1
|
Wang PH, Xing L. The roles of rabies virus structural proteins in immune evasion and implications for vaccine development. Can J Microbiol 2024; 70:461-469. [PMID: 39297428 DOI: 10.1139/cjm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Rabies is a zoonotic infectious disease that targets the nervous system of human and animals and has about 100% fatality rate without treatment. Rabies virus is a bullet-like viral particle composed of five structural proteins, including nucleoprotein (N), phosphorylated protein (P), matrix protein (M), glycoprotein (G), and large subunit (L) of RNA-dependent RNA polymerase. These multifunctional viral proteins also play critical roles in the immune escape by inhibiting specific immune responses in the host, resulting in massive replication of the virus in the nervous system and abnormal behaviors of patients such as brain dysfunction and hydrophobia, which ultimately lead to the death of patients. Herein, the role of five structural proteins of rabies virus in the viral replication and immune escape and its implication for the development of vaccines were systemically reviewed, so as to shed light on the understanding of pathogenic mechanism of rabies virus.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
2
|
Yuan Y, Fang A, Wang Z, Chen H, Fu ZF, Zhou M, Zhao L. The matrix protein of lyssavirus hijacks autophagosome for efficient egress by recruiting NEDD4 through its PPxY motif. Autophagy 2024; 20:1723-1740. [PMID: 38566321 PMCID: PMC11262214 DOI: 10.1080/15548627.2024.2338575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; μm: micrometer; μM: micromole.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Zhang H, Liang X, Li D, Zhang C, Wang W, Tang R, Zhang H, Kiflu AB, Liu C, Liang J, Li X, Luo TR. Apolipoprotein D facilitates rabies virus propagation by interacting with G protein and upregulating cholesterol. Front Immunol 2024; 15:1392804. [PMID: 38868762 PMCID: PMC11167634 DOI: 10.3389/fimmu.2024.1392804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Rabies virus (RABV) causes a fatal neurological disease, consisting of unsegmented negative-strand RNA, which encodes five structural proteins (3'-N-P-M-G-L-5'). Apolipoprotein D (ApoD), a lipocalin, is upregulated in the nervous system after injury or pathological changes. Few studies have focused on the role of ApoD during virus infection so far. This study demonstrated that ApoD is upregulated in the mouse brain (in vivo) and C8-D1A cells (in vitro) after RABV infection. By upregulating ApoD expression in C8-D1A cells, we found that ApoD facilitated RABV replication. Additionally, Co-immunoprecipitation demonstrated that ApoD interacted with RABV glycoprotein (G protein). The interaction could promote RABV replication by upregulating the cholesterol level. These findings revealed a novel role of ApoD in promoting RABV replication and provided a potential therapeutic target for rabies.
Collapse
Affiliation(s)
- Hongyan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Xingxue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Duoduo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Chuanliang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Wenfeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Rongze Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Hongyun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Cheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J, Fu ZF, Zhou M, Zhao L. Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism. mBio 2024; 15:e0288023. [PMID: 38349129 PMCID: PMC10936203 DOI: 10.1128/mbio.02880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Structure 2023; 31:1233-1246.e5. [PMID: 37572662 PMCID: PMC10592302 DOI: 10.1016/j.str.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
HIV-1 Rev is an essential regulatory protein that transports unspliced and partially spliced viral mRNAs from the nucleus to the cytoplasm for the expression of viral structural proteins. During its nucleocytoplasmic shuttling, Rev interacts with several host proteins to use the cellular machinery for the advantage of the virus. Here, we report the 3.5 Å cryo-EM structure of a 4.8 MDa Rev-tubulin ring complex. Our structure shows that Rev's arginine-rich motif (ARM) binds to both the acidic surfaces and the C-terminal tails of α/β-tubulin. The Rev-tubulin interaction is functionally homologous to that of kinesin-13, potently destabilizing microtubules at sub-stoichiometric levels. Expression of Rev in astrocytes and HeLa cells shows that it can modulate the microtubule cytoskeleton within the cellular environment. These results show a previously undefined regulatory role of Rev.
