1
|
Rancati S, Nicora G, Prosperi M, Bellazzi R, Salemi M, Marini S. Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders. Brief Bioinform 2024; 25:bbae535. [PMID: 39446192 PMCID: PMC11500442 DOI: 10.1093/bib/bbae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The COVID-19 pandemic is marked by the successive emergence of new SARS-CoV-2 variants, lineages, and sublineages that outcompete earlier strains, largely due to factors like increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system, to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute >10% of all the viral sequences added to the GISAID, a public database supporting viral genetic sequence sharing, in a given week. DeepAutoCoV is trained and validated by assembling global and country-specific data sets from over 16 million Spike protein sequences sampled over a period of ~4 years. DeepAutoCoV successfully flags FDLs at very low frequencies (0.01%-3%), with median lead times of 4-17 weeks, and predicts FDLs between ~5 and ~25 times better than a baseline approach. For example, the B.1.617.2 vaccine reference strain was flagged as FDL when its frequency was only 0.01%, more than a year before it was considered for an updated COVID-19 vaccine. Furthermore, DeepAutoCoV outputs interpretable results by pinpointing specific mutations potentially linked to increased fitness and may provide significant insights for the optimization of public health 'pre-emptive' intervention strategies.
Collapse
Affiliation(s)
- Simone Rancati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Adolfo Ferrata 5, Pavia, 27100, Italy
| | - Giovanna Nicora
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Adolfo Ferrata 5, Pavia, 27100, Italy
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, 2004 Mowry Road, Gainesville, FL 32610, United States
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, United States
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Adolfo Ferrata 5, Pavia, 27100, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, United States
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, United States
| | - Simone Marini
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, 2004 Mowry Road, Gainesville, FL 32610, United States
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, United States
| |
Collapse
|
2
|
Tariq SS, Zia K, Nur-E-Alam M, Nerukh D, Farafonov VS, Ul-Haq Z. Impact of mutations in SARS-CoV-2 recombinant sub-variant XBB.1.16 on the binding affinity with human ACE2 receptor. J Mol Graph Model 2024; 131:108813. [PMID: 38885553 DOI: 10.1016/j.jmgm.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Despite the waning threat of the COVID-19 pandemic, its detrimental impact on global health persists. Regardless of natural immunity or immunity obtained through vaccination, emerging variants of the virus continue to undergo mutations and propagate globally. The persistent mutations in SARS-CoV-2, along with the subsequent formation of recombinant sub-variants has become a challenge for researchers and health professionals, raising concerns about the efficacy of current vaccines. Gaining a better understanding of the biochemical interactions between the Spike Protein (RBD) of SARS-CoV-2 variants and the human ACE2 receptor can prove to be beneficial in designing and developing antiviral therapeutics that are equally effective against all strains and emerging variants. Our objective in this study was to investigate the interfacial binding pattern of the SARS-CoV-2 RBD-ACE2 complex of the Wild Type (WT), Omicron, and the Omicron recombinant sub-variant XBB.1.16. We aimed to examine the atomic level factors and observe how mutations influence the interaction between the virus and its host using Molecular Dynamics simulation, MM/GBSA energy calculations, and Principal Component Analysis. Our findings reveal a higher degree of structural deviation and flexibility in XBB.1.16 compared to WT and Omicron. PCA indicated a wider cluster and significant flexibility in the movements of XBB.1.16 which can also be observed in free energy landscapes, while the normal mode analysis revealed converging motions within the RBD-ACE2 complexes which can facilitate the interaction between them. A pattern of decreased binding affinity was observed in case of XBB.1.16 when compared to the WT and Omicron. These observed deviations in XBB.1.16 when compared to its parent lineage Omicron, and WT can be attributed to the mutations specific to it. Collectively, these results enhance our understanding of the impact of mutations on the interaction between this strain and the host, taking us one step closer to designing effective antiviral therapeutics against the continually mutating strains.
