1
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Zhou J, Zhang X, Zhang Y, Wang D, Zhou H, Li J. Effective inspissation of uranium(VI) from radioactive wastewater using flow electrode capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4243-4267. [PMID: 33724803 DOI: 10.1021/acs.est.0c06552] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increasing severity of global water scarcity, a myriad of scientific activities is directed toward advancing brackish water desalination and wastewater remediation technologies. Flow-electrode capacitive deionization (FCDI), a newly developed electrochemically driven ion removal approach combining ion-exchange membranes and flowable particle electrodes, has been actively explored over the past seven years, driven by the possibility of energy-efficient, sustainable, and fully continuous production of high-quality fresh water, as well as flexible management of the particle electrodes and concentrate stream. Here, we provide a comprehensive overview of current advances of this interesting technology with particular attention given to FCDI principles, designs (including cell architecture and electrode and separator options), operational modes (including approaches to management of the flowable electrodes), characterizations and modeling, and environmental applications (including water desalination, resource recovery, and contaminant abatement). Furthermore, we introduce the definitions and performance metrics that should be used so that fair assessments and comparisons can be made between different systems and separation conditions. We then highlight the most pressing challenges (i.e., operation and capital cost, scale-up, and commercialization) in the full-scale application of this technology. We conclude this state-of-the-art review by considering the overall outlook of the technology and discussing areas requiring particular attention in the future.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyu Li
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
4
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
5
|
Lin L, Hu J, Liu J, He X, Li B, Li XY. Selective Ammonium Removal from Synthetic Wastewater by Flow-Electrode Capacitive Deionization Using a Novel K 2Ti 2O 5-Activated Carbon Mixture Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12723-12731. [PMID: 32926784 DOI: 10.1021/acs.est.0c04383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ammonium (NH4+) in wastewater is both a major pollutant and a valuable resource. Flow-electrode capacitive deionization (FCDI) is a promising technology for chemical-free and environmentally friendly NH4+ removal and recovery from wastewater. However, the coexisting sodium (Na+) in wastewater, with a similar hydrated radius to NH4+, competes for the adsorption sites, resulting in low NH4+ removal efficiency. Here, potassium dititanate (K2Ti2O5 or KTO) particles prepared by the electrospray method followed by calcination were mixed with activated carbon (AC) powder to form a novel KTO-AC flow-electrode for selective NH4+ removal over Na+. The mixed KTO-AC electrode exhibits a much higher specific gravimetric capacitance in NH4Cl solution than in NaCl solution. Compared with the pure AC electrode in the FCDI tests on NH4+ removal from synthetic wastewater, 25 wt % KTO addition in the electrode mixture increases the adsorption selectivity from 2.3 to 31 toward NH4+ over Na+, improves the NH4+ removal from 28.5% to 64.8% and increases the NH4+ desorption efficiency from 35.6% to over 80%, achieving selective NH4+ recovery and effective electrode regeneration. Based on DFT calculations, NH4+ adsorption on the K2Ti2O5 (0 0 1) surface is more thermodynamically favorable than that of Na+, which contributes to the high NH4+ adsorption selectivity observed.