Collapse
Affiliation(s)
- Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira Palmer
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Qu M, Zhang H, Cheng P, Wubshet AK, Yin X, Wang X, Sun Y. Histone deacetylase 6's function in viral infection, innate immunity, and disease: latest advances. Front Immunol 2023; 14:1216548. [PMID: 37638049 PMCID: PMC10450946 DOI: 10.3389/fimmu.2023.1216548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out. The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many cellular functions. It plays a crucial and debatable regulatory role in innate antiviral immunity. This review summarises the current state of our understanding of HDAC6's structure and function in light of the three mechanisms by which it controls DNA and RNA virus infection: cytoskeleton regulation, host innate immune response, and autophagy degradation of host or viral proteins. In addition, we summed up how HDAC6 inhibitors are used to treat a wide range of diseases, and how its upstream signaling plays a role in the antiviral mechanism. Together, the findings of this review highlight HDAC6's importance as a new therapeutic target in antiviral immunity, innate immune response, and some diseases, all of which offer promising new avenues for the development of drugs targeting the immune response.
Collapse
Affiliation(s)
- Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res 2023; 115:87-134. [PMID: 37173066 DOI: 10.1016/bs.aivir.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
8
|
Zhang W, Liu Y, Li M, Zhu J, Li X, Luo TR, Liang J. Host Desmin Interacts with RABV Matrix Protein and Facilitates Virus Propagation. Viruses 2023; 15:v15020434. [PMID: 36851648 PMCID: PMC9964581 DOI: 10.3390/v15020434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Microfilaments and microtubules, two crucial structures of cytoskeletal networks, are usurped by various viruses for their entry, egress, and/or intracellular trafficking, including the Rabies virus (RABV). Intermediate filaments (IFs) are the third major component of cytoskeletal filaments; however, little is known about the role of IFs during the RABV infection. Here, we identified the IF protein desmin as a novel host interactor with the RABV matrix protein, and we show that this physical interaction has a functional impact on the virus lifecycle. We found that the overexpression of desmin facilitates the RABV infection by increasing the progeny virus yield, and the suppression of endogenous desmin inhibits virus replication. Furthermore, we used confocal microscopy to observe that the RABV-M co-localizes with desmin in IF bundles in the BHK-21 cells. Lastly, we found that mice challenged with RABV displayed an enhanced expression of desmin in the brains of infected animals. These findings reveal a desmin/RABV-M interaction that positively regulates the virus infection and suggests that the RABV may utilize cellular IFs as tracks for the intracellular transport of viral components and efficient budding.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yuming Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Mengru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Jian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (X.L.); (T.R.L.); (J.L.)
| |
Collapse
|
9
|
Diot C, Cosentino G, Rameix-Welti MA. Ribonucleoprotein transport in Negative Strand RNA viruses. Biol Cell 2023; 115:e2200059. [PMID: 36192136 DOI: 10.1111/boc.202200059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These "organelles" usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries. In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.