Collapse
Affiliation(s)
- Syeda Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Saudi Arabia
| | - Dmitry Nerukh
- Department of Mathematics, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Vladimir S Farafonov
- Department of Mathematics, Aston University, Birmingham, B4 7ET, United Kingdom; Department of Physical Chemistry, V.N.Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Kiatratdasakul S, Noisumdaeng P, Niyomdecha N. Biological factors associated with long COVID and comparative analysis of SARS-CoV-2 spike protein variants: a retrospective study in Thailand. PeerJ 2024; 12:e17898. [PMID: 39175748 PMCID: PMC11340629 DOI: 10.7717/peerj.17898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/20/2024] [Indexed: 08/24/2024] Open
Abstract
Background Post-acute COVID-19 syndrome (long COVID) refers to the persistence of COVID-19 symptoms or exceptional symptoms following recovery. Even without conferring fatality, it represents a significant global public health burden. Despite many reports on long COVID, the prevalence and data on associated biological factors remain unclear and limited. This research aimed to determine the prevalence of long COVID during the two distinct epidemic periods in Thailand, due to the Delta and Omicron variants of SARS-CoV-2, and to investigate the biological factors associated with long COVID. In addition, the spike protein amino acid sequences of the Delta and Omicron variants were compared to determine the frequency of mutations and their potential biological implications. Methods A retrospective cross-sectional study was established to recruit confirmed COVID-19 participants at Maharat Nakhon Ratchasima Hospital who had recovered for at least three months and were infected between June 2021 and August 2022. The demographic data and long COVID experience were collected via telephone interview. The biological factors were analyzed through binary logistic regression. The datasets of the SARS-CoV-2 spike protein amino acid sequence of the Delta and Omicron variants in Thailand were retrieved from GIDSAID to determine mutation frequencies and to identify possible roles of the mutations based on published data. Results Data was collected from a total of 247 participants comprising 106 and 141 participants of the Delta and Omicron epidemic periods, respectively. Apart from the COVID-19 severity and health status, the baseline participant data of the two time periods were remarkably similar. The prevalence of long COVID observed in the Omicron period was higher than in the Delta period (74.5% vs. 66.0%). The biological factors associated with long COVID were epidemic variant, age, treatment with symptomatic medicines, and vaccination status. When the spike protein sequence data of the two variants were compared, it was observed that the Omicron variant exhibited a greater quantity of amino acid changes in its receptor-binding domain (RBD) and receptor-binding motif (RBM). The critical changes of the Omicron variant within these regions had a significant function in enhancing virus transmissibility and host immune response resistance. Conclusion This study revealed informative data associated with long COVID in Thailand. More attention should be given to long COVID caused by unique virus variants and other biological factors to prepare a healthcare management strategy for COVID-19 patients after recovery.
Collapse
Affiliation(s)
- Supanchita Kiatratdasakul
- Graduate Program in Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani Province, Thailand
- Department of Immunology, Maharat Nakhon Ratchasima Hospital, Mueang, Nakhon Ratchasima, Thailand
| | - Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathum Thani Province, Thailand
- Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Rangsit Campus, Pathum Thani Province, Thailand
| | - Nattamon Niyomdecha
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani Province, Thailand
| |
Collapse
|
4
|
Sussman F, Villaverde DS. The Diverse Nature of the Molecular Interactions That Govern the COV-2 Variants' Cell Receptor Affinity Ranking and Its Experimental Variability. Int J Mol Sci 2024; 25:2585. [PMID: 38473831 DOI: 10.3390/ijms25052585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
A critical determinant of infectivity and virulence of the most infectious and or lethal variants of concern (VOCs): Wild Type, Delta and Omicron is related to the binding interactions between the receptor-binding domain of the spike and its host receptor, the initial step in cell infection. It is of the utmost importance to understand how mutations of a viral strain, especially those that are in the viral spike, affect the resulting infectivity of the emerging VOC, knowledge that could help us understand the variant virulence and inform the therapies applied or the vaccines developed. For this sake, we have applied a battery of computational protocols of increasing complexity to the calculation of the spike binding affinity for three variants of concern to the ACE2 cell receptor. The results clearly illustrate that the attachment of the spikes of the Delta and Omicron variants to the receptor originates through different molecular interaction mechanisms. All our protocols unanimously predict that the Delta variant has the highest receptor-binding affinity, while the Omicron variant displays a substantial variability in the binding affinity of the spike that relates to the structural plasticity of the Omicron spike-receptor complex. We suggest that the latter result could explain (at least in part) the variability of the in vitro binding results for this VOC and has led us to suggest a reason for the lower virulence of the Omicron variant as compared to earlier strains. Several hypotheses have been developed around this subject.
