1
|
Ripe-Jaime L, Díaz E, Franco ÁG, Keim C, Burgos D, Pizarro V, Cadavid LF, Cárdenas A, Arévalo-Ferro C. Metabolic complexities and heterogeneity in quorum sensing signaling molecules in bacteria isolated from black band disease in a Caribbean coral. Res Microbiol 2024:104248. [PMID: 39442591 DOI: 10.1016/j.resmic.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Coral diseases contribute to the worldwide loss of coral reefs, with the Black Band Disease (BBD) being a prominent example. BBD is an infectious condition with lesions with a pigmented mat composed of cyanobacteria, sulphate-reducing, sulphide-oxidizing, and heterotrophic bacteria. We compared the heterotrophic bacterial communities of healthy and BBD-affected colonies of the Caribbean coral Orbicella faveolata using culture-dependent and -independent techniques. Twenty and 23 bacterial isolates were identified from healthy and diseased tissues, respectively, which differed in their capacities to metabolize carbohydrates and citrate, either anaerobically or aerobically. They also differed in their quorum-sensing (QS) activity, as QS signaling molecules were found exclusively, and QS-inhibition was found primarily, in isolates from diseased tissues. Screening of bacterial diversity by 16SrDNA metabarcoding showed that members of the bacterial genera Muricauda and Maritimimonas were dominant in healthy tissues whereas members of the cyanobacterial genus Roseofilum were dominant in diseased tissues. These results suggest that bacterial dysbiosis can be linked with altered bacterial communication, likely leading to diachrony and imbalance that may participate in the progression of BBD. Investigating physiological traits and QS-based communication offers insights into the onset and progression of coral infections, paving the way for novel strategies to mitigate their impact.
Collapse
Affiliation(s)
- Laura Ripe-Jaime
- Departmeno de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Erika Díaz
- Departmeno de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ángel G Franco
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany
| | - Catherine Keim
- Department of Biology, American University, Washington, DC, USA
| | - Daniela Burgos
- Departmeno de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valeria Pizarro
- Ecomares Foundation, Cali, Colombia; Perry Institute for Marine Science, Florida, USA
| | - Luis F Cadavid
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | | |
Collapse
|
2
|
Feng M, Yi X, Feng Y, He F, Xiao Z, Yao H. Acetyl-proteome profiling revealed the role of lysine acetylation in erythromycin resistance of Staphylococcus aureus. Heliyon 2024; 10:e35326. [PMID: 39170456 PMCID: PMC11336636 DOI: 10.1016/j.heliyon.2024.e35326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Staphylococcus aureus (S. aureus), a prevalent human pathogen known for its propensity to cause severe infections, has exhibited a growing resistance to antibiotics. Lysine acetylation (Kac) is a dynamic and reversible protein post-translational modification (PTM), played important roles in various physiological functions. Recent studies have shed light on the involvement of Kac modification in bacterial antibiotic resistance. However, the precise relationship between Kac modification and antibiotic resistance in S. aureus remains inadequately comprehended. Methods We compared the differential expression of acetylated proteins between erythromycin-resistant (Ery-R) and erythromycin-susceptible (Ery-S) strains of S. aureus by 4D label-free quantitative proteomics technology. Additionally, we employed motif analysis, functional annotation and PPI network to investigate the acetylome landscape and heterogeneity of S. aureus. Furthermore, polysome profiling experiments were performed to assess the translational status of ribosome. Results 6791 Kac sites were identified on 1808 proteins in S. aureus, among which 1907 sites in 483 proteins were quantified. A total of 548 Kac sites on 316 acetylated proteins were differentially expressed by erythromycin pressure. The differentially acetylated proteins were primarily enriched in ribosome assembly, glycolysis and lysine biosynthesis. Bioinformatic analyses implied that Kac modification of ribosomal proteins may play an important role in erythromycin resistance of S. aureus. Western bolt and polysome profiling experiments indicated that the increased Kac levels of ribosomal proteins in the resistant strain may partially offset the inhibitory effect of erythromycin on ribosome function. Conclusions Our findings confirm that Kac modification is related to erythromycin resistance in S. aureus and emphasize the potential roles of ribosomal proteins. These results expand our current knowledge of antibiotic resistance mechanisms, potentially guiding future research on PTM-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Miao Feng
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoyu Yi
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zonghui Xiao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hailan Yao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| |
Collapse
|
3
|
Wang S, Tian R, Bi Y, Meng F, Zhang R, Wang C, Wang D, Liu L, Zhang B. A review of distribution and functions of extracellular DNA in the environment and wastewater treatment systems. CHEMOSPHERE 2024; 359:142264. [PMID: 38714248 DOI: 10.1016/j.chemosphere.2024.142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Extracellular DNA refers to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer, and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Ruimin Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Bo Zhang
- Tianjin Eco-City Water Investment and Construction Co. Ltd, Hexu Road 276, Tianjin, 300467, China
| |
Collapse
|
4
|
Zhou J, Feng Y, Wu X, Feng Y, Zhao Y, Pan J, Liu S. Communication leads to bacterial heterogeneous adaptation to changing conditions in partial nitrification reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172110. [PMID: 38565348 DOI: 10.1016/j.scitotenv.2024.172110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.
Collapse
Affiliation(s)
- Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ying Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
5
|
Jonkergouw C, Savola P, Osmekhina E, van Strien J, Batys P, Linder MB. Exploration of Chemical Diversity in Intercellular Quorum Sensing Signalling Systems in Prokaryotes. Angew Chem Int Ed Engl 2024; 63:e202314469. [PMID: 37877232 DOI: 10.1002/anie.202314469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Quorum sensing (QS) serves as a vital means of intercellular signalling in a variety of prokaryotes, which enables single cells to act in multicellular configurations. The potential to control community-wide responses has also sparked numerous recent biotechnological innovations. However, our capacity to utilize intercellular communication is hindered due to a scarcity of complementary signalling systems and a restricted comprehension of interconnections between these systems caused by variations in their dynamic range. In this study, we utilize uniform manifold approximation and projection and extended-connectivity fingerprints to explore the available chemical space of QS signalling molecules. We investigate and experimentally characterize a set of closely related QS signalling ligands, consisting of N-acyl homoserine lactones and the aryl homoserine lactone p-coumaroyl, as well as a set of more widely diverging QS ligands, consisting of photopyrones, dialkylresorcinols, 3,5-dimethylpyrazin-2-ol and autoinducer-2, and define their performance. We report on a set of six signal- and promoter-orthogonal intercellular QS signalling systems, significantly expanding the toolkit for engineering community-wide behaviour. Furthermore, we demonstrate that ligand diversity can serve as a statistically significant tool to predict much more complicated ligand-receptor interactions. This approach highlights the potential of dimensionality reduction to explore chemical diversity in microbial dynamics.