Collapse
Affiliation(s)
- Lin Lin
- Environmental Science and New Energy Technology Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Jiahua Liu
- Environmental Science and New Energy Technology Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Xin He
- Environmental Science and New Energy Technology Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiao-Yan Li
- Environmental Science and New Energy Technology Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
6
|
Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Tang K, Zhou K. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5853-5863. [PMID: 32271562 DOI: 10.1021/acs.est.9b07591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since flow-electrodes do not have a maximum allowable charge capacity, a high salt removal rate in flow-electrode capacitive deionization (FCDI) can be achieved theoretically by simply increasing the applied voltage. However, present attempts to run FCDI at high voltages are unsatisfactory because of the instability of the module occurring in the overlimiting current regimes. To implement FCDI in the overlimiting current regimes (namely, OLC-FCDI), in this work, we analyzed the voltage-current (V-I) characteristics of several FCDI units. We confirmed that a continuous, rapid, and stable desalination performance of OLC-FCDI can be attained when the employed FCDI unit possesses a linear V-I characteristic (only one ohmic regime), which is distinct from the three V-I regimes in electrodialysis (ohmic, limiting current, and water splitting regimes) and the two in membrane capacitive deionization (ohmic and water splitting regimes). Notably, the linearV-I characteristic of FCDI requires continuous charge percolation near the boundaries of ion-exchange membranes. Effective methods include increasing the carbon content in the flow-electrodes and introducing electrical (carbon cloth) or ionic (ion-exchange resins) conductive intermediates in the solution compartment, which result in corresponding upgraded FCDI units exhibiting extremely high salt removal rates (>100 mg m-2 s-1), good cycling stability, and rapid seawater desalination performance under typical OLC-FCDI operation condition (27-40 g L-1 NaCl, 500 mA). This study can guide future research of FCDI in terms of flow-electrode preparation and device configuration optimization.
Collapse
Affiliation(s)
- Kexin Tang
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Kun Zhou
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
8
|
Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. WATER RESEARCH 2020; 168:115186. [PMID: 31655437 DOI: 10.1016/j.watres.2019.115186] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is an attractive variant of CDI with distinct advantages over fixed electrode CDI including the capability for seawater desalination, high flow efficiency and easy management of the electrodes. Challenges exist however in increasing treatment capacity with this attempted here through use of a membrane stack configuration. By comparison of standardised metrics (in particular, average salt removal rate (ASRR), energy normalized removed salt (ENRS) and productivity), results show that that an FCDI system with two pairs of ion exchange membranes had the highest efficiency in desalting a brackish influent (1000 mg L-1) to potable levels (∼150 mg L-1) at higher ASRR and ENRS. Further increase in the number of membrane pairs resulted in a decrease in current efficiency, likely as a result of the dominance of electrodialysis. Results of this study provide proof of concept that (semi-)continuous desalination can be achieved in FCDI at high energy efficiency (13.8%-20.2%) and productivity (> 100 L m-2 h-1) and, importantly, provide insight into possible approaches to scaling up FCDI such that energy-efficient water desalination can be achieved.
Collapse
Affiliation(s)
- Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Junjun Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wenjia Dong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Mubita TM, Dykstra JE, Biesheuvel PM, van der Wal A, Porada S. Selective adsorption of nitrate over chloride in microporous carbons. WATER RESEARCH 2019; 164:114885. [PMID: 31426005 DOI: 10.1016/j.watres.2019.114885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 05/05/2023]
Abstract
Activated carbon is the most common electrode material used in electrosorption processes such as water desalination with capacitive deionization (CDI). CDI is a cyclic process to remove ions from aqueous solutions by transferring charge from one electrode to another. When multiple salts are present in a solution, the removal of each ionic species can be different, resulting in selective ion separations. This ion selectivity is the result of combined effects, such as differences in the hydrated size and valence of the ions. In the present work, we study ion selectivity from salt mixtures with two different monovalent ions, chloride and nitrate. We run adsorption experiment in microporous carbons (i.e., without applying a voltage), as well as electrosorption experiments (i.e., based on applying a voltage between two carbon electrodes). Our results show that i) during adsorption and electrosorption, activated carbon removes much more nitrate than chloride; ii) at equilibrium, ion selectivity does not depend strongly on the composition of the water, but does depend on charging voltage in CDI; and iii) during electrosorption, ion selectivity is time-dependent. We modify the amphoteric Donnan model by including an additional affinity of nitrate to carbon. We find good agreement between our experimental results and the theory. Both show very high selectivity towards nitrate over chloride, [Formula: see text] ∼10, when no voltage is applied, or when the voltage is low. The selectivity gradually decreases with increasing charging voltage to [Formula: see text] ∼6 at Vch = 1.2 V. Despite this decrease, the affinity-effect for nitrate continues to play an important role also at a high voltage. In general, we can conclude that our work provides new insights in the importance of carbon-ion interactions for electrochemical water desalination.
