1
|
Wang C, Zhao J, Lin Y, Lwin SZC, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Two Novel Endolysins from Bacteriophage PEF1 and Evaluation of Their Combined Effects on the Control of Enterococcus faecalis Planktonic and Biofilm Cells. Antibiotics (Basel) 2024; 13:884. [PMID: 39335057 PMCID: PMC11428236 DOI: 10.3390/antibiotics13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Endolysin, a bacteriophage-derived lytic enzyme, has emerged as a promising alternative antimicrobial agent against rising multidrug-resistant bacterial infections. Two novel endolysins LysPEF1-1 and LysPEF1-2 derived from Enterococcus phage PEF1 were cloned and overexpressed in Escherichia coli to test their antimicrobial efficacy against multidrug-resistant E. faecalis strains and their biofilms. LysPEF1-1 comprises an enzymatically active domain and a cell-wall-binding domain originating from the NLPC-P60 and SH3 superfamilies, while LysPEF1-2 contains a putative peptidoglycan recognition domain that belongs to the PGRP superfamily. LysPEF1-1 was active against 89.86% (62/69) of Enterococcus spp. tested, displaying a wider antibacterial spectrum than phage PEF1. Moreover, two endolysins demonstrated lytic activity against additional gram-positive and gram-negative species pretreated with chloroform. LysPEF1-1 showed higher activity against multidrug-resistant E. faecalis strain E5 than LysPEF1-2. The combination of two endolysins effectively reduced planktonic cells of E5 in broth and was more efficient at inhibiting biofilm formation and removing biofilm cells of E. faecalis JCM 7783T than used individually. Especially at 4 °C, they reduced viable biofilm cells by 4.5 log after 2 h of treatment on glass slide surfaces. The results suggest that two novel endolysins could be alternative antimicrobial agents for controlling E. faecalis infections.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| |
Collapse
|
2
|
Malekian M, Fahimi H, Niri NM, Khaleghi S. Development of Novel Chimeric Endolysin Conjugated with Chitosan-Zn-Metal-Organic Framework Nanocomposites with Antibacterial Activity. Appl Biochem Biotechnol 2024; 196:616-631. [PMID: 37166650 DOI: 10.1007/s12010-023-04514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Bacterial diseases have been considered the most crucial issue and are threatening human health all around the world. Also, resistance to antimicrobial drugs has become a big hurdle against efficient therapy. As a result, recombinant chimeric endolysin was produced in E. coli host to use as a potential antibacterial agent against bacteria resistance and replacement to conventional antibiotics in this study. Then, chitosan (C)-coated nanoscale metal-organic frameworks (CS-NMOFs) nanocomposite was synthesized as a novel nano delivery system to further improve the antibacterial activity of endolysin. After characterization of nanocomposite with analytical devices such as FT-IR, DLS, and TEM and determining the nanometric size of samples (30 nm to 90 nm), endolysin was covalently (endolysin-CS-NMOFs (C)) and non-covalently (endolysin-CS-NMOFs (NC)) conjugated to nanocomposite. Thereafter, the lytic ability, synergistic interaction, and biofilm reduction manner of endolysin-containing CS-NMOF nanocomposites were evaluated on E. coli, S. aureus, and P. aeruginosa strains. The results depicted an excellent lytic ability of nanocomposites after 24 h and 48 h of treatment, especially endolysin-CS-NMOFs (NC) on E. coli and P. aeruginosa strains. The synergistic interaction between nanocomposite and vancomycin did not attain for P. aeruginosa strain whereas the reverse was true for E. coli and S. aureus strains at 8 ng/mL concentration. Next, nanocomposites demonstrated potential biofilm reduction activities in various strains, especially in S. aureus and P. aeruginosa. Ultimately, our outputs demonstrate an efficient performance of the synthesized nanocomposite as an appropriate substitution for conventional antibiotics against bacteria.
Collapse
Affiliation(s)
- Mahnaz Malekian
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Abbasi P, Fahimi H, Khaleghi S. Novel Chimeric Endolysin Conjugated Chitosan Nanocomplex as a Potential Inhibitor Against Gram-Positive and Gram-Negative Bacteria. Appl Biochem Biotechnol 2024; 196:478-490. [PMID: 37140784 DOI: 10.1007/s12010-023-04484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Resistance to antimicrobial agents has created potential problems in finding efficient treatments against bacteria. Thus, using new therapeutics, such as recombinant chimeric endolysin, would be more beneficial for eliminating resistant bacteria. The treatment ability of these therapeutics can be further improved if they are used with biocompatible nanoparticles like chitosan (CS). In this work, covalently conjugated chimeric endolysin to CS nanoparticles (C) and non-covalently entrapped endolysin in CS nanoparticles (NC) were effectively developed and, consequently, qualified and quantified using analytical devices, including FT-IR, dynamic light scattering, and TEM. Eighty to 150 nm and 100 nm to 200 nm in diameter were measured for CS-endolysin (NC) and CS-endolysin (C) using a TEM, respectively. The lytic activity, synergistic interaction, and biofilm reduction potency of nano-complexes were investigated on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) strains. The outputs revealed a good lytic activity of nano-complexes after 24 h and 48 h of treatment, especially in P. aeruginosa (approximately 40% cell viability after 48 h of treatment with 8 ng/mL), and potential biofilm reduction performance was attained in E. coli strains (about 70% reduction after treatment with 8 ng/mL). The synergistic interaction between nano-complexes and vancomycin was exhibited in E. coli, P. aeruginosa, and S. aureus strains at 8 ng/mL concentrations, while the synergistic effects of pure endolysin and vancomycin were not remarkable in E. coli strains. These nano-complexes would be more beneficial in suppressing the bacteria with a high level of antibiotic resistance.
