1
|
Namvari M, Chakrabarti BK. Electrophoretic deposition of MXenes and their composites: Toward a scalable approach. Adv Colloid Interface Sci 2024; 331:103208. [PMID: 38852471 DOI: 10.1016/j.cis.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Over the past decade, MXenes, a novel class of advanced 2D nanomaterials, have manifested as a prominent electrode material with diverse applications. Their unique layered structures, negative zeta potential, charge carrier mobility, mechanical properties, adjustable bandgap, hydrophilicity, metallic nature, and surface chemistry collectively contribute to the abundance of active redox sites on the surface and a reduction in the ion diffusion pathway. Despite such promising attributes of MXene, challenges like aggregation and restacking reduce the accessibility of active surface sites for electrolyte ions. Amongst approaches such as surface functionalization, addition of spacers, or facilitating pore formation, the electrophoretic deposition (EPD) of MXene on substrates has commenced to gain attention aiming to mitigate these issues. More importantly, it offers large-scale film fabrication in a short time without the necessity of using a charge-inducing agent. This review compiles recent advances in the use of EPD for preparing MXene-based electrodes and discusses the effect of EPD parameters on the relevant device performance. Recognition is given to understanding the relation of MXene colloidal composition in aqueous (and in some cases, non-aqueous) dispersions, deposition times, and other relevant parameters on respective device performances. In conclusion, the potential avenues offered by MXenes for future research on electrode materials are emphasized.
Collapse
Affiliation(s)
- Mina Namvari
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey.
| | - Barun Kumar Chakrabarti
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
2
|
Kang B, Chen X, Qi S, Ma F, Liu P. Characteristics of novel Ti-40Nb-xCu alloy and surface treatment with superior antibacterial property and biocompatibility using micro-arc oxidation for dental implants. J Mech Behav Biomed Mater 2024; 157:106605. [PMID: 38852242 DOI: 10.1016/j.jmbbm.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Peri-implantitis and insufficient osseointegration are the principal challenges faced by dental implants at present. In order to fabricate dual-function dental implant materials possessing both antibacterial and osteogenic capabilities, this study incorporates the antimicrobial element Cu into the Ti40Nb alloy, developing a novel Ti40Nb-xCu alloy with antibacterial properties. Among them, Ti40Nb3Cu has the best overall performance. Compared to Ti40Nb, the tensile strength increased by 27.97%, reaching 613 MPa. Although the elongation rate has decreased from 23% to 13.5%, the antibacterial rates against S. aureus and P. gingivalis both exceed 85%. Furthermore, the surface of Ti40Nb-xCu alloy was then treated with micro-arc oxidation to enhance its bioactivity, thereby accelerating osseointegration. The results indicated that the MAO treatment retains the antibacterial properties of the Ti40Nb3Cu alloy while significantly promoting bone formation through its introduced porous coating, thus heralding it as a propitious candidate material for dental implant applications.
Collapse
Affiliation(s)
- Binbin Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxill of Acial Development and Diseases, Fudan University, Shanghai, China
| | - Fengcang Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Chen H, Wang Y, Chen X, Wang Z, Wu Y, Dai Q, Zhao W, Wei T, Yang Q, Huang B, Li Y. Research Progress on Ti 3C 2T x-Based Composite Materials in Antibacterial Field. Molecules 2024; 29:2902. [PMID: 38930967 PMCID: PMC11206357 DOI: 10.3390/molecules29122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yilun Wang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Xuguang Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Zihan Wang
- Department of Computer Science and Technology, China Three Gorges University, Yichang 443002, China
| | - Yue Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qiongqiao Dai
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Wenjing Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Tian Wei
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Qingyuan Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
4
|
Dmytriv TR, Lushchak VI. Potential Biosafety of Mxenes: Stability, Biodegradability, Toxicity and Biocompatibility. CHEM REC 2024; 24:e202300338. [PMID: 38389182 DOI: 10.1002/tcr.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Indexed: 02/24/2024]
Abstract
MXenes are two-dimensional nanomaterials with unique properties that are widely used in various fields of research, mostly in the field of energy. Fewer publications are devoted to MXene application in biomedicine and the question is: are MXenes safe for use in biological systems? The sharp edges of MXenes provide the structure of "nanoknives" which cause damage in direct physical contact with cells. This is effectively used for antibacterial research. However, on the other hand, most studies in cultured cells and rodents report that they do not cause obvious signs of cytotoxicity and are fully biocompatible. The aim of our review was to consider whether MXenes can really be considered non-toxic and biocompatible. Often the last two concepts are confused. We first reviewed aspects such as the stability and biodegradation of MXenes, and then analyzed the mechanisms of toxicity and their consequences for bacteria, cultured cells, and rodents, with subsequent conclusions regarding their biocompatibility.
