1
|
Li Z, Ehtesabi S, Gojare S, Richter M, Kupfer S, Gräfe S, Kurouski D. Plasmon-Determined Selectivity in Photocatalytic Transformations on Gold and Gold-Palladium Nanostructures. ACS PHOTONICS 2023; 10:3390-3400. [PMID: 38356782 PMCID: PMC10863388 DOI: 10.1021/acsphotonics.3c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 02/16/2024]
Abstract
Noble metal nanostructures absorb light producing coherent oscillations of the metal's electrons, so-called localized surface plasmon resonances (LSPRs). LSPRs can decay generating hot carriers, highly energetic species that trigger chemical transformations in the molecules located on the metal surfaces. The number of chemical reactions can be expanded by coupling noble and catalytically active metals. However, it remains unclear whether such mono- and bimetallic nanostructures possess any sensitivity toward one or another chemical reaction if both of them can take place in one molecular analyte. In this study, we utilize tip-enhanced Raman spectroscopy (TERS), an emerging analytical technique that has single-molecule sensitivity and sub-nanometer spatial resolution, to investigate plasmon-driven reactivity of 2-nitro-5-thiolobenzoic acid (2-N-5TBA) on gold and gold@palladium nanoplates (AuNPs and Au@PdNPs). This molecular analyte possesses both nitro and carboxyl groups, which can be reduced or removed by hot carriers. We found that on AuNPs, 2-N-5TBA dimerized forming 4,4'-dimethylazobenzene (DMAB), the bicarbonyl derivative of DMAB, as well as 4-nitrobenzenethiol (4-NBT). Our accompanying theoretical investigation based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) confirmed these findings. The theoretical analysis shows that 2-N-5TBA first dimerized forming the bicarbonyl derivative of DMAB, which then decarboxylated forming DMAB. Finally, DMAB can be further reduced leading to 4-NBT. This reaction mechanism is supported by TERS-determined yields on these three molecules on AuNPs. We also found that on Au@PdNPs, 2-N-5TBA first formed the bicarbonyl derivative of DMAB, which is then reduced to both bihydroxyl-DMAB and 4-amino-3-mercaptobenzoic acid. The yield of these reaction products on Au@PdNPs strictly follows the free-energy potential of these molecules on the metallic surfaces.
Collapse
Affiliation(s)
- Zhandong Li
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Siddhi Gojare
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Martin Richter
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Chen YH, Chen CC, Lu LC, Lan CY, Chen HL, Yen TH, Wan D. Wafer-scale fibrous SERS substrates allow label-free, portable detection of food adulteration and diagnosis of pesticide poisoning. SENSORS AND ACTUATORS B: CHEMICAL 2023; 391:134035. [DOI: 10.1016/j.snb.2023.134035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
3
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
4
|
Zou H, Gong L, Xu Y, Ni H, Jiang Y, Li Y, Huang C, Liu Q. Plasmonic scattering imaging of single Cu 2-xSe nanoparticle for Hg 2+ detection. Talanta 2023; 261:124663. [PMID: 37209587 DOI: 10.1016/j.talanta.2023.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The development of new efficient contrast nanoprobe has been greatly concerned in the field of scattering imaging for sensitive and accurate detection of trace analytes. In this work, the non-stoichiometric Cu2-xSe nanoparticle with typical localized surface plasmon resonance (LSPR) properties originating from their copper deficiency as a plasmonic scattering imaging probe was developed for sensitive and selective detection of Hg2+ under dark-field microscopy. Hg2+ can compete with Cu(I)/Cu(II) which were sources of optically active holes coexisting in these Cu2-xSe nanoparticles for its higher affinity with Se2-. The plasmonic properties of Cu2-xSe were adjusted effectively. Thus, the color scattering images of Cu2-xSe nanoparticles was changed from blue to cyan, and the scattering intensity was obviously enhanced with the dark-field microscopy. There was a linear relationship between the scattering intensity enhancement and the Hg2+ concentration in the range of 10-300 nM with a low detection limit of 1.07 nM. The proposed method has good potential for Hg2+ detection in the actual water samples. This work provides a new perspective on applying new plasmonic imaging probe for the reliable determination of trace heavy metal substances in the environment at a single particle level.