Collapse
Affiliation(s)
- Cédric Diot
- Université Paris-Saclay - Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
| | - Gina Cosentino
- Université Paris-Saclay - Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay - Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
| |
Collapse
|
10
|
Deb Roy A, Gross EG, Pillai GS, Seetharaman S, Etienne-Manneville S, Inoue T. Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation. J Cell Biol 2022; 221:213540. [PMID: 36222836 PMCID: PMC9565784 DOI: 10.1083/jcb.202202100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Spatiotemporally dynamic microtubule acetylation underlies diverse physiological and pathological events. Despite its ubiquity, the molecular mechanisms that regulate the sole microtubule acetylating agent, α-tubulin-N-acetyltransferase-1 (α-TAT1), remain obscure. Here, we report that dynamic intracellular localization of α-TAT1 along with its catalytic activity determines efficiency of microtubule acetylation. Specifically, we newly identified a conserved signal motif in the intrinsically disordered C-terminus of α-TAT1, consisting of three competing regulatory elements-nuclear export, nuclear import, and cytosolic retention. Their balance is tuned via phosphorylation by CDK1, PKA, and CK2, and dephosphorylation by PP2A. While the unphosphorylated form binds to importins and resides both in cytosol and nucleus, the phosphorylated form binds to specific 14-3-3 adapters and accumulates in the cytosol for maximal substrate access. Unlike other molecules with a similar phospho-regulated signal motif, α-TAT1 uniquely uses the nucleus as a hideout. This allosteric spatial regulation of α-TAT1 function may help uncover a spatiotemporal code of microtubule acetylation in normal and aberrant cell behavior.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Liu X, Nawaz Z, Guo C, Ali S, Naeem MA, Jamil T, Ahmad W, Siddiq MU, Ahmed S, Asif Idrees M, Ahmad A. Rabies Virus Exploits Cytoskeleton Network to Cause Early Disease Progression and Cellular Dysfunction. Front Vet Sci 2022; 9:889873. [PMID: 35685339 PMCID: PMC9172992 DOI: 10.3389/fvets.2022.889873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2023] Open
Abstract
Rabies virus (RABV) is a cunning neurotropic pathogen and causes top priority neglected tropical diseases in the developing world. The genome of RABV consists of nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA polymerase L protein (L), respectively. The virus causes neuronal dysfunction instead of neuronal cell death by deregulating the polymerization of the actin and microtubule cytoskeleton and subverts the associated binding and motor proteins for efficient viral progression. These binding proteins mainly maintain neuronal structure, morphology, synaptic integrity, and complex neurophysiological pathways. However, much of the exact mechanism of the viral-cytoskeleton interaction is yet unclear because several binding proteins of the actin-microtubule cytoskeleton are involved in multifaceted pathways to influence the retrograde and anterograde axonal transport of RABV. In this review, all the available scientific results regarding cytoskeleton elements and their possible interactions with RABV have been collected through systematic methodology, and thereby interpreted to explain sneaky features of RABV. The aim is to envisage the pathogenesis of RABV to understand further steps of RABV progression inside the cells. RABV interacts in a number of ways with the cell cytoskeleton to produce degenerative changes in the biochemical and neuropathological trails of neurons and other cell types. Briefly, RABV changes the gene expression of essential cytoskeleton related proteins, depolymerizes actin and microtubules, coordinates the synthesis of inclusion bodies, manipulates microtubules and associated motors proteins, and uses actin for clathrin-mediated entry in different cells. Most importantly, the P is the most intricate protein of RABV that performs complex functions. It artfully operates the dynein motor protein along the tracks of microtubules to assist the replication, transcription, and transport of RABV until its egress from the cell. New remedial insights at subcellular levels are needed to counteract the destabilization of the cytoskeleton under RABV infection to stop its life cycle.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, Presidents' Office of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zeeshan Nawaz
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Caixia Guo
- Department of Hand Surgery, Presidents' Office of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sultan Ali
- Faculty of Veterinary Science, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Tariq Jamil
- Department of Clinical Sciences, Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Usman Siddiq
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Asif Idrees
- Department of Pathobiology, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Ali Ahmad
- Department of Pathobiology, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| |
Collapse
|
12
|
Microtubule Depolymerization Limits Porcine Betacoronavirus PHEV Replication. Vet Microbiol 2022; 269:109448. [DOI: 10.1016/j.vetmic.2022.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/23/2022]
|
13
|
Zhu L, Li X, Xu H, Fu L, Gao GF, Liu W, Zhao L, Wang X, Jiang W, Fang M. Multiple RNA virus matrix proteins interact with SLD5 to manipulate host cell cycle. J Gen Virol 2021; 102. [PMID: 34882534 PMCID: PMC8744269 DOI: 10.1099/jgv.0.001697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix protein of many enveloped RNA viruses regulates multiple stages of viral life cycle and has the characteristics of nucleocytoplasmic shuttling. We have previously demonstrated that matrix protein 1 (M1) of an RNA virus, influenza virus, blocks host cell cycle progression by interacting with SLD5, a member of the GINS complex, which is required for normal cell cycle progression. In this study, we found that M protein of several other RNA viruses, including VSV, SeV and HIV, interacted with SLD5. Furthermore, VSV/SeV infection and M protein of VSV/SeV/HIV induced cell cycle arrest at G0/G1 phase. Importantly, overexpression of SLD5 partially rescued the cell cycle arrest by VSV/SeV infection and VSV M protein. In addition, SLD5 suppressed VSV replication in vitro and in vivo, and enhanced type Ⅰ interferon signalling. Taken together, our results suggest that targeting SLD5 by M protein might be a common strategy used by multiple enveloped RNA viruses to block host cell cycle. Our findings provide new mechanistic insights for virus to manipulate cell cycle progression by hijacking host replication factor SLD5 during infection.