Collapse
Affiliation(s)
- Christopher Jonkergouw
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Pihla Savola
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Ekaterina Osmekhina
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Joeri van Strien
- Medical BioSciences Department, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Markus B Linder
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
6
|
Lin H, Ning X, Wang D, Wang Q, Bai Y, Qu J. Quorum-sensing gene regulates hormetic effects induced by sulfonamides in Comamonadaceae. Appl Environ Microbiol 2023; 89:e0166223. [PMID: 38047646 PMCID: PMC10734536 DOI: 10.1128/aem.01662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang S, Kan J, Liu X, Wu Y, Zhang M, Ou J, Wang J, An L, Li D, Wang L, Wang X, Fang R, Jia Y. Phytopathogenic bacteria utilize host glucose as a signal to stimulate virulence through LuxR homologues. MOLECULAR PLANT PATHOLOGY 2023; 24:359-373. [PMID: 36762904 PMCID: PMC10013830 DOI: 10.1111/mpp.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen-plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinhong Kan
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yao Wu
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Mingyang Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jinqing Ou
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Lin An
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Defeng Li
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Li Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xiu‐Jie Wang
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yantao Jia
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Microbiome engineering for bioremediation of emerging pollutants. Bioprocess Biosyst Eng 2023; 46:323-339. [PMID: 36029349 DOI: 10.1007/s00449-022-02777-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
Axenic microbial applications in the open environment are unrealistic and may not be always practically viable. Therefore, it is important to use mixed microbial cultures and their interactions with the microbiome in the targeted ecosystem to perform robust functions towards their sustainability in harsh environmental conditions. Emerging pollutants like phthalates and hydrocarbons that are toxic to several aquatic and terrestrial life forms in the water bodies and lands are an alarming situation. The present review explores the possibility of devising an inclusive eco-friendly strategy like microbiome engineering which proves to be a unique and crucial technology involving the power of microbial communication through quorum sensing. This review discusses the interspecies and intra-species communications between different microbial groups with their respective environments. Moreover, this review also envisages the efforts for designing the next level of microbiome-host engineering concept (MHEC). The focus of the review also extended toward using omics and metabolic network analysis-based tools for effective microbiome engineering. These approaches might be quite helpful in the future to understand such microbial interactions but it will be challenging to implement in the real environment to get the desired functions. Finally, the review also discusses multiple approaches for the bioremediation of toxic chemicals from the soil environment.
Collapse
|
9
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
10
|
Bridges AA, Prentice JA, Wingreen NS, Bassler BL. Signal Transduction Network Principles Underlying Bacterial Collective Behaviors. Annu Rev Microbiol 2022; 76:235-257. [PMID: 35609948 PMCID: PMC9463083 DOI: 10.1146/annurev-micro-042922-122020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Jojo A Prentice
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Escobar-Muciño E, Arenas-Hernández MMP, Luna-Guevara ML. Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms 2022; 10:884. [PMID: 35630329 PMCID: PMC9143355 DOI: 10.3390/microorganisms10050884] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.
Collapse
Affiliation(s)
- Esmeralda Escobar-Muciño
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - Margarita M. P. Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - M. Lorena Luna-Guevara
- Colegío de Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico
| |
Collapse
|
12
|
Insights into Adaptive Mechanisms of Extreme Acidophiles Based on Quorum Sensing/Quenching-Related Proteins. mSystems 2022; 7:e0149121. [PMID: 35400206 PMCID: PMC9040811 DOI: 10.1128/msystems.01491-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quorum sensing (QS) is a unique mechanism for microorganisms to coordinate their activities through intercellular communication, including four main types of autoinducer-1 (AI-1, namely, N-acyl homoserine lactone [AHL]), AI-2, AI-3, and diffusible signaling factor [DSF]) based on signaling molecules. Quorum quenching (QQ) enzymes can disrupt the QS phenomenon by inactivating signaling molecules. QS is proposed to regulate biofilm formation in extremely acidic environments, but the QS/QQ-related genomic features in most acidophilic bacteria are still largely unknown. Here, genome annotation of 83 acidophiles from the genera Acidithiobacillus, Leptospirillum, Sulfobacillus, and Acidiphilium altogether revealed the existence of AI-1, AI-3, DSF, and AhlD (AHL degradation enzyme). The conservative investigation indicated that some QS/QQ-related proteins harbored key residues or motifs, which were necessary for their activities. Phylogenetic analysis showed that LuxI/R (AI-1 synthase/receptor), QseE/F (two-component system of AI-3), and RpfC/G (two-component system of DSF) exhibited similar evolutionary patterns within each pair. Meanwhile, proteins clustered approximately according to the species taxonomy. The widespread Acidithiobacillus strains, especially A. ferrooxidans, processed AI-1, AI-3, and DSF systems as well as the AhlD enzyme, which were favorable for their mutual information exchange and collective regulation of gene expression. Some members of the Sulfobacillus and Acidiphilium without AHL production capacity contained the AhlD enzyme, which may evolve for niche competition, while DSF in Leptospirillum and Acidithiobacillus could potentially combine with the cyclic diguanylate (c-di-GMP) pathway for self-defense and niche protection. This work will shed light on our understanding of the extent of communication networks and adaptive evolution among acidophiles via QS/QQ coping with environmental changes. IMPORTANCE Understanding cell-cell communication QS is highly relevant for comprehending the regulatory and adaptive mechanisms among acidophiles in extremely acidic ecosystems. Previous studies focused on the existence and functionality of a single QS system in several acidophilic strains. Four representative genera were selected to decipher the distribution and role of QS and QQ integrated with the conservative and evolutionary analysis of related proteins. It was implicated that intra- or intersignaling circuits may work effectively based on different QS types to modulate biofilm formation and energy metabolism among acidophilic microbes. Some individuals could synthesize QQ enzymes for specific QS molecular inactivation to inhibit undesirable acidophile species. This study expanded our knowledge of the fundamental cognition and biological roles underlying the dynamical communication interactions among the coevolving acidophiles and provided a novel perspective for revealing their environmental adaptability.
Collapse
|
13
|
Refactoring transcription factors for metabolic engineering. Biotechnol Adv 2022; 57:107935. [PMID: 35271945 DOI: 10.1016/j.biotechadv.2022.107935] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Due to the ability to regulate target metabolic pathways globally and dynamically, metabolic regulation systems composed of transcription factors have been widely used in metabolic engineering and synthetic biology. This review introduced the categories, action principles, prediction strategies, and related databases of transcription factors. Then, the application of global transcription machinery engineering technology and the transcription factor-based biosensors and quorum sensing systems are overviewed. In addition, strategies for optimizing the transcriptional regulatory tools' performance by refactoring transcription factors are summarized. Finally, the current limitations and prospects of constructing various regulatory tools based on transcription factors are discussed. This review will provide theoretical guidance for the rational design and construction of transcription factor-based metabolic regulation systems.