Collapse
Affiliation(s)
- Fredy Sussman
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Santiago de Compostela, 15784 Santiago de Compostela, Spain
| | - Daniel S Villaverde
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Santiago de Compostela, 15784 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Chen YK, Gahtani RM, Al Shahrani M, Hani U, Alshabrmi FM, Alam S, Almohaimeed HM, Basabrain AA, Shahab M, Xie MZ. Identification of potential inhibitors targeting Ebola virus VP35 protein: a computational strategy. J Biomol Struct Dyn 2023:1-13. [PMID: 38124513 DOI: 10.1080/07391102.2023.2294384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Ebola virus (EBOV) poses a severe threat as a highly infectious pathogen, causing devastating hemorrhagic fever in both humans and animals. The EBOV virus VP35 protein plays a crucial role in viral replication and exhibits the ability to suppress the host interferon cascade, leading to immune system depletion. As a potential drug target, VP35 protein inhibition holds promise for combating EBOV. To discover new drug candidates, we employed a computer-aided drug design approach, focusing on compounds capable of inhibiting VP35 protein replication. In this connection, a pharmacophore model was generated using molecular interactions between the VP35 protein and its inhibitor. ZINC and Cambridge database were screened using validated pharmacophore model. Further the compounds were filtered based on Lipinski's rule of five and subjected to MD simulation and relative binding free energy calculation. Six compounds manifest a significant docking score and strong binding interaction towards VP35 protein. MD simulations further confirmed the remarkable stability of these six complexes. Relative binding free energy calculations also showed significant ΔG value in the range of -132.3 and -49.3 kcal/mol. This study paves the way for further optimization of these compounds as potential inhibitors of VP35, facilitating subsequent experimental in vitro studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yan-Kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Zhuhai, China
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha,Saudia Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Sarfaraz Alam
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Meng-Zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Pondé RADA. Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology 2023; 587:109850. [PMID: 37562286 DOI: 10.1016/j.virol.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Emerging in South Africa, SARS-CoV-2 Omicron variant was marked by the expression of an exaggerated number of mutations throughout its genome and by the emergence of subvariants, whose attributes developed by them have been associated with amino acid exchanges that occur mainly in the RBM region of the spike protein. The RBM comprises a region within the RBD and is directly involved in the SARS-CoV-2 spike protein interaction with the host cell ACE2 receptor, during the infection mechanism and viral transmission. Defined as the region from aa 437 to aa 508, there are several residues in certain positions that interact directly with the human ACE-2 receptor during these processes. The occurrence of amino acid exchanges in these positions causes physicochemical alterations in the SARS-CoV-2 spike protein, which confer additional advantages and attributes to the agent. In addition, these exchanges serve as a basis for the characterization of new variants and subvariants of SARS-CoV-2. In this review, the amino acid exchanges that have occurred in the RBM of the subvariants BA.1 to BA.5 of SARS-CoV-2 that emerged from the Omicron are described. The physicochemical effects caused by them on spike protein are also described, as well as their influence on the biological properties and attributes developed by the subvariants BA.1, BA.2, BA.3, BA.4 and BA.5.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Jafary F, Joozdani FA, Shahzamani K, Jafari S, Mirhendi H, Ganjalikhany MR. Different aspects in explaining how mutations could affect the binding mechanism of receptor binding domain of SARS-CoV-2 spike protein in interaction with ACE2. PLoS One 2023; 18:e0291210. [PMID: 37682927 PMCID: PMC10490914 DOI: 10.1371/journal.pone.0291210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
During replication, some mutations occur in SARS-CoV-2, the causal agent of COVID-19, leading to the emergence of different variants of the virus. The mutations that accrue in different variants of the virus, influence the virus' ability to bind to human cell receptors and ability to evade the human immune system, the rate of viral transmission, and effectiveness of vaccines. Some of these mutations occur in the receptor binding domain (RBD) of the spike protein that may change the affinity of the virus for the ACE2 receptor. In this study, several in silico techniques, such as MD and SMD simulations, were used to perform comparative studies to deeply understand the effect of mutation on structural and functional details of the interaction of the spike glycoprotein of SARS-CoV-2, with the ACE2 receptor. According to our results, the mutation in the RBD associated with the Omicron variant increase binding affinity of the virus to ACE2 when compared to wild type and Delta variants. We also observed that the flexibility of the spike protein of the Omicron variant was lower than in comparison to other variants. In summary, different mutations in variants of the virus can have an effect on the binding mechanism of the receptor binding domain of the virus with ACE2.
Collapse
Affiliation(s)
- Farzaneh Jafary
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kiana Shahzamani
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sepideh Jafari
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | - Hossein Mirhendi
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Mahalingam G, Arjunan P, Periyasami Y, Dhyani AK, Devaraju N, Rajendiran V, Christopher AC, Kt RD, Dhanasingh I, Thangavel S, Murugesan M, Moorthy M, Srivastava A, Marepally S. Correlating the differences in the receptor binding domain of SARS-CoV-2 spike variants on their interactions with human ACE2 receptor. Sci Rep 2023; 13:8743. [PMID: 37253762 DOI: 10.1038/s41598-023-35070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Spike glycoprotein of SARS-CoV-2 variants plays a critical role in infection and transmission through its interaction with human angiotensin converting enzyme 2 (hACE2) receptors. Prior findings using molecular docking and biomolecular studies reported varied findings on the difference in the interactions among the spike variants with the hACE2 receptors. Hence, it is a prerequisite to understand these interactions in a more precise manner. To this end, firstly, we performed ELISA with trimeric spike glycoproteins of SARS-CoV-2 variants including Wuhan Hu-1(Wild), Delta, C.1.2 and Omicron. Further, to study the interactions in a more specific manner by mimicking the natural infection, we developed hACE2 receptors expressing HEK-293T cell line, evaluated their binding efficiencies and competitive binding of spike variants with D614G spike pseudotyped virus. In line with the existing findings, we observed that Omicron had higher binding efficiency compared to Delta in both ELISA and Cellular models. Intriguingly, we found that cellular models could differentiate the subtle differences between the closely related C.1.2 and Delta in their binding to hACE2 receptors. Our study using the cellular model provides a precise method to evaluate the binding interactions between spike sub-lineages to hACE2 receptors.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Ajay Kumar Dhyani
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Nivedita Devaraju
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Ramya Devi Kt
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Immanuel Dhanasingh
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Mohankumar Murugesan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), CMC Campus, Vellore, Tamil Nadu, 632002, India.