Collapse
Affiliation(s)
- Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinyu Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Henan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.,International College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
14
|
Scott TP, Nel LH. Lyssaviruses and the Fatal Encephalitic Disease Rabies. Front Immunol 2021; 12:786953. [PMID: 34925368 PMCID: PMC8678592 DOI: 10.3389/fimmu.2021.786953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa, six confirmed and one putative species of lyssavirus have been identified. Rabies lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the primary reservoir - resulting in the highest per capita death rate from rabies globally. Rabies is typically transmitted through the injection of virus-laden saliva through a bite or scratch from an infected animal. Due to the inhibition of specific immune responses by multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue and subsequently enters the peripheral nervous system at the neuromuscular junction. Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular apoptosis as the virus progresses to the central nervous system and brain using viral protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the encephalitic and the paralytic form - with differing clinical manifestations and survival times. Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal apoptosis. While much is known about rabies, there remain many gaps in knowledge about the neuropathology of the disease. It should be emphasized however, that rabies is vaccine preventable and dog-mediated human rabies has been eliminated in various countries. The global elimination of dog-mediated human rabies in the foreseeable future is therefore an entirely feasible goal.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Global Alliance for Rabies Control, Manhattan, KS, United States
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Research Advances on the Interactions between Rabies Virus Structural Proteins and Host Target Cells: Accrued Knowledge from the Application of Reverse Genetics Systems. Viruses 2021; 13:v13112288. [PMID: 34835093 PMCID: PMC8617671 DOI: 10.3390/v13112288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Rabies is a lethal zoonotic disease caused by lyssaviruses, such as rabies virus (RABV), that results in nearly 100% mortality once clinical symptoms appear. There are no curable drugs available yet. RABV contains five structural proteins that play an important role in viral replication, transcription, infection, and immune escape mechanisms. In the past decade, progress has been made in research on the pathogenicity of RABV, which plays an important role in the creation of new recombinant RABV vaccines by reverse genetic manipulation. Here, we review the latest advances on the interaction between RABV proteins in the infected host and the applied development of rabies vaccines by using a fully operational RABV reverse genetics system. This article provides a background for more in-depth research on the pathogenic mechanism of RABV and the development of therapeutic drugs and new biologics.
Collapse
|
16
|
Function of Host Protein Staufen1 in Rabies Virus Replication. Viruses 2021; 13:v13081426. [PMID: 34452292 PMCID: PMC8402631 DOI: 10.3390/v13081426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.