Collapse
|
14
|
Fan Q, Wang H, Mao C, Li J, Zhang X, Grenier D, Yi L, Wang Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:429-445. [PMID: 34989570 DOI: 10.1021/acs.jafc.1c04751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Quorum sensing (QS) is a signaling mechanism for cell-to-cell communication between bacteria, fungi, and even eukaryotic hosts such as plant and animal cells. Bacteria in real life do not exist as isolated organisms but are found in complex, dynamic, and microecological environments. The study of interspecies QS and interkingdom QS is a valuable approach for exploring bacteria-bacteria interactions and bacteria-host interaction mechanisms and has received considerable attention from researchers. The correct combination of QS signals and receptors is key to initiating the QS process. Compared with intraspecies QS, the signal regulation mechanism of interspecies QS and interkingdom QS is often more complicated, and the distribution of receptors is relatively wide. The present review focuses on the latest progress with respect to the distribution, structure, and signal transduction of interspecies and interkingdom QS receptors and provides a guide for the investigation of new QS receptors in the future.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec G1 V 0A6, Canada
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang 471023, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| |
Collapse
|
15
|
Killiny N. Made for Each Other: Vector-Pathogen Interfaces in the Huanglongbing Pathosystem. PHYTOPATHOLOGY 2022; 112:26-43. [PMID: 34096774 DOI: 10.1094/phyto-05-21-0182-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus greening, or huanglongbing (HLB), currently is the most destructive disease of citrus. HLB disease is putatively caused by the phloem-restricted α-proteobacterium 'Candidatus Liberibacter asiaticus'. This bacterium is transmitted primarily by the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Most animal pathogens are considered pathogenic to their insect vectors, whereas the relationships between plant pathogens and their insect vectors are variable. Lately, the relationship of 'Ca. L. asiaticus' with its insect vector, D. citri, has been well investigated at the molecular, biochemical, and biological levels in many studies. Herein, the findings concerning this relationship are discussed and molecular features of the acquisition of 'Ca. L. asiaticus' from the plant host and its growth and circulation within D. citri, as well as its transmission to plants, are presented. In addition, the effects of 'Ca. L. asiaticus' on the energy metabolism (respiration, tricarboxylic acid cycle, and adenosine triphosphate production), metabolic pathways, immune system, endosymbionts, and detoxification enzymes of D. citri are discussed together with other impacts such as shorter lifespan, altered feeding behavior, and higher fecundity. Overall, although 'Ca. L. asiaticus' has significant negative effects on its insect vector, it increases its vector fitness, indicating that it develops a mutualistic relationship with its vector. This review will help in understanding the specific interactions between 'Ca. L. asiaticus' and its psyllid vector in order to design innovative management strategies.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
16
|
Functional metagenomic analysis of quorum sensing signaling in a nitrifying community. NPJ Biofilms Microbiomes 2021; 7:79. [PMID: 34711833 PMCID: PMC8553950 DOI: 10.1038/s41522-021-00250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/08/2021] [Indexed: 01/12/2023] Open
Abstract
Quorum sensing (QS) can function to shape the microbial community interactions, composition, and function. In wastewater treatment systems, acylated homoserine lactone (AHL)-based QS has been correlated with the conversion of floccular biomass into microbial granules, as well as EPS production and the nitrogen removal process. However, the role of QS in such complex communities is still not fully understood, including the QS-proficient taxa and the functional QS genes involved. To address these questions, we performed a metagenomic screen for AHL genes in an activated sludge microbial community from the Ulu Pandan wastewater treatment plant (WWTP) in Singapore followed by functional validation of luxI activity using AHL biosensors and LC–MSMS profiling. We identified 13 luxI and 30 luxR homologs from the activated sludge metagenome. Of those genes, two represented a cognate pair of luxIR genes belonging to a Nitrospira spp. and those genes were demonstrated to be functionally active. The LuxI homolog synthesized AHLs that were consistent with the dominant AHLs in the activated sludge system. Furthermore, the LuxR homolog was shown to bind to and induce expression of the luxI promoter, suggesting this represents an autoinduction feedback system, characteristic of QS circuits. Additionally, a second, active promoter was upstream of a gene encoding a protein with a GGDEF/EAL domain, commonly associated with modulating the intracellular concentration of the secondary messenger, c-di-GMP. Thus, the metagenomic approach used here was demonstrated to effectively identify functional QS genes and suggests that Nitrospira spp. maybe QS is active in the activated sludge community.
Collapse
|
17
|
Zhang Y, Wang Y, Zhu H, Yi Z, Afayibo DJA, Tao C, Li T, Tian M, Qi J, Ding C, Yu S, Wang S. DctR contributes to the virulence of avian pathogenic Escherichia coli through regulation of type III secretion system 2 expression. Vet Res 2021; 52:101. [PMID: 34229767 PMCID: PMC8259166 DOI: 10.1186/s13567-021-00970-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023] Open
Abstract
Pathogens could precisely alter their gene expression to facilitate their survival and successful infection. The LuxR family transcriptional regulator DctR (also known as YhiF) was shown to participate in the regulation of acid fitness and adhesion of enterohemorrhagic E. coli (EHEC) O157:H7. Avian pathogenic Escherichia coli (APEC) causes significant economic losses to the poultry industries and also potentially threatens human health. However, the effects of DctR on the fitness and virulence of APEC have not been investigated yet. To assess the function of DctR in APEC, the dctR gene mutant and complemented strains were constructed and biologically characterized. Our results show that inactivation of the dctR gene led to decreased biofilm formation, diminished serum resistance, reduced adherence capacity, attenuated colonization and virulence of APEC in ducks. The altered capacities of the mutant strain were restored by genetic complementation. In addition, we found that DctR positively regulates the expression of E. coli type III secretion system 2 (ETT2) core genes in APEC. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were decreased in HD-11 macrophages infected with the mutant strain compared with the wild-type strain. These observations indicate that regulator DctR contributes to the virulence of APEC through regulation of ETT2 expression.
Collapse
Affiliation(s)
- Yaodong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hong Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhengfei Yi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Dossêh Jean Apôtre Afayibo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chenglin Tao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
18
|
Zhong X, Lu R, Liu F, Ye J, Zhao J, Wang F, Yang M. Identification of LuxR Family Regulators That Integrate Into Quorum Sensing Circuit in Vibrio parahaemolyticus. Front Microbiol 2021; 12:691842. [PMID: 34267739 PMCID: PMC8276238 DOI: 10.3389/fmicb.2021.691842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is one of the most important food-borne pathogens that cause economic and public health problems worldwide. Quorum sensing (QS) is a way for the cell-cell communication between bacteria that controls a wide spectrum of processes and phenotypic behaviors. In this study, we performed a systematic research of LuxR family regulators in V. parahaemolyticus and found that they influence the bacterial growth and biofilm formation. We then established a QS reporter plasmid based on bioluminescence luxCDABE operon of Vibrio harveyi and demonstrated that several LuxR family regulators integrated into QS circuit in V. parahaemolyticus. Thereinto, a novel LuxR family regulator, named RobA, was identified as a global regulator by RNA-sequencing analyses, which affected the transcription of 515 genes in V. parahaemolyticus. Subsequent studies confirmed that RobA regulated the expression of the exopolysaccharides (EPS) synthesis cluster and thus controlled the biofilm formation. In addition, bioluminescence reporter assays showed that RobA plays a key role in the QS circuit by regulating the expression of opaR, aphA, cpsQ-mfpABC, cpsS, and scrO. We further demonstrated that the regulation of RobA to EPS and MfpABC depended on OpaR and CpsQ, which combined the QS signal with bis-(3'-5')-cyclic dimeric GMP to construct a complex regulatory network of biofilm formation. Our data provided new insights into the bacterial QS mechanisms and biofilm formation in V. parahaemolyticus.