Collapse
Affiliation(s)
- Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
- Research and Development University, Shota Rustaveli Str., 76018, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Makurat-Kasprolewicz B, Ossowska A. Electrophoretically deposited titanium and its alloys in biomedical engineering: Recent progress and remaining challenges. J Biomed Mater Res B Appl Biomater 2024; 112:e35342. [PMID: 37905698 DOI: 10.1002/jbm.b.35342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/23/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Over the past decade, titanium implants have gained popularity as the number of performed implantation operations has significantly increased. There are a number of methods for modifying the surface of biomaterials, which are aimed at extending the life of titanium implants. The developments in this field in recent years have required a comprehensive discussion of all the properties of electrophoretically deposited coatings on titanium and its alloys, taking into account their bioactivity. The development that took place in this field in recent years required a comprehensive discussion of all the properties of coatings electrophoretically deposited on titanium and its alloys, with particular emphasis on their bioactivity. Herein, we attempt to assess the influence of the electrophoretic deposition (EPD) process parameters on these coatings' biological and mechanical properties. Particular attention has been addressed to the in-vitro and in-vivo studies conducted hitherto. We have seen an increased interest in using titanium alloys without the addition of toxic compounds and gaps in the EPD field such as the uncommon endeavors to develop a "Design of experiments" approach as well as the lack of assessment of the surface free energy and detailed topography of electrophoretically deposited coatings. The exact correlation of coating properties with EPD process parameters still seems explicitly not understood, necessitating more future investigations. Ipso facto, the exact mechanism of particle agglomeration and Hamaker's law need to be fathomable.
Collapse
Affiliation(s)
| | - Agnieszka Ossowska
- Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
7
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Wen S, Xiong Y, Cai S, Li H, Zhang X, Sun Q, Yang R. Plasmon-enhanced photothermal properties of Au@Ti 3C 2T x nanosheets for antibacterial applications. NANOSCALE 2022; 14:16572-16580. [PMID: 36314771 DOI: 10.1039/d2nr05115j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibiotic-resistant bacterial strains have become an ever-increasing public concern due to their significant threats to health safety. Nanomaterial-based photothermal treatment has shown potential in antibacterial applications, but many nanomaterials exhibited limited photothermal activity that may compromise their antibacterial efficacies. Herein, we report a novel strategy based on efficient photothermal ablation and physical contact over a supported nanostructure by loading Au nanoparticles (NPs) on few-layered Ti3C2Tx nanosheets (NSs) for antibacterial treatment. Ti3C2Tx NSs are delaminated via etching and sonication, and act as a reductant for the in situ reduction of HAuCl4·xH2O, producing "naked" Au NPs without any stabilizers. Meanwhile, by adjusting the Au/Ti ratio, the size and loading of the Au NPs are finely regulated, thereby providing an ideal model of a surface-clean Au@Ti3C2Tx heterostructure for probing the composition-performance relationship. Upon irradiation with visible light, it exhibits synergistically enhanced photothermal conversion efficiency and stability, owing to the localized surface plasmonic resonance effect of Au NP and Au-NS interactions. Moreover, under visible light irradiation for 10 min, the Au@ Ti3C2Tx heterostructure exhibits excellent antibacterial activity for Gram-positive S. aureus and Gram-negative E. coli, and kills over 99% bacteria with a low dose of the nanomedicine suspension (50 μg mL-1). The work demonstrates that the incorporation of transition metal carbides with plasmonic metal nanostructures is an effective strategy to enhance the photothermal antibacterial efficacy.
Collapse
Affiliation(s)
- Shiqi Wen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Youlin Xiong
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Haolin Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xining Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS centre for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|