Collapse
Affiliation(s)
- Paria Abbasi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
4
|
Shoushtari M, Shooshtari AB, Asadi S, Karami Y, Honari M, Alizadeh GA, Zeinoddini M, Fathi J. Production of Egg Yolk Antibody (IgY) Against Vibrio Cholerae O1: Protective Effect in Mice. Avicenna J Med Biotechnol 2023; 15:239-244. [PMID: 38078337 PMCID: PMC10709753 DOI: 10.18502/ajmb.v15i4.13497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Cholera is an acute intestinal infection caused by Vibrio cholera (V. cholera). The development of antibodies against specific V. cholerae may have a therapeutic effect. In the present research, we investigated the protective effect of egg yolk Immunoglobulin (IgY), which was produced by immunizing hens with formaldehyde-killed V. cholerae O1 and subsequently the isolated IgY was orally administrated to the V. cholerae O1 infected mice for evaluation of its immunizing capability. METHODS In the current study, hens were immunized three times with formaldehyde-killed V. cholerae O1 (1.5×107 CFU/ml) and an equal volume of adjuvant. The IgY was isolated from egg yolk by polyethylene glycol method. The validity and activity of isolated IgY were confirmed with SDS-PAGE and ELISA methods, respectively. Subsequently IgY was orally administered to suckling mice following challenge with V. cholerae O1. ELISA results showed high antibody titer in the serum and egg yolk. Also, SDS-PAGE analysis showed successful purification of IgY and anti-V. cholerae IgY prevented the death of mice infected with V. cholerae O1. The anti-V. cholera IgY was administered at 2, 4, 6 hr intervals after 3 hr of inoculation of mice with V. cholerae O1. RESULTS Results showed that the rate of surviving mice (2 mg/ml of IgY) were 60% after 4 hr and 40% after 6 hr and the rate of surviving mice (5 mg/ml of IgY) was 70% after 4 hr and 60% after 6 hr. CONCLUSION The findings suggested the egg yolk-driven IgY as a natural antibacterial protein, could be effective in the prevention and treatment of cholera disease.
Collapse
Affiliation(s)
- Mohammad Shoushtari
- Anatomical Sciences Research Center Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Sepideh Asadi
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Yousof Karami
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Mehdi Zeinoddini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Asadi M, Taheri-Anganeh M, Ranjbar M, Khatami SH, Maleksabet A, Mostafavi-Pour Z, Ghasemi Y, Keshavarzi A, Savardashtaki A. LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. BMC Microbiol 2023; 23:257. [PMID: 37704938 PMCID: PMC10500863 DOI: 10.1186/s12866-023-03002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Piroozmand A, Zamani B, Haddad Kashani H, Amini Mahabadi J. Serum interleukin-6 level and its association with pulmonary involvement in progressive systemic sclerosis; a case-control study. Clin Mol Allergy 2023; 21:7. [PMID: 37670355 PMCID: PMC10478355 DOI: 10.1186/s12948-023-00188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Primary Systemic Sclerosis (PSS) is a connective tissue disorder characterized by excessive collagen deposition in the skin and internal organs. Interstitial lung disease (ILD) is a late demonstration of PSS and cytokines can contribute to the disease pathology. The purpose of the current study was to determine the association between serum interleukin-6 level and pulmonary involvement in progressive systemic sclerosis. METHODS AND MATERIALS Demographic data and serum interleukin-6 levels were measured for 30 PSS patients with pulmonary involvement (case group) and 30 PSS patients without pulmonary involvement (control group) following informed consent. The disease duration and activity, C-reactive protein (CRP), chest x-ray and highresolution CT scan (HRCT) findings, ejection fraction (EF) and echocardiography findings, and pulmonary artery pressure (PAP) were also determined in both groups. RESULTS The age of patients in case and control groups was 52.5 ± 9.3 and 43.9 ± 9.7 years, respectively (p = 0.001). No significant difference was found between serum levels of IL-6 in case and control groups (73.1 ± 95.4 vs 46.7 ± 83.6 pg/ml, p = 0.267). However, IL-6 level was significantly higher in male case patients compared to male controls (p = 0.007). The duration of PSS was 11.6 ± 6.4 and 7.4 ± 4.2 years in case and control groups, respectively (p = 0.002). The quantitative CRP and PAP was also significantly higher in case patients (p = 0.01 and p < 0.001, respectively). There was found reticulonodular pattern in 20 (66.7%) of the cases, whereas 28 (93.3%) of the controls had normal Chest X-rays (CXR) (p < 0.001). EF was significantly lower in case patients compared to control patients (p = 0.001). CONCLUSION The serum level of IL-6 did not appear to have a relationship with pulmonary involvement, hence it could not be regarded as a potential therapeutic target.
