1
|
Marabello D, Canepa C, Cioci A, Benzi P. Beta-Hydroxybutyric Acid as a Template for the X-ray Powder Diffraction Analysis of Gamma-Hydroxybutyric Acid. Molecules 2024; 29:4678. [PMID: 39407606 PMCID: PMC11477879 DOI: 10.3390/molecules29194678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/20/2024] Open
Abstract
In this paper, we report the possibility of using the X-ray powder diffraction (XRPD) technique to detect gamma-hydroxybutyric acid (GHB) in the form of its sodium salt in different beverages, but because it is not possible to freely buy GHB, beta-hydroxybutyric acid (BHB) and its sodium salt (NaBHB) were used as a model to fine-tune an X-ray diffraction method for the qualitative analysis of the sodium salt of GHB. The method requires only a small quantity of beverage and an easy sample preparation that consists only of the addition of NaOH to the drink and a subsequent drying step. The dry residue obtained can be easily analyzed with XRPD using a single-crystal X-ray diffractometer, which exploits its high sensitivity and allows for very fast pattern collection. Several beverages with different NaBHB:NaOH molar ratios were tested, and the results showed that NaBHB was detected in all drinks analyzed when the NaBHB:NaOH molar ratio was 1:50, using a characteristic peak at very low 2θ values, which also permitted the detection of its presence in complex beverage matrices. Moreover, depending on the amount of NaOH added, shifting and/or splitting of the characteristic NaBHB salt peak was observed, and the origin of this behavior was investigated.
Collapse
Affiliation(s)
- Domenica Marabello
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
- Centre for Crystallography (CrisDi), University of Torino, 10125 Torino, Italy
| | - Carlo Canepa
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
| | - Alma Cioci
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
| | - Paola Benzi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
- Centre for Crystallography (CrisDi), University of Torino, 10125 Torino, Italy
| |
Collapse
|
2
|
Ramos P, Raczak BK, Silvestri D, Wacławek S. Application of TGA/c-DTA for Distinguishing between Two Forms of Naproxen in Pharmaceutical Preparations. Pharmaceutics 2023; 15:1689. [PMID: 37376137 DOI: 10.3390/pharmaceutics15061689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Naproxen is one of the most used non-steroidal anti-inflammatory drugs (NSAIDs). It is used to treat pain of various origins, inflammation and fever. Pharmaceutical preparations containing naproxen are available with prescription and over-the-counter (OTC). Naproxen in pharmaceutical preparations is used in the form of acid and sodium salt. From the point of view of pharmaceutical analysis, it is crucial to distinguish between these two forms of drugs. There are many costly and laborious methods to do this. Therefore, new, faster, cheaper and, at the same time, simple-to-perform identification methods are sought. In the conducted studies, thermal methods such as thermogravimetry (TGA) supported by calculated differential thermal analysis (c-DTA) were proposed to identify the type of naproxen in commercially available pharmaceutical preparations. In addition, the thermal methods used were compared with pharmacopoeial methods for the identification of compounds, such as high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectrophotometry, and a simple colorimetric analyses. In addition, using nabumetone, a close structural analog of naproxen, the specificity of the TGA and c-DTA methods was assessed. Studies have shown that the thermal analyses used are effective and selective in distinguishing the form of naproxen in pharmaceutical preparations. This indicates the potential possibility of using TGA supported by c-DTA as an alternative method.
Collapse
Affiliation(s)
- Paweł Ramos
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Barbara Klaudia Raczak
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Stdentská 2, 460 01 Liberec, Czech Republic
| | - Stanisław Wacławek
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Stdentská 2, 460 01 Liberec, Czech Republic
| |
Collapse
|
3
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
4
|
Jurásek B, Rimpelová S, Babor M, Čejka J, Bartůněk V, Kuchař M. Intriguing Cytotoxicity of the Street Dissociative Anesthetic Methoxphenidine: Unexpected Impurities Spotted. Int J Mol Sci 2022; 23:ijms23042083. [PMID: 35216198 PMCID: PMC8879332 DOI: 10.3390/ijms23042083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The black market for new psychoactive substances has been constantly evolving and the substances that appear on this market cause a considerable number of issues, in extreme cases leading to human deaths. While monitoring the drug black market, we detected a sample of a dissociative anesthetic methoxphenidine, the salt of which contained an unusual anion in the form of bromo- and chloro-zincate complex. Concerning the unknown and potentially hazardous properties of this sample, we performed an in vitro cytotoxicity screening in cell lines of various origins (e.g., kidney, liver, bladder) which was compared with the toxicity results of the methoxphenidine standard prepared for this purpose. The street methoxphenidine sample exhibited markedly higher toxicity than the standard, which was probably caused by the anion impurity. Since it is not usual to analyze anions in salts of novel psychoactive substances, but such samples may be commonly available at the drug black market, we have developed a method for their identification with X-ray powder diffraction (XRPD), which also enabled us to distinguish between different polymorphs/solvates of methoxphenidine that were crystallized in the laboratory. XRPD offers additional data about samples, which may not be discovered by routine techniques, and in some cases, they may help to find out essential information.
Collapse
Affiliation(s)
- Bronislav Jurásek
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Correspondence: (S.R.); (M.K.)
| | - Martin Babor
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (M.B.); (J.Č.)
| | - Jan Čejka
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (M.B.); (J.Č.)
| | - Vilém Bartůněk
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Correspondence: (S.R.); (M.K.)
| |
Collapse
|
5
|
Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:587658. [PMID: 33042982 PMCID: PMC7527831 DOI: 10.3389/fbioe.2020.587658] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Traditional strategies of bone repair include autografts, allografts and surgical reconstructions, but they may bring about potential hazard of donor site morbidity, rejection, risk of disease transmission and repetitive surgery. Bone tissue engineering (BTE) is a multidisciplinary field that offers promising substitutes in biopharmaceutical applications, and chitosan (CS)-based bone reconstructions can be a potential candidate in regenerative tissue fields owing to its low immunogenicity, biodegradability, bioresorbable features, low-cost and economic nature. Formulations of CS-based injectable hydrogels with thermo/pH-response are advantageous in terms of their high-water imbibing capability, minimal invasiveness, porous networks, and ability to mold perfectly into an irregular defect. Additionally, CS combined with other naturally-derived or synthetic polymers and bioactive agents has proven to be an effective alternative to autologous bone and dental grafts. In this review, we will highlight the current progress in the development of preparation methods, physicochemical properties and applications of CS-based injectable hydrogels and their perspectives in bone and dental regeneration. We believe this review is intended as starting point and inspiration for future research effort to develop the next generation of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Wusi Zeng
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|