Collapse
Affiliation(s)
- Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Ranran Lu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fuwen Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Jinjie Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Junyang Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
19
|
Abstract
LuxR solos are related to quorum sensing (QS) LuxR family regulators; however, they lack a cognate LuxI family protein. LuxR solos are widespread and almost exclusively found in proteobacteria. In this study, we investigated the distribution and conservation of LuxR solos in the fluorescent pseudomonads group. Our analysis of more than 600 genomes revealed that the majority of fluorescent Pseudomonas spp. carry one or more LuxR solos, occurring considerably more frequently than complete LuxI/LuxR archetypical QS systems. Based on the adjacent gene context and conservation of the primary structure, nine subgroups of LuxR solos have been identified that are likely to be involved in the establishment of communication networks. Modeling analysis revealed that the majority of subgroups shows some substitutions at the invariant amino acids of the ligand-binding pocket of QS LuxRs, raising the possibility of binding to non-acyl-homoserine lactone (AHL) ligands. Several mutants and gene expression studies on some LuxR solos belonging to different subgroups were performed in order to shed light on their response. The commonality of LuxR solos among fluorescent pseudomonads is an indication of their important role in cell-cell signaling. IMPORTANCE Cell-cell communication in bacteria is being extensively studied in simple settings and uses chemical signals and cognate regulators/receptors. Many Gram-negative proteobacteria use acyl-homoserine lactones (AHLs) synthesized by LuxI family proteins and cognate LuxR-type receptors to regulate their quorum sensing (QS) target loci. AHL-QS circuits are the best studied QS systems; however, many proteobacterial genomes also contain one or more LuxR solos, which are QS-related LuxR proteins which are unpaired to a cognate LuxI. A few LuxR solos have been implicated in intraspecies, interspecies, and interkingdom signaling. Here, we report that LuxR solo homologs occur considerably more frequently than complete LuxI/LuxR QS systems within the Pseudomonas fluorescens group of species and that they are characterized by different genomic organizations and primary structures and can be subdivided into several subgroups. The P. fluorescens group consists of more than 50 species, many of which are found in plant-associated environments. The role of LuxR solos in cell-cell signaling in fluorescent pseudomonads is discussed.
Collapse
|
20
|
Wu Y, Wang CW, Wang D, Wei N. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth Biol 2021; 10:333-344. [PMID: 33496568 DOI: 10.1021/acssynbio.0c00491] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water contamination by pathogenic bacteria is a major public health concern globally. Monitoring bacterial contamination in water is critically important to protect human health, but this remains a critical challenge. Engineered whole-cell biosensors created through synthetic biology hold great promise for rapid and cost-effective detection of waterborne pathogens. In this study, we created a novel whole-cell biosensor to detect water contamination by Pseudomonas aeruginosa and Burkholderia pseudomallei, which are two critical bacterial pathogens and are recognized as common causative agents for waterborne diseases. The biosensor detects the target bacterial pathogens by responding to the relevant quorum sensing signal molecules. Particularly, this study constructed and characterized the biosensor on the basis of the QscR quorum sensing signal system for the first time. We first designed and constructed a QscR on the basis of the sensing module in the E. coli host cell and integrated the QscR sensing module with a reporting module that expressed an enhanced green fluorescent protein (EGFP). The results demonstrated that the biosensor had high sensitivity in response to the quorum sensing signals of the target bacterial pathogens. We further engineered a biosensor that expressed a red pigment lycopene in the reporting module to produce a visible signal readout for the pathogen detection. Additionally, we investigated the feasibility of a paper-based assay by immobilizing the lycopene-based whole-cell biosensor on paper with the aim to build a prototype for developing portable detection devices. The biosensor would provide a simple and inexpensive alternative for timely and point-of-care detection of water contamination and protect human health.
Collapse
|
21
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
22
|
Ambroa A, Blasco L, López-Causapé C, Trastoy R, Fernandez-García L, Bleriot I, Ponce-Alonso M, Pacios O, López M, Cantón R, Kidd TJ, Bou G, Oliver A, Tomás M. Temperate Bacteriophages (Prophages) in Pseudomonas aeruginosa Isolates Belonging to the International Cystic Fibrosis Clone (CC274). Front Microbiol 2020; 11:556706. [PMID: 33101229 PMCID: PMC7546807 DOI: 10.3389/fmicb.2020.556706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Bacteriophages are important in bacterial ecology and evolution. Pseudomonas aeruginosa is the most prevalent bacterial pathogen in chronic bronchopulmonary infection in cystic fibrosis (CF). In this study, we used bioinformatics, microbiological and microscopy techniques to analyze the bacteriophages present in 24 P. aeruginosa isolates belonging to the international CF clone (ST274-CC274). Interestingly, we detected the presence of five members of the Inoviridae family of prophages (Pf1, Pf4, Pf5, Pf6, Pf7), which have previously been observed in P. aeruginosa. In addition, we identified a new filamentous prophage, designated Pf8, in the P. aeruginosa AUS411.500 isolate belonging to the international CF clone. We detected only one prophage, never previously described, from the family Siphoviridiae (with 66 proteins and displaying homology with PHAGE_Pseudo_phi297_NC_016762). This prophage was isolated from the P. aeruginosa AUS531 isolate carrying a new gene which is implicated in the phage infection ability, named Bacteriophage Control Infection (bci). We characterized the role of the Bci protein in bacteriophage infection and in regulating the host Quorum Sensing (QS) system, motility and biofilm and pyocyanin production in the P. aeruginosa isogenic mutant AUS531Δbci isolate. The findings may be relevant for the identification of targets in the development of new strategies to control P. aeruginosa infections, particularly in CF patients.
Collapse
Affiliation(s)
- Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Carla López-Causapé
- Microbiology Department-Health Research Institute of the Baleairc Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - Rocio Trastoy
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernandez-García
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Ines Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Manuel Ponce-Alonso
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Servicio de Microbiología, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Maria López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Rafael Cantón
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Servicio de Microbiología, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Timothy J. Kidd
- Child Health Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Antonio Oliver
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Microbiology Department-Health Research Institute of the Baleairc Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Maria Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| |
Collapse
|
23
|
LuxR Solos in the Plant Endophyte Kosakonia sp. Strain KO348. Appl Environ Microbiol 2020; 86:AEM.00622-20. [PMID: 32332134 PMCID: PMC7301841 DOI: 10.1128/aem.00622-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling. Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization. IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.
Collapse
|
24
|
Hayek M, Baraquet C, Lami R, Blache Y, Molmeret M. The Marine Bacterium Shewanella woodyi Produces C 8-HSL to Regulate Bioluminescence. MICROBIAL ECOLOGY 2020; 79:865-881. [PMID: 31741007 DOI: 10.1007/s00248-019-01454-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Quorum sensing (QS), a cell-to-cell communication system involved in the synchronization of bacterial behavior in a cell-density-dependent manner has been shown to control phenotypes such as luminescence, virulence, and biofilm formation. The marine strain, Shewanella woodyi MS32 has been identified as a luminous bacterium. Very little information is known on this bacterium, in particular if its luminescence and biofilm formation are controlled by QS. In this study, we have demonstrated that S. woodyi MS32 emits luminescence in planktonic and sessile conditions. The putative QS regulatory genes homologous to luxI and luxR identified in the S. woodyi MS32 genome, named swoI and swoR, are divergently transcribed and are not genetically linked to the lux operon in contrast with its closest parent Shewanella hanedai and with Aliivibrio fischeri. Interestingly, the phylogenetic analysis based on the SwoI and SwoR sequences shows that a separate horizontal gene transfer (HGT) occurred for the regulatory genes and for the lux operon. Functional analyses demonstrate that the swoI and swoR mutants were non-luminescent. Expression of lux genes was impaired in the QS regulatory mutants. N-octanoyl-L-homoserine lactone (C8-HSL) identified using liquid chromatography mass spectrometry in the wild-type strain (but not in ΔswoI) can induce S. woodyi luminescence. No significant difference has been detected between the wild-type and mutants on adhesion and biofilm formation in the conditions tested. Therefore, we have demonstrated that the luxCDABEG genes of S. woodyi MS32 are involved in luminescence emission and that the swoR/swoI genes, originated from a separate HGT, regulate luminescence through C8-HSL production.
