the Reactivity of Vanadium–Peroxo Complexes: A Computational Study. Inorg Chem 2019; 58:15741-15750. [DOI: 10.1021/acs.inorgchem.9b01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
32
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
33
|
Zeb N, Rashid MH, Mubarak MQE, Ghafoor S, de Visser SP. Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism. J Inorg Biochem 2019; 198:110728. [PMID: 31203088 DOI: 10.1016/j.jinorgbio.2019.110728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Plants produce flavonol compounds for vital functions regarding plant growth, fruit and flower colouring as well as fruit ripening processes. Several of these biosynthesis steps are stereo- and regioselective and are being carried out by nonheme iron enzymes. Using density functional theory calculations on a large active site model complex of flavanone-3β-hydroxylase (FHT), we established the mechanism for conversion of naringenin to its dihydroflavonol, which is a key step in the mechanism of flavonol biosynthesis. The reaction starts with dioxygen binding to the iron(II) centre and a reaction with α-ketoglutarate co-substrate gives succinate, an iron(IV)-oxo species and CO2 with large exothermicity and small reaction barriers. The rate-determining reaction step in the mechanism; however, is hydrogen atom abstraction of an aliphatic CH bond by the iron(IV)-oxo species. We identify a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium. In a final step the OH and substrate radicals combine to form the alcohol product with a barrier of several kcal mol-1. We show that the latter is the result of geometric constraints in the active site pocket. Furthermore, the calculations show that a weak tertiary CH bond is shielded from the iron(IV)-oxo species in the substrate binding position and therefore the enzyme is able to activate a stronger CH bond. As such, the flavanone-3β-hydroxylase enzyme reacts regioselectively with one specific CH bond of naringenin by avoiding activation of weaker bonds through tight substrate and oxidant positioning.
Collapse
Affiliation(s)
- Neelam Zeb
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad H Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Department of Chemistry, Government College University Faisalabad, Jhang Road, 3800 Faisalabad, Pakistan
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
34
|
Mehmood R, Qi HW, Steeves AH, Kulik HJ. The Protein’s Role in Substrate Positioning and Reactivity for Biosynthetic Enzyme Complexes: The Case of SyrB2/SyrB1. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|