| |
Collapse
|
10
|
Identification of Natural Lead Compounds against Hemagglutinin-Esterase Surface Glycoprotein in Human Coronaviruses Investigated via MD Simulation, Principal Component Analysis, Cross-Correlation, H-Bond Plot and MMGBSA. Biomedicines 2023; 11:biomedicines11030793. [PMID: 36979773 PMCID: PMC10044901 DOI: 10.3390/biomedicines11030793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound ‘Calceolarioside B’ was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind −37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.
Collapse
|
11
|
Yamacli S, Avci M. Computation of the Binding Energies between Human ACE2 and Spike RBDs of the Original Strain, Delta and Omicron Variants of the SARS-CoV-2: A DFT Simulation Approach. ADVANCED THEORY AND SIMULATIONS 2022; 5:2200337. [PMID: 36248211 PMCID: PMC9538088 DOI: 10.1002/adts.202200337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Indexed: 11/09/2022]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 binds to human ACE2 leading to infection. In this study, the complexes that are formed by the attachment of the SARS-CoV-2 spike RBDs of the original strain, delta and omicron variants to the human ACE2 are investigated via density functional theory (DFT) simulations to obtain binding energies. The DFT computations are performed without fragmenting the interfaces to involve longer-range interactions for improved accuracy, which is one of the primary features of the approach used in this study. Basis set superposition error corrections and van der Waals dispersions are also included in the DFT simulations. The binding energies of the SARS-CoV-2 spike RBDs of the original strain, delta and omicron variants to the human ACE2 are computed as -4.76, -6.68, and -11.77 eV, respectively. These binding energy values indicate that the binding of the omicron variant to the ACE2 is much more favorable than the binding of the original strain and the delta variant, which constitute a molecular reason for the takeover of the omicron variant. The binding energies and the decomposition of these energies found in this study are expected to aid in the development of neutralizing agents.
Collapse
Affiliation(s)
- Serhan Yamacli
- Department of Electrical‐Electronics EngineeringNuh Naci Yazgan UniversityKayseri38090Turkey
| | - Mutlu Avci
- Department of Biomedical EngineeringCukurova UniversityAdana01330Turkey
| |
Collapse
|
12
|
Khan SA, Khan A, Zia K, Shawish I, Barakat A, Ul-Haq Z. Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. Int J Mol Sci 2022; 23:ijms231810315. [PMID: 36142242 PMCID: PMC9498999 DOI: 10.3390/ijms231810315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
During the past two decades, the world has witnessed the emergence of various SARS-CoV-2 variants with distinct mutational profiles influencing the global health, economy, and clinical aspects of the COVID-19 pandemic. These variants or mutants have raised major concerns regarding the protection provided by neutralizing monoclonal antibodies and vaccination, rates of virus transmission, and/or the risk of reinfection. The newly emerged Omicron, a genetically distinct lineage of SARS-CoV-2, continues its spread in the face of rising vaccine-induced immunity while maintaining its replication fitness. Efforts have been made to improve the therapeutic interventions and the FDA has issued Emergency Use Authorization for a few monoclonal antibodies and drug treatments for COVID-19. However, the current situation of rapidly spreading Omicron and its lineages demands the need for effective therapeutic interventions to reduce the COVID-19 pandemic. Several experimental studies have indicated that the FDA-approved monoclonal antibodies are less effective than antiviral drugs against the Omicron variant. Thus, in this study, we aim to identify antiviral compounds against the Spike protein of Omicron, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor and facilitates virus invasion. Initially, docking-based virtual screening of the in-house database was performed to extract the potential hit compounds against the Spike protein. The obtained hits were optimized by DFT calculations to determine the electronic properties and molecular reactivity of the compounds. Further, MD simulation studies were carried out to evaluate the dynamics of protein–ligand interactions at an atomistic level in a time-dependent manner. Collectively, five compounds (AKS-01, AKS-02, AKS-03, AKS-04, and AKS-05) with diverse scaffolds were identified as potential hits against the Spike protein of Omicron. Our study paves the way for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (A.B.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (A.B.); (Z.U.-H.)
| |
Collapse
|