Collapse
Affiliation(s)
- Mahmoud Hayek
- Laboratoire MAPIEM, EA4323, Université de Toulon, Avenue de l'université, BP 20132, 83957, La Garde Cedex, France
| | - Claudine Baraquet
- Laboratoire MAPIEM, EA4323, Université de Toulon, Avenue de l'université, BP 20132, 83957, La Garde Cedex, France
| | - Raphaël Lami
- Sorbonne Universités, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Yves Blache
- Laboratoire MAPIEM, EA4323, Université de Toulon, Avenue de l'université, BP 20132, 83957, La Garde Cedex, France
| | - Maëlle Molmeret
- Laboratoire MAPIEM, EA4323, Université de Toulon, Avenue de l'université, BP 20132, 83957, La Garde Cedex, France.
| |
Collapse
|
25
|
Prescott RD, Decho AW. Flexibility and Adaptability of Quorum Sensing in Nature. Trends Microbiol 2020; 28:436-444. [PMID: 32001099 DOI: 10.1016/j.tim.2019.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
Quorum sensing (QS), a type of chemical communication, allows bacteria to sense and coordinate activities in natural biofilm communities using N-acyl homoserine lactones (AHLs) as one type of signaling molecule. For AHL-based communication to occur, bacteria must produce and recognize the same signals, which activate similar genes in different species. Our current understanding of AHL-QS suggests that signaling between species would arise randomly, which is not probable. We propose that AHL-QS signaling is a mutable and adaptable process, within limits. AHLs are highly-conserved signals, however, their corresponding receptor proteins (LuxR) are highly variable. We suggest that both flexibility and adaptation occur among receptor proteins, allowing for complex signaling networks to develop in biofilms over time.
Collapse
Affiliation(s)
- Rebecca D Prescott
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK; Microbial Interactions Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | - Alan W Decho
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
26
|
Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv 2020; 10:18451-18468. [PMID: 35685616 PMCID: PMC9122625 DOI: 10.1039/d0ra01484b] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The use of antibiotics to manage infectious diseases dates back to ancient civilization, but the lack of a clear distinction between the therapeutic and toxic dose has been a major challenge. This precipitates the notion that antibiotic resistance was from time immemorial, principally because of a lack of adequate knowledge of therapeutic doses and continuous exposure of these bacteria to suboptimal plasma concentration of antibiotics. With the discovery of penicillin by Alexander Fleming in 1924, a milestone in bacterial infections' treatment was achieved. This forms the foundation for the modern era of antibiotic drugs. Antibiotics such as penicillins, cephalosporins, quinolones, tetracycline, macrolides, sulphonamides, aminoglycosides and glycopeptides are the mainstay in managing severe bacterial infections, but resistant strains of bacteria have emerged and hampered the progress of research in this field. Recently, new approaches to research involving bacteria resistance to antibiotics have appeared; these involve combining the molecular understanding of bacteria systems with the knowledge of bioinformatics. Consequently, many molecules have been developed to curb resistance associated with different bacterial infections. However, because of increased emphasis on the clinical relevance of antibiotics, the synergy between in silico study and in vivo study is well cemented and this facilitates the discovery of potent antibiotics. In this review, we seek to give an overview of earlier reviews and molecular and structural understanding of bacteria resistance to antibiotics, while focusing on the recent bioinformatics approach to antibacterial drug discovery. Understanding the evolution of antibiotic resistance at the molecular level as a functional tool for bioinformatic-based drug design.![]()
Collapse
Affiliation(s)
- Umar Ndagi
- Centre for Trans-Sahara Disease, Vaccine and Drug Research
- Ibrahim Badamasi Babangida University
- Lapai
- Nigeria
| | - Abubakar A. Falaki
- Department of Microbiology
- School of Agriculture and Applied Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Maryam Abdullahi
- Faculty of Pharmaceutical Sciences
- Ahmadu Bello University Zaria
- Nigeria
| | - Monsurat M. Lawal
- School of Laboratory Medicine and Medical Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu Natal
- Durban 4001
- South Africa
| |
Collapse
|
27
|
Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnol Lett 2019; 42:181-186. [PMID: 31732826 DOI: 10.1007/s10529-019-02763-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Cell-cell communication in bacteria needs chemical signals and cognate receptors. Many Gram-negative bacteria use acyl-homoserine lactones (AHLs) and cognate LuxR-type receptors to regulate their quorum sensing (QS) systems. The signal synthase-receptor (LuxI-LuxR) pairs may have co-evolved together. However, many LuxR solo (orphan LuxR) regulators sense more signals than just AHLs, and expand the regulatory networks for inter-species and inter-kingdom communication. Moreover, there are also some QS regulators from the TetR family. LuxR solo regulators might have evolved by gene duplication and horizontal gene transfer. An increased understanding of the evolutionary roles of QS regulators would be helpful for engineering of cell-cell communication circuits in bacteria.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
28
|
Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG. In silico Analysis Reveals Distribution of Quorum Sensing Genes and Consistent Presence of LuxR Solos in the Pandoraea Species. Front Microbiol 2019; 10:1758. [PMID: 31447806 PMCID: PMC6691176 DOI: 10.3389/fmicb.2019.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
Collapse
Affiliation(s)
- Kah-Ooi Chua
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Liu LP, Huang LH, Ding XT, Yan L, Jia SR, Dai YJ, Xie YY, Zhong C. Identification of Quorum-Sensing Molecules of N-Acyl-Homoserine Lactone in Gluconacetobacter Strains by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2019; 24:molecules24152694. [PMID: 31344938 PMCID: PMC6695853 DOI: 10.3390/molecules24152694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/05/2022] Open
Abstract
Many Gram-negative bacteria can regulate gene expression in a cell density-dependent manner via quorum-sensing systems using N-acyl-homoserine lactones (AHLs), which are typical quorum-sensing signaling molecules, and thus modulate physiological characteristics. N-acyl-homoserine lactones are small chemical molecules produced at low concentrations by bacteria and are, therefore, difficult to detect. Here, a biosensor system method and liquid chromatography-tandem mass spectrometry were combined to detect and assay AHL production. As demonstrated by liquid chromatography-tandem mass spectrometry, Gluconacetobacter xylinus CGMCC No. 2955, a Gram-negative acetic acid-producing bacterium and a typical bacterial cellulose (BC) biosynthesis strain, produces six different AHLs, including N-acetyl-homoserine lactone, N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, N-3-oxo-decanoyl-homoserine lactone, N-dodecanoyl-homoserine lactone, and N-tetradecanoyl-homoserine lactone. Gluconacetobacter sp. strain SX-1, another Gram-negative acetic acid-producing bacterium, which can synthesize BC, produces seven different AHLs including N-acetyl-homoserine lactone, N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, N-3-oxo-octanoyl-homoserine lactone, N-decanoyl-homoserine lactone, N-dodecanoyl-homoserine lactone, and N-tetradecanoyl-homoserine lactone. These results lay the foundation for investigating the relationship between BC biosynthesis and quorum-sensing systems.