Collapse
Affiliation(s)
- Hongyan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lijun Gong
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yue Xu
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huanhuan Ni
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yongjian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanfang Li
- Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Indhu AR, Keerthana L, Dharmalingam G. Plasmonic nanotechnology for photothermal applications - an evaluation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:380-419. [PMID: 37025366 PMCID: PMC10071519 DOI: 10.3762/bjnano.14.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of absorbed light to heat by these particles, has led to thriving research regarding the utilization of plasmonic nanoparticles for a myriad of applications. The design of conventional nanomaterials for PT conversion has focussed predominantly on the manipulation of photon absorption through bandgap engineering, doping, incorporation, and modification of suitable matrix materials. Plasmonic nanomaterials offer an alternative and attractive approach in this regard, through the flexibility in the excitation of surface plasmons. Specific advantages are the considerable improved bandwidth of the absorption, a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie theory, Gans theory, generic simulations on common plasmonic material morphologies, and the evaluation processes of PT performance. Further, a variety of nanomaterials and material classes that have potential for PPT conversion are elucidated, such as plasmonic metals, bimetals, and metal-metal oxide nanocomposites. A detailed investigation of the essential, but often ignored, concept of thermal, chemical, and aggregation stability of nanoparticles is another part of this review. The challenges that remain, as well as prospective directions and chemistries, regarding nanomaterials for PT conversion are pondered on in the final section of the article, taking into account the specific requirements from different applications.
Collapse
Affiliation(s)
- A R Indhu
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India
| | - L Keerthana
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India
| | | |
Collapse
|
6
|
Kim CY, Shaban SM, Cho SY, Kim DH. Detection of Periodontal Disease Marker with Geometrical Transformation of Ag Nanoplates. Anal Chem 2023; 95:2356-2365. [PMID: 36645297 DOI: 10.1021/acs.analchem.2c04327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alkaline phosphatase (ALP) and interleukin-1beta (IL-1β) are crucial salivary biomarkers for the diagnosis of periodontal disease that harms the periodontal tissue along with tooth loss. However, there has been no way of sensitive and portable detection of both biomarkers in saliva with multivariate signal readout. In this work, we design the multicolorimetric ALP and IL-1β sensing platform based on geometrical transformation of silver nanoplate transducer. By utilizing enzymatic activity of ALP that dephosphorylates p-aminophenol phosphate (p-APP) to p-aminophenol (p-AP), localized surface plasmon resonance properties of silver nanoplate vary with ALP and show a distinct color change from blue to yellow based on a controlled seed transformation from triangular to hexagonal, rounded pentagonal, and spherical shape. The multicolor sensor shows an ALP detection range of 0-25 U/L with a limit of detection (LOD) of 0.0011 U/L, which is the lowest range of LOD demonstrated to date for state-of-the-art ALP sensor. Furthermore, we integrate the sensor with the conventional ELISA to detect IL-1β for multicolor signaling and it exhibits a linear detection range of 0-250 pg/mL and an LOD of 0.066 pg/mL, which is 2 orders of magnitude lower than the monochromic conventional ELISA (LOD of 3.8 pg/mL). The ALP multicolor sensor shows high selectivity with a recovery of 100.9% in real human saliva proving its reliability and suitability for the readily accessible periodontal diagnosis with multivariate signal readout.