Collapse
|
17
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
18
|
Chang L, Zhu L. Dewormer drug fenbendazole has antiviral effects on BoHV-1 productive infection in cell cultures. J Vet Sci 2020; 21:e72. [PMID: 33016019 PMCID: PMC7533386 DOI: 10.4142/jvs.2020.21.e72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fenbendazole, a dewormer drug, is used widely in the clinical treatment of parasite infections in animals. Recent studies have shown that fenbendazole has substantial effects on tumor growth, immune responses, and inflammatory responses, suggesting that fenbendazole is a pluripotent drug. Nevertheless, the antiviral effects have not been reported. Fenbendazole can disrupt microtubules, which are essential for multiple viruses infections, suggesting that fenbendazole might have antiviral effects. OBJECTIVES This study examined whether fenbendazole could inhibit bovine herpesvirus 1 (BoHV-1) productive infection in cell cultures. METHODS The effects of fenbendazole on viral production, transcription of the immediate early (IE) genes, viron-associated protein expression, and the cellular signaling PLC-γ1/Akt pathway were assessed using distinct methods. RESULTS Fenbendazole could inhibit BoHV-1 productive infections significantly in MDBK cells in a dose-dependent manner. A time-of-addition assay indicated that fenbendazole affected both the early and late stages in the virus replication cycles. The transcription of IE genes, including BoHV-1 infected cell protein 0 (bICP0), bCP4, and bICP22, as well as the synthesis of viron-associated proteins, were disrupted differentially by the fenbendazole treatment. The treatment did not affect the cellular signaling pathway of PLC-γ1/Akt, a known cascade playing important roles in virus infection. CONCLUSIONS Overall, fenbendazole has antiviral effects on BoHV-1 replication.
Collapse
Affiliation(s)
- Long Chang
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China.
| |
Collapse
|
19
|
Zan J, Xu R, Tang X, Lu M, Xie S, Cai J, Huang Z, Zhang J. RNA helicase DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Exp Cell Res 2020; 396:112332. [PMID: 33065113 DOI: 10.1016/j.yexcr.2020.112332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
DEAD-box (DDX) helicases are critical for recognizing viral nucleic acids to regulate antiviral innate immunity. Although DDX5 has been reported to participate in various virus infection, whether DDX5 regulates innate immune responses and its underlying mechanisms are still unknown. Here, we report that DDX5 is a negative regulator of type I IFN (IFN-I) production in antiviral responses. DDX5 knockdown significantly promoted DNA or RNA virus infection-induced IFN-I production and IFN-stimulated genes (ISGs) expression, while ectopic expression of DDX5 inhibited IFN-I production and promoted viral replication. Furthermore, we found that DDX5 specifically interacted with serine/threonine-protein phosphatase 2 A catalytic subunit beta (PP2A-Cβ) and viral infection enhanced the interaction between DDX5 and PP2A-Cβ. Besides, PP2A-Cβ interacted with IFN regulatory factor 3 (IRF3), and PP2A-Cβ knockdown promoted viral infection-induced IRF3 phosphorylation and IFN-I production. In addition, DDX5 knockdown rendered the mice more resistant to viral infection and enhanced antiviral innate immunity in vivo. Thus, DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Together, these findings identify a negative role of DDX5 on regulating IFN-I signaling in innate immune responses.
Collapse
Affiliation(s)
- Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xialin Tang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shanshan Xie
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jun Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhi Huang
- Key Laboratory of Endemic and Ethnic Disease, Ministry of Education, Guizhou Medical University, Guiyang, 550002, China; The Infectious Disease Monitoring Laboratory of Guizhou International Travel Heathcare Center, Guiyang, 550002, China.
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
20
|
Luo J, Zhang Y, Zhang Q, Wu Y, Zhang B, Mo M, Tian Q, Zhao J, Mei M, Guo X. The Deoptimization of Rabies Virus Matrix Protein Impacts Viral Transcription and Replication. Viruses 2019; 12:v12010004. [PMID: 31861477 PMCID: PMC7019236 DOI: 10.3390/v12010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies virus (RABV) matrix (M) protein plays several important roles during RABV infection. Although previous studies have assessed the functions of M through gene rearrangements, this interferes with the position of other viral proteins. In this study, we attenuated M expression through deoptimizing its codon usage based on codon pair bias in RABV. This strategy more objectively clarifies the role of M during virus infection. Codon-deoptimized M inhibited RABV replication during the early stages of infection, but enhanced viral titers at later stages. Codon-deoptimized M also inhibited genome synthesis at early stage of infection and increased the RABV transcription rates. Attenuated M through codon deoptimization enhanced RABV glycoprotein expression following RABV infection in neuronal cells, but had no influence on the cell-to-cell spread of RABV. In addition, codon-deoptimized M virus induced higher levels of apoptosis compared to the parental RABV. These results indicate that codon-deoptimized M increases glycoprotein expression, providing a foundation for further investigation of the role of M during RABV infection.