Collapse
Affiliation(s)
- Ling-Pu Liu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long-Hui Huang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao-Tong Ding
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lin Yan
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu-Jie Dai
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan-Yan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
30
|
Interspecies Chemical Signaling in a Methane-Oxidizing Bacterial Community. Appl Environ Microbiol 2019; 85:AEM.02702-18. [PMID: 30709826 DOI: 10.1128/aem.02702-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Multiple species of bacteria oxidize methane in the environment after it is produced by anaerobic ecosystems. These organisms provide reduced carbon substrates for species that cannot oxidize methane themselves, thereby serving a key role in these niches while also sequestering this potent greenhouse gas before it enters the atmosphere. Deciphering the molecular details of how methane-oxidizing bacteria interact in the environment enables us to understand an important aspect that shapes the structures and functions of these communities. Here we show that many members of the Methylomonas genus possess a LuxR-type acyl-homoserine lactone (acyl-HSL) receptor/transcription factor that is highly homologous to MbaR from the quorum-sensing (QS) system of Methylobacter tundripaludum, another methane oxidizer that has been isolated from the same environment. We reconstitute this detection system in Escherichia coli and use mutant and transcriptomic analysis to show that the receptor/transcription factor from Methylomonas sp. strain LW13 is active and alters LW13 gene expression in response to the acyl-HSL produced by M. tundripaludum These findings provide a molecular mechanism for how two species of bacteria that may compete for resources in the environment can interact in a specific manner through a chemical signal.IMPORTANCE Methanotrophs are bacteria that sequester methane, a significant greenhouse gas, and thereby perform an important ecosystem function. Understanding the mechanisms by which these organisms interact in the environment may ultimately allow us to manipulate and to optimize this activity. Here we show that members of a genus of methane-oxidizing bacteria can be influenced by a chemical signal produced by a possibly competing species. This provides insight into how gene expression can be controlled in these bacterial communities via an exogenous chemical signal.
Collapse
|
31
|
A plant-responsive bacterial-signaling system senses an ethanolamine derivative. Proc Natl Acad Sci U S A 2018; 115:9785-9790. [PMID: 30190434 DOI: 10.1073/pnas.1809611115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The Populus root endophyte Pseudomonas sp. GM79 possesses such a regulator, named PipR. In a previous study we reported that PipR activates an adjacent gene (pipA) coding for a proline iminopeptidase in response to Populus leaf macerates and peptides and that this activation is dependent on a putative ABC-type transporter [Schaefer AL, et al. (2016) mBio 7:e01101-16]. In this study we identify a chemical derived from ethanolamine that induces PipR activity at picomolar concentrations, and we present evidence that this is the active inducer present in plant leaf macerates. First, a screen of more than 750 compounds indicated ethanolamine was a potent inducer for the PipR-sensing system; however, ethanolamine failed to bind to the periplasmic-binding protein (PBP) required for the signal response. This led us to discover that a specific ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), binds to the PBP and serves as a potent PipR-dependent inducer. We also show that a compound, which coelutes with HEHEAA in HPLC and induces pipA gene expression in a PipR-dependent manner, can be found in Populus leaf macerates. This work sheds light on how plant-associated bacteria can sense their environment and on the nature of inducers for a family of plant-responsive LuxR-like transcription factors found in plant-associated bacteria.
Collapse
|
32
|
Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl Environ Microbiol 2018; 84:AEM.00950-18. [PMID: 30006401 DOI: 10.1128/aem.00950-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The olive knot disease (Olea europea L.) is caused by the bacterium Pseudomonas savastanoi pv. savastanoi. P. savastanoi pv. savastanoi in the olive knot undergoes interspecies interactions with the harmless endophyte Erwinia toletana; P. savastanoi pv. savastanoi and E. toletana colocalize and form a stable community, resulting in a more aggressive disease. P. savastanoi pv. savastanoi and Etoletana produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) signal, and they share AHLs in planta In this work, we have further studied the AHL QS systems of P. savastanoi pv. savastanoi and Etoletana in order to determine possible molecular mechanism(s) involved in this bacterial interspecies interaction/cooperation. The AHL QS regulons of P. savastanoi pv. savastanoi and Etoletana were determined, allowing the identification of several QS-regulated genes. Surprisingly, the P. savastanoi pv. savastanoi QS regulon consisted of only a few loci whereas in Etoletana many putative metabolic genes were regulated by QS, among which are several involved in carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which was found to be essential for both colocalization of P. savastanoi pv. savastanoi and Etoletana cells inside olive knots as well as knot development. This study further highlighted that pathogens can cooperate with commensal members of the plant microbiome.IMPORTANCE This is a report on studies of the quorum sensing (QS) systems of the olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive knot cooperator Erwinia toletana These two bacterial species form a stable community in the olive knot, share QS signals, and cooperate, resulting in a more aggressive disease. In this work we further studied the QS systems by determining their regulons as well as by studying QS-regulated genes which might play a role in this cooperation. This represents a unique in vivo interspecies bacterial virulence model and highlights the importance of bacterial interspecies interaction in disease.
Collapse
|
33
|
Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Mar Drugs 2018; 16:md16070244. [PMID: 30041461 PMCID: PMC6070831 DOI: 10.3390/md16070244] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
Genomic data often highlights an inconsistency between the number of gene clusters identified using bioinformatic approaches as potentially producing secondary metabolites and the actual number of chemically characterized secondary metabolites produced by any given microorganism. Such gene clusters are generally considered as “silent”, meaning that they are not expressed under laboratory conditions. Triggering expression of these “silent” clusters could result in unlocking the chemical diversity they control, allowing the discovery of novel molecules of both medical and biotechnological interest. Therefore, both genetic and cultivation-based techniques have been developed aimed at stimulating expression of these “silent” genes. The principles behind the cultivation based approaches have been conceptualized in the “one strain many compounds” (OSMAC) framework, which underlines how a single strain can produce different molecules when grown under different environmental conditions. Parameters such as, nutrient content, temperature, and rate of aeration can be easily changed, altering the global physiology of a microbial strain and in turn significantly affecting its secondary metabolism. As a direct extension of such approaches, co-cultivation strategies and the addition of chemical elicitors have also been used as cues to activate “silent” clusters. In this review, we aim to provide a focused and comprehensive overview of these strategies as they pertain to marine microbes. Moreover, we underline how changes in some parameters which have provided important results in terrestrial microbes, but which have rarely been considered in marine microorganisms, may represent additional strategies to awaken “silent” gene clusters in marine microbes. Unfortunately, the empirical nature of the OSMAC approach forces scientists to perform extensive laboratory experiments. Nevertheless, we believe that some computation and experimental based techniques which are used in other disciplines, and which we discuss; could be effectively employed to help streamline the OSMAC based approaches. We believe that natural products discovery in marine microorganisms would be greatly aided through the integration of basic microbiological approaches, computational methods, and technological innovations, thereby helping unearth much of the as yet untapped potential of these microorganisms.