Collapse
Affiliation(s)
- Chae-Yeon Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea
| | - Samy M Shaban
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea.,Petrochemical Department, Egyptian Petroleum Research Institute, Cairo11727, Egypt
| | - Soo-Yeon Cho
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Suwon16419, Republic of Korea
| |
Collapse
|
7
|
Ramírez O, Bonardd S, Saldías C, Zambrano Y, Díaz DD, Leiva A. CuAu bimetallic plasmonic-enhanced catalysts supported on alginate biohydrogels. Carbohydr Polym 2022; 297:120021. [DOI: 10.1016/j.carbpol.2022.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
8
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
9
|
Chen J, Xu W, Li X, Sun L, Zhong Z, Zhang Z, Tang Y. Near infrared optically responsive Ag-Cu bimetallic 2D nanocrystals with controllable spatial structures. J Colloid Interface Sci 2022; 628:660-669. [PMID: 36027776 DOI: 10.1016/j.jcis.2022.08.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
The optical properties of cost-effective Ag-Cu bimetallic nanocrystals, with synergistically enhanced catalytic and biological activities, are limited within ultraviolet-visible region due to lack of morphology control. In order to overcome this constraint, two-dimensional (2D) Ag-Cu bimetallic heterostructures were designed and synthesized by a seed-mediated colloidal growth method. The conformal Cu domain was epitaxially deposited on Ag nanoplates with different spatial configuration under retention of their 2D shape. Both of the 2D Ag-Cu core@shell and Janus structures display tunable localized surface plasmon resonance from visible to near infrared regions. The results of catalytic reduction of 4-nitrophenol show that the 2D Ag-Cu core@shell structure has better synergistic catalytic performance than Janus structure and Ag plates. In addition to surface-related synergistically enhanced bactericidal performance, their antibacterial effect can also be significantly enhanced by near infrared light irradiation. These results indicate that 2D Ag-Cu heterostructures can benefit from both synergistically improved surface activity and great optical responsive characteristics.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Wenhao Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xingjin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Libo Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zihan Zhong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zitao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yun Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Zou H, Gu X, Xia C, Cheng R, Huang C, Li Y, Gao P. Gold triangular nanoplates with edge effect for reaction monitoring under dark-field microscopy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Bonyár A. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling-Interparticle Gap Optimization for Dimers Using Computational Simulations. BIOSENSORS 2021; 11:bios11120527. [PMID: 34940284 PMCID: PMC8699530 DOI: 10.3390/bios11120527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 05/03/2023]
Abstract
The bulk and surface refractive index sensitivities of LSPR biosensors, consisting of coupled plasmonic nanosphere and nano-ellipsoid dimers, were investigated by simulations using the boundary element method (BEM). The enhancement factor, defined as the ratio of plasmon extinction peak shift of multi-particle and single-particle arrangements caused by changes in the refractive index of the environment, was used to quantify the effect of coupling on the increased sensitivity of the dimers. The bulk refractive index sensitivity (RIS) was obtained by changing the dielectric medium surrounding the nanoparticles, while the surface sensitivity was modeled by depositing dielectric layers on the nanoparticle in an increasing thickness. The results show that by optimizing the interparticle gaps for a given layer thickness, up to ~80% of the optical response range of the nanoparticles can be utilized by confining the plasmon field between the particles, which translates into an enhancement of ~3-4 times compared to uncoupled, single particles with the same shape and size. The results also show that in these cases, the surface sensitivity enhancement is significantly higher than the bulk RI sensitivity enhancement (e.g., 3.2 times vs. 1.8 times for nanospheres with a 70 nm diameter), and thus the sensors' response for molecular interactions is higher than their RIS would indicate. These results underline the importance of plasmonic coupling in the optimization of nanoparticle arrangements for biosensor applications. The interparticle gap should be tailored with respect to the size of the used receptor/target molecules to maximize the molecular sensitivity, and the presented methodology can effectively aid the optimization of fabrication technologies.
Collapse
Affiliation(s)
- Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| |
Collapse
|
12
|
Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids. Mikrochim Acta 2021; 188:423. [PMID: 34792665 DOI: 10.1007/s00604-021-05080-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Alkaline phosphatase (ALP) is one of the most versatile biomarkers for early detection of several diseases, such as oral carcinomas and periodontitis; therefore, great efforts have been dedicated for developing an ALP biosensor. Multicolor detection of ALP in saliva is ideal for a point-of-care diagnosis; however, this approach is very challenging since spectral responses over wavelengths of several tens of nanometers have thus far remained difficult to achieve. In this work, a colorimetric biosensor for ALP assay has been developed based on ALP affinity to dephosphorylate glucose phosphate into glucose, which has the affinity to deposit Ag nanoshells onto Au nanobipyramids with a multicolor response. This approach provides a blue shift of localized surface plasmon resonance (LSPR) as large as 190 nm corresponding to distinctive color changes, from yellowish brown to red based on the thickness of the formed Ag shell around the Au nanobipyramids. The change in the LSPR has been conducted for highly sensitive quantitative bioassay of ALP with a detectable multicolor change with linear dynamic range of 0.1-20 U/L and low limit of detection (LOD) of 0.085 U/L. Furthermore, the developed multicolor ALP biosensor exhibits high selectivity with high recovery of 98.6% demonstrating its reliability and suitability for a point-of-care diagnosis.