Collapse
Affiliation(s)
- T M Mubita
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - J E Dykstra
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - A van der Wal
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Evides Water Company, Schaardijk 150, 3063 NH Rotterdam, the Netherlands
| | - S Porada
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Soft Matter, Fluidics and Interfaces Group, Faculty of Science and Technology, University of Twente, Meander ME 314, 7500 AE Enschede, the Netherlands
| |
Collapse
|
10
|
Hawks SA, Cerón MR, Oyarzun DI, Pham TA, Zhan C, Loeb CK, Mew D, Deinhart A, Wood BC, Santiago JG, Stadermann M, Campbell PG. Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10863-10870. [PMID: 31244071 DOI: 10.1021/acs.est.9b01374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The contamination of water resources with nitrate is a growing and significant problem. Here we report the use of ultramicroporous carbon as a capacitive deionization (CDI) electrode for selectively removing nitrate from an anion mixture. Through moderate activation, we achieve a micropore-size distribution consisting almost exclusively of narrow (<1 nm) pores that are well suited for adsorbing the planar, weakly hydrated nitrate molecule. Cyclic voltammetry measurements reveal an enhanced capacitance for nitrate when compared to chloride as well as significant ion sieving effects when sulfate is the only anion present. We measure high selectivities (S) of both nitrate over sulfate (SNO3/SO4 = 17.8 ± 3.6 at 0.6 V) and nitrate over chloride (SNO3/Cl = 6.1 ± 0.4 at 0.6 V) when performing a constant voltage CDI separation on 3.33 mM/3.33 mM/1.67 mM Cl/NO3/SO4 feedwater. These results are particularly encouraging considering that a divalent interferant was present in the feed. Using molecular dynamics simulations, we examine the solvation characteristics of these ions to better understand why nitrate is preferentially electrosorbed over sulfate and chloride.
Collapse
Affiliation(s)
- Steven A Hawks
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Diego I Oyarzun
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Cheng Zhan
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Colin K Loeb
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Daniel Mew
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Amanda Deinhart
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Brandon C Wood
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Juan G Santiago
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| |
Collapse
|
11
|
Shi W, Xu X, Ye C, Sha D, Yin R, Shen X, Liu X, Liu W, Shen J, Cao X, Gao C. Bimetallic Metal-Organic Framework-Derived Carbon Nanotube-Based Frameworks for Enhanced Capacitive Deionization and Zn-Air Battery. Front Chem 2019; 7:449. [PMID: 31275928 PMCID: PMC6593352 DOI: 10.3389/fchem.2019.00449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Carbon-based materials have attracted intensive attentions for a wide range of energy and environment-related applications. Energy storage/conversion devices with improved performance have been achieved by utilization of metal-organic-framework (MOF)-derived carbon structures as active materials in recent years. However, the effects of MOF precursors on the performance of derived carbon materials are rarely investigated. Here, we report that the incorporation of small amount of Fe or Ni in Co-based MOFs leads to a significant enhancement for the derived carbon nanotube-based frameworks (CNTFs) in Na+/Cl- ion electrosorption. Further investigation revealed the enhanced performance can be attributed to the improved specific surface area, electrical conductivity, and electrochemical activity. Notably, the CoFe-CNTF derived from bimetallic CoFe-MOFs achieves a high ion adsorption capacity of 37.0 mg g-1, superior to most of recently reported carbon-based materials. Furthermore, the CoFe-CNTF also demonstrates high catalytic activity toward oxygen evolution reaction (OER) with a Tafel slope of 87.7 mV dec-1. After combination with three-dimensional graphene foam (3DG), the resultant CoFe-CNTF-coated 3DG is used as air-cathode to fabricate a flexible all-solid-state Zn-air battery, which exhibits a high open circuit potential of 1.455 V. Importantly, the fabricated flexible battery can light a light-emitting diode (LED) even when it is bent. This work provides new insights into designs of high-performance and flexible electrode based on MOF-derived materials.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xilian Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Chenzeng Ye
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Dongyong Sha
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruilian Yin
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xuhai Shen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyue Liu
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|