Collapse
|
34
|
The Quorum Sensing System of Yersinia enterocolitica 8081 Regulates Swimming Motility, Host Cell Attachment, and Virulence Plasmid Maintenance. Genes (Basel) 2018; 9:genes9060307. [PMID: 29925778 PMCID: PMC6027161 DOI: 10.3390/genes9060307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
Although Yersinia enterocolitica genomes are highly heterogeneous, they contain a conserved N-acylhomoserine lactone-dependent (AHL) quorum sensing (QS) system consisting of the luxR and luxI orthologs yenR and yenI respectively. Certain hypervirulent strains also contain a putative orphan luxR gene, ycoR, that is not linked to an AHL synthase. To explore the contribution of yenR/yenI/ycoR to QS-dependent phenotypes in Yersinia enterocolitica strain 8081, single and multiple mutants were constructed. AHL profiling identified N-(3-oxohexanoyl) homoserine lactone, N-hexanoylhomoserine lactone, and N-(3-oxoseptanoyl) homoserine lactone as the most abundant. The AHL profiles of the yenR, ycoR and yenR/ycoR mutants were similar to the parent suggesting that the two LuxR homologues do not regulate AHL production while the yenI mutants were AHL-negative. A role for QS in swimming motility and cell attachment was demonstrated. Down-regulation of the virulence plasmid partition gene, spyA, in yenI and yenI/yenR/ycoR mutants is consistent with the greater loss of the Y. enterocolitica pYVe virulence plasmid in the yenI mutant during serial passage at 37 °C but not at 22 °C. A role for QS-regulated spyA in virulence plasmid maintenance is suggested.
Collapse
|
35
|
Barriuso J, Martínez MJ. In Silico Analysis of the Quorum Sensing Metagenome in Environmental Biofilm Samples. Front Microbiol 2018; 9:1243. [PMID: 29930547 PMCID: PMC6000730 DOI: 10.3389/fmicb.2018.01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing (QS) is a sophisticated cell to cell signaling mechanism mediated by small diffusible molecules called “autoinducers.” This phenomenon is well studied in bacteria, where different QS systems are described that differ between Gram-negative and Gram-positive bacteria. However, a common system to these groups was discovered, the autoinducer 2. QS has implications in biofilm formation, where the application of metagenomic techniques to study these phenomena may be useful to understand the communication networks established by the different components of the community, and to discover new targets for microbial control. Here we present an in silico screening of QS proteins in all publicly available biofilm metagenomes from the JGI database. We performed sequence, conserved motifs, phylogenetic, and three-dimensional structure analyses of the candidates, resulting in an effective strategy to search QS proteins in metagenomes sequences. The number of QS proteins present in each sample, and its phylogenetic affiliation, was clearly related to the bacterial diversity and the origin of the biofilm. The samples isolated from natural habitats presented clear differences with those from artificial habitats. Interesting findings have been made in the abundance of LuxR-like proteins finding an unbalanced ratio between the synthases and the receptor proteins in Bacteroidetes bacteria, pointing out the existence of “cheaters” in this group. Moreover, we have shown the presence of the LuxI/R QS system in bacteria from the Nitrospira taxonomic group. Finally, some undescribed proteins from the HdtS family have been found in Gamma-proteobacteria.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María J Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
36
|
Oh HS, Lee CH. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Gao B, Bian X, Chi L, Tu P, Ru H, Lu K. Editor's Highlight: OrganophosphateDiazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicol Sci 2018; 157:354-364. [PMID: 28369659 DOI: 10.1093/toxsci/kfx053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays a key role in energy production, immune system development, and host resistance against invading pathogens, etc. Disruption of gut bacterial homeostasis is associated with a number of human diseases. Several environmental chemicals have been reported to induce alterations of the gut microbiome. Diazinon, one of important organophosphate insecticides, has been widely used in agriculture. Diazinon and its metabolites are readily detected in different environmental settings and human urine. The toxicity of organophosphates has been a long-standing public health concern. We recently demonstrated that organophosphate insecticide diazinon perturbed the gut microbiome composition of mice. However, the functional impact of exposure on the gut microbiome has not been adequately assessed yet. In particular, the molecular mechanism responsible for exposure-induced microbial profile and community structure changes has not been identified. Therefore, in this study, we used metatranscriptomics to examine the effects of diazinon exposure on the gut metatranscriptome in C57BL/6 mice. Herein, we demonstrated for the first time that organophosphate diazinon modulated quorum sensing, which may serve as a key mechanism to regulate bacterial population, composition, and more importantly, their functional genes. In addition, we also found that diazinon exposure activated diverse stress response pathways and profoundly impaired energy metabolism of gut bacteria. These findings provide new understandings of the functional interplay between the gut microbiome and environmental chemicals, such as organophosphates.
Collapse
Affiliation(s)
- Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Xiaoming Bian
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina 27607
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
38
|
Zhao J, Quan C, Jin L, Chen M. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. J Biotechnol 2018; 268:53-60. [PMID: 29355813 DOI: 10.1016/j.jbiotec.2018.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/23/2017] [Accepted: 01/13/2018] [Indexed: 11/17/2022]
Abstract
Autoinducer-2 (AI-2) is a major signal molecule in bacterial quorum sensing (QS) besides N-acyl homoserine lactones (AHLs or AI-1). AI-2 mediated QS pathways have been proved to regulate gene expression and physiological behaviors of bacteria in either intraspecies or interspecies communication. Recent reviews have mainly summarized AI-2 structures, AI-2 mediated QS pathways and the role of AI-2 in gene regulation, etc. In this article, we present a comprehensive review of AI-2 production, detection and applications. Firstly, intracellular AI-2 synthetic routes were outlined and environmental influences on AI-2 production were focused. Furthermore, recent advances in AI-2 detection and quantification were elucidated from an overall perspective. An in-depth understanding of mechanisms and features of various detection methods may facilitate development of new technologies aimed at signal molecule detection. Finally, utilization of AI-2 mediated QS in health improvement, water treatment and drug production indicate promising and extensive application perspectives of QS strategies.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, 116600, Dalian, China; College of Life Science, Dalian Minzu University, 116600, Dalian, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, 116600, Dalian, China; College of Life Science, Dalian Minzu University, 116600, Dalian, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, 116600, Dalian, China; College of Life Science, Dalian Minzu University, 116600, Dalian, China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, 116034, Dalian, China.
| |
Collapse
|
39
|
Venturi V, Subramoni S, Sabag-Daigle A, Ahmer BMM. Methods to Study Solo/Orphan Quorum-Sensing Receptors. Methods Mol Biol 2018; 1673:145-159. [PMID: 29130171 DOI: 10.1007/978-1-4939-7309-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
LuxR solos/orphans are very widespread among Proteobacteria; however they are surprisingly understudied given that they are likely to play a major role in cell-cell communication in bacteria. Here we describe three simple methodologies/approaches that can be used in order to begin to study this subgroup of quorum sensing-related LuxR receptors.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Science Engineering, Singapore, Singapore
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Fukami J, Abrantes JLF, del Cerro P, Nogueira MA, Ollero FJ, Megías M, Hungria M. Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Arch Microbiol 2017; 200:47-56. [DOI: 10.1007/s00203-017-1422-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 11/24/2022]
|
41
|
In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR homologs in Gram-positive bacteria. Sci Rep 2017; 7:6969. [PMID: 28765541 PMCID: PMC5539150 DOI: 10.1038/s41598-017-07241-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/26/2017] [Indexed: 11/08/2022] Open
Abstract
LuxI and LuxR are key factors that drive quorum sensing (QS) in bacteria through secretion and perception of the signaling molecules e.g. N-Acyl homoserine lactones (AHLs). The role of these proteins is well established in Gram-negative bacteria for intercellular communication but remain under-explored in Gram-positive bacteria where QS peptides are majorly responsible for cell-to-cell communication. Therefore, in the present study, we explored conservation, potential function, topological arrangements and evolutionarily aspects of these proteins in Gram-positive bacteria. Putative LuxI/LuxR containing proteins were retrieved using the domain-based strategy from InterPro v62.0 meta-database. Conservational analyses via multiple sequence alignment and domain showed that these are well conserved in Gram-positive bacteria and possess relatedness with Gram-negative bacteria. Further, Gene ontology and ligand-based functional annotation explain their active involvement in signal transduction mechanism via QS signaling molecules. Moreover, Phylogenetic analyses (LuxI, LuxR, LuxI + LuxR and 16s rRNA) revealed horizontal gene transfer events with significant statistical support among Gram-positive and Gram-negative bacteria. This in-silico study offers a detailed overview of potential LuxI/LuxR distribution in Gram-positive bacteria (mainly Firmicutes and Actinobacteria) and their functional role in QS. It would further help in understanding the extent of interspecies communications between Gram-positive and Gram-negative bacteria through QS signaling molecules.