Collapse
|
13
|
Pang J, Xie R, Chua S, Zou Y, Tang M, Zhang F, Chai F. Preparation of fluorescent bimetallic silver/copper nanoparticles and their utility of dual-mode fluorimetric and colorimetric probe for Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120035. [PMID: 34126396 DOI: 10.1016/j.saa.2021.120035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
A dual-mode colorimetric and fluorimetric probe was successfully established based on silver/copper bimetallic nanoparticles (AgCu-BNPs). The AgCu-BNPs were confirmed as individually bimetallic nanoparticles with a mean size of 7.7 ± 0.2 nm, as characterized by high resolution transmission electron microscopy. Intriguingly, the AgCu-BNPs possess both surface plasmon resonances (SPR) and fluorescence emission. AgCu-BNPs emanate bright blue fluorescence with optical emission centered at 442 nm with high quantum yield of 30.3%, and AgCu-BNPs were attenuated or even quenched by Hg2+ via both static and dynamic quenching, coincidently accompanied by a visible color change, which endow AgCu-BNPs a unique utility as dual-mode colorimetric and fluorimetric probes. The detection limits as low as 89 nM and 9 nM were determined by dual-mode of AgCu-BNPs, respectively. The recovery rates in real samples were found to be 97.3-118.8%, and 89.5-112.7% by colorimetric and fluorescent methods separately, demonstrates the good environmental tolerance of the dual-mode probe.
Collapse
Affiliation(s)
- Jingyu Pang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Sophie Chua
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Zou
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Mingyu Tang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Fang Zhang
- Beibu Gulf Institute of Marine Advanced Materials, Beihai 536015, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China; Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.
| |
Collapse
|
14
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
15
|
Ramos RCR, Regulacio MD. Controllable Synthesis of Bimetallic Nanostructures Using Biogenic Reagents: A Green Perspective. ACS OMEGA 2021; 6:7212-7228. [PMID: 33778236 PMCID: PMC7992060 DOI: 10.1021/acsomega.1c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
Bimetallic nanostructures are emerging as a significant class of metal nanomaterials due to their exceptional properties that are useful in various areas of science and technology. When used for catalysis and sensing applications, bimetallic nanostructures have been noted to exhibit better performance relative to their monometallic counterparts owing to synergistic effects. Furthermore, their dual metal composition and configuration can be modulated to achieve optimal activity for the desired functions. However, as with other nanostructured metals, bimetallic nanostructures are usually prepared through wet chemical routes that involve the use of harsh reducing agents and hazardous stabilizing agents. In response to intensifying concerns over the toxicity of chemicals used in nanomaterial synthesis, the scientific community has increasingly turned its attention toward environmentally and biologically compatible reagents that can enable green and sustainable nanofabrication processes. This article aims to provide an evaluation of the green synthetic methods of constructing bimetallic nanostructures, with emphasis on the use of biogenic resources (e.g., plant extracts, DNA, proteins) as safe and practical reagents. Special attention is devoted to biogenic synthetic protocols that demonstrate controllable nanoscale features, such as size, composition, morphology, and configuration. The potential use of these biogenically prepared bimetallic nanostructures as catalysts and sensors is also discussed. It is hoped that this article will serve as a valuable reference on bimetallic nanostructures and will help fuel new ideas for the development of more eco-friendly strategies for the controllable synthesis of various types of nanostructured bimetallic systems.
Collapse
Affiliation(s)
- Rufus
Mart Ceasar R. Ramos
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Michelle D. Regulacio
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
- Institute
of Chemistry, University of the Philippines
Diliman, Quezon
City 1101, Philippines
| |
Collapse
|
16
|
Gao PF, Lei G, Huang CZ. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal Chem 2021; 93:4707-4726. [DOI: 10.1021/acs.analchem.0c04390] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Gang Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Zhang G, Ma Y, Liu F, Nie Y, Liu Z, Fu X, Luan X, Qu F, Liu M, Zheng Y. Seeded growth of gold–silver ultrathin wire–dot hybrid nanostructures. CrystEngComm 2020. [DOI: 10.1039/d0ce01009j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold–silver hybrid nanostructures in the form of “ultrathin wire–dots” are prepared in high purity via seeded growth.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Feng Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yuting Nie
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Zhiang Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Xiaoqian Luan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Fengli Qu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Maochang Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| |
Collapse
|