Collapse
|
21
|
Sigle LT, McGraw EA. Expanding the canon: Non-classical mosquito genes at the interface of arboviral infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:72-80. [PMID: 30970277 DOI: 10.1016/j.ibmb.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/10/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mosquito transmitted viruses cause significant morbidity and mortality in human populations. Despite the use of insecticides and other measures of vector control, arboviral diseases are on the rise. One potential solution for limiting disease transmission to humans is to render mosquitoes refractory to viral infection through genetic modification. Substantial research effort in Drosophila, Aedes and Anopheles has helped to define the major innate immune pathways, including Toll, IMD, Jak/Stat and RNAi, however we still have an incomplete picture of the mosquito antiviral response. Transcriptional profiles of virus-infected insects reveal a much wider range of pathways activated by the process of infection. Within these lists of genes are unexplored mosquito candidates of viral defense. Wolbachia species are endosymbiotic bacteria that naturally limit arboviral infection in mosquitoes. Our understanding of the Wolbachia-mediated viral blocking mechanism is poor, but it does not appear to operate via the classical immune pathways. Herein, we reviewed the transcriptomic response of mosquitoes to multiple viral species and put forth consensus gene types/families outside the immune canon whose expression responds to infection, including cytoskeleton and cellular trafficking, the heat shock response, cytochromes P450, cell proliferation, chitin and small RNAs. We then examine emerging evidence for their functional role in viral resistance in diverse insect and mammalian hosts and their potential role in Wolbachia-mediated viral blocking. These candidate gene families offer novel avenues for research into the nature of insect viral defense.
Collapse
Affiliation(s)
- Leah T Sigle
- Center for Infectious Disease Dynamics, Department of Entomology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Elizabeth A McGraw
- Center for Infectious Disease Dynamics, Department of Entomology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Carnes SK, Aiken C. Host proteins involved in microtubule-dependent HIV-1 intracellular transport and uncoating. Future Virol 2019. [DOI: 10.2217/fvl-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microtubules and microtubule-associated proteins are critical for cargo transport throughout the cell. Many viruses are able to usurp these transport systems for their own replication and spread. HIV-1 utilizes these proteins for many of its early events postentry, including transport, uncoating and reverse transcription. The molecular motor proteins dynein and kinesin-1 are the primary drivers of cargo transport, and HIV-1 utilizes these proteins for infection. In this Review, we highlight recent developments in the understanding of how HIV-1 hijacks motor transport, the key cellular and viral proteins involved, and the ways that transport influences other steps in the HIV-1 lifecycle.
Collapse
Affiliation(s)
- Stephanie K Carnes
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
23
|
Overexpression of MAP2 and NF-H Associated with Dendritic Pathology in the Spinal Cord of Mice Infected with Rabies Virus. Viruses 2018; 10:v10030112. [PMID: 29509660 PMCID: PMC5869505 DOI: 10.3390/v10030112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Rabies is a viral infection that targets the nervous system, specifically neurons. The clinical manifestations of the disease are dramatic and their outcome fatal; paradoxically, conventional histopathological descriptions reveal only subtle changes in the affected nervous tissue. Some researchers have considered that the pathophysiology of rabies is based more on biochemical changes than on structural alterations, as is the case with some psychiatric diseases. However, we believe that it has been necessary to resort to other methods that allow us to analyze the effect of the infection on neurons. The Golgi technique is the gold standard for studying the morphology of all the components of a neuron and the cytoskeletal proteins are the structural support of dendrites and axons. We have previously shown, in the mouse cerebral cortex and now with this work in spinal cord, that rabies virus generates remarkable alterations in the morphological pattern of the neurons and that this effect is associated with the increase in the expression of two cytoskeletal proteins (MAP2 and NF-H). It is necessary to deepen the investigation of the pathogenesis of rabies in order to find therapeutic alternatives to a disease to which the World Health Organization classifies as a neglected disease.
Collapse
|
24
|
|