Collapse
|
42
|
Chapalain A, Groleau MC, Le Guillouzer S, Miomandre A, Vial L, Milot S, Déziel E. Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and N-Acyl-Homoserine Lactone Signaling in a Burkholderia cepacia Complex Clinical Strain. Front Microbiol 2017; 8:1021. [PMID: 28676791 PMCID: PMC5476693 DOI: 10.3389/fmicb.2017.01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Species from the Burkholderia cepacia complex (Bcc) share a canonical LuxI/LuxR quorum sensing (QS) regulation system named CepI/CepR, which mainly relies on the acyl-homoserine lactone (AHL), octanoyl-homoserine lactone (C8-HSL) as signaling molecule. Burkholderia ambifaria is one of the least virulent Bcc species, more often isolated from rhizospheres where it exerts a plant growth-promoting activity. However, clinical strains of B. ambifaria display distinct features, such as phase variation and higher virulence properties. Notably, we previously reported that under laboratory conditions, only clinical strains of the B. ambifaria species produced 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs) via expression of the hmqABCDEFG operon. HMAQs are the methylated counterparts of the 4-hydroxy-2-alkylquinolines (HAQs) produced by the opportunistic human pathogen Pseudomonas aeruginosa, in which they globally contribute to the bacterial virulence and survival. We have found that unlike P. aeruginosa's HAQs, HMAQs do not induce their own production. However, they indirectly regulate the expression of the hmqABCDEFG operon. In B. ambifaria, a strong link between CepI/CepR-based QS and HMAQs is proposed, as we have previously reported an increased production of C8-HSL in HMAQ-negative mutants. Here, we report the identification of all AHLs produced by the clinical B. ambifaria strain HSJ1, namely C6-HSL, C8-HSL, C10-HSL, 3OHC8-HSL, 3OHC10-HSL, and 3OHC12-HSL. Production of significant levels of hydroxylated AHLs prompted the identification of a second complete LuxI/LuxR-type QS system relying on 3OHC10-HSL and 3OHC12-HSL, that we have named CepI2/CepR2. The connection between these two QS systems and the hmqABCDEFG operon, responsible for HMAQs biosynthesis, was investigated. The CepI/CepR system strongly induced the operon, while the second system appears moderately involved. On the other hand, a HMAQ-negative mutant overproduces AHLs from both QS systems. Even if HMAQs are not classical QS signals, their effect on AHL-based QS system still gives them a part to play in the QS circuitry in B. ambifaria and thus, on regulation of various phenotypes.
Collapse
Affiliation(s)
- Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Equipe Pathogénèse des Légionelles, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université LyonLyon, France
| | | | | | - Aurélie Miomandre
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Ludovic Vial
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | | | - Eric Déziel
- INRS-Institut Armand-Frappier, LavalQC, Canada
| |
Collapse
|
43
|
Rajput A, Kumar M. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing. Front Microbiol 2017; 8:798. [PMID: 28515720 PMCID: PMC5413776 DOI: 10.3389/fmicb.2017.00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS). Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site) evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS.
Collapse
Affiliation(s)
- Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| |
Collapse
|
44
|
Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat Chem Biol 2017; 13:551-557. [PMID: 28319101 PMCID: PMC5391282 DOI: 10.1038/nchembio.2336] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) is a cell–cell communication process that enables bacteria to track cell population density and orchestrate collective behaviors. QS relies on production, detection, and response to extracellular signal molecules called autoinducers. In Vibrio cholerae, multiple QS circuits control pathogenesis and biofilm formation. Here, we identify and characterize a new QS autoinducer-receptor pair. The autoinducer is 3,5-dimethylpyrazin-2-ol, which we call DPO. DPO is made from threonine and alanine, and its synthesis depends on threonine dehydrogenase (Tdh). DPO binds to and activates a transcription factor, VqmA. The VqmA-DPO complex activates expression of vqmR, which encodes a small regulatory RNA. VqmR represses genes required for biofilm formation and toxin production. We propose that DPO allows V. cholerae to regulate collective behaviors to, among other possible roles, diversify its QS output during colonization of the human host.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Department of Biology I, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Justin E Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kelsey R Schramma
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Jian-Ping Cong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
45
|
Brameyer S, Heermann R. Quorum Sensing and LuxR Solos in Photorhabdus. Curr Top Microbiol Immunol 2016; 402:103-119. [PMID: 27848037 DOI: 10.1007/82_2016_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial communication via small diffusible molecules to mediate group-coordinated behaviour is commonly referred to as 'quorum sensing'. The prototypical quorum sensing system of Gram-negative bacteria consists of a LuxI-type autoinducer synthase that produces acyl-homoserine lactones (AHLs) as signals and a LuxR-type receptor that detects the AHLs to control expression of specific genes. However, many bacteria possess LuxR homologs but lack a cognate LuxI-type AHL-synthase. Those LuxR-type receptors are designated as 'LuxR orphans' or 'solos'. Entomopathogenic bacteria of the genus Photorhabdus all harbour a large number of LuxR solos, more than any other bacteria examined so far. Two novel quorum sensing systems were found to regulate cell clumping in Photorhabdus and therefore affect pathogenicity. In Photorhabdus luminescens and Photorhabdus temperata the LuxR solo PluR senses α-pyrones named 'photopyrones' instead of AHLs, which are produced by the pyrone synthase PpyS. In contrast, Photorhabdus asymbiotica, a closely related insect and human pathogen, has the PluR homolog PauR, which senses dialkylresorcinols produced by the DarABC pathway to regulate pathogenicity. All three Photorhabdus species harbour at least one LuxR solo with an intact AHL-binding motif, which might also allow sensing of exogenous AHLs. However, the majority of the LuxR solos in all Photorhabdus species have a PAS4 signal-binding domain. These receptors are assumed to detect eukaryotic compounds and are proposed to be involved in host sensing. Overall, because of the large number of LuxR solos they encode, bacteria of the genus Photorhabdus are ideal candidates to study and to identify novel bacterial communication networks.
Collapse
Affiliation(s)
- Sophie Brameyer
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany.
| |
Collapse
|
46
|
Venturi V, Ahmer BMM. Editorial: LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria. Front Cell Infect Microbiol 2015; 5:89. [PMID: 26649284 PMCID: PMC4664662 DOI: 10.3389/fcimb.2015.00089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic and Biotechnology Trieste, Italy
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA ; Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA ; Department of Microbiology, The Ohio State University Columbus, OH, USA
| |
Collapse
|