Collapse
Affiliation(s)
- Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| | - Javad Amini Mahabadi
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
7
|
Choi D, Kong M. LysGR1, a novel thermostable endolysin from Geobacillus stearothermophilus bacteriophage GR1. Front Microbiol 2023; 14:1178748. [PMID: 37275144 PMCID: PMC10237291 DOI: 10.3389/fmicb.2023.1178748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Geobacillus stearothermophilus is a highly thermophilic, spore-forming Gram-positive bacterium that causes flat sour spoilage in low-acid canned foods. To address this problem, we isolated G. stearothermophilus-infecting phage GR1 from the soil and characterized its endolysin LysGR1. Phage GR1 belongs to the Siphoviridae family and possesses a genome of 79,387 DNA bps with 108 putative open reading frames. GR1 demonstrated a very low degree of homology to previously reported phages, indicating that it is novel. The endolysin of GR1 (LysGR1) contains an N-terminal amidase domain as an enzymatically active domain (EAD) and two C-terminal LysM domains as a cell wall binding domain (CBD). Although GR1 is specific to certain strains of G. stearothermophilus, LysGR1 showed a much broader lytic range, killing all the tested strains of G. stearothermophilus and several foodborne pathogens, such as Clostridium perfringens, Listeria monocytogenes, and Escherichia coli O157:H7. LysGR1_EAD, alone, also exhibits lytic activity against a wide range of bacteria, including Bacillus cereus, which is not terminated by a full-length endolysin. Both LysGR1 and its EAD effectively remove the G. stearothermophilus biofilms and are highly thermostable, retaining about 70% of their lytic activity after a 15-min incubation at 70°C. Considering the high thermal stability, broad lytic activity, and biofilm reduction efficacy of LysGR1 and its EAD, we hypothesize that these enzymes could act as promising biocontrol agents against G. stearothermophilus and as foodborne pathogens.
Collapse
|
8
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Chang Y, Li Q, Zhang S, Zhang Q, Liu Y, Qi Q, Lu X. Identification and Molecular Modification of Staphylococcus aureus Bacteriophage Lysin LysDZ25. ACS Infect Dis 2023; 9:497-506. [PMID: 36787534 DOI: 10.1021/acsinfecdis.2c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
With the continuous emergence and spread of drug-resistant and multi-drug-resistant Staphylococcus aureus, traditional antibiotic treatment has gradually lost its effect. There is an urgent need to develop and study new and effective bio-green inhibitors to control S. aureus. In this study, the S. aureus phage DZ25 was isolated from milk and the lysin LysDZ25 with excellent tolerance to serum and NaCl solution was identified. Subsequently, to improve the lytic activity and thermal stability of LysDZ25, RoseTTAFold was used to construct three-dimensional (3D) structures, molecular dynamics (MD) simulation was used for conformational acquisition, and the MDL strategy previously developed in our lab was used to rationally design variants. After two rounds of rational design, the optimal variant with improved thermal stability, S333V/N245R/D299L, was obtained, and its half-life time was 4.0-fold that of wild-type LysDZ25. At 37, 40, 45, and 50 °C, the lytic activity of the optimal triple-point variant S333V/N245R/D299L was increased by 17.3-, 26.7-, 20.2-, and 50.1-fold compared with that of the wild-type LysDZ25, respectively. Finally, cell count was used to evaluate the lytic activity, and the results showed that the optimal variant S333V/N245R/D299L could drop about 3.5 log 10 values compared with the control and about 2.6 log 10 values compared with the wild-type LysDZ25.
Collapse
Affiliation(s)
- Yan Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuhang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Zhang S, Chang Y, Zhang Q, Yuan Y, Qi Q, Lu X. Characterization of Salmonella endolysin XFII produced by recombinant Escherichia coli and its application combined with chitosan in lysing Gram-negative bacteria. Microb Cell Fact 2022; 21:171. [PMID: 35999567 PMCID: PMC9396760 DOI: 10.1186/s12934-022-01894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Salmonella is a common foodborne pathogen, which can cause intestinal diseases. In the last decades, the overuse of antibiotics has led to a pandemic of drug-resistant bacterial infections. To tackle the burden of antimicrobial resistant pathogens, it is necessary to develop new antimicrobial drugs with novel modes of action. However, the research and development of antibiotics has encountered bottlenecks, scientific hurdles in the development process, as well as safety and cost challenges. Phages and phage endolysins are promising antibacterial agents that can be used as an alternative to antibiotics. In this context, the expression of endolysin derived from different phages through microbial cells as a chassis seems to be an attractive strategy. RESULTS In this study, a new endolysin from the Salmonella phage XFII-1, named XFII, was screened and obtained. The endolysin yield exceeded 100 mg/mL by heterologous expression from E. coli BL21 and short induction. The endolysin XFII exhibited high bactericidal activity at a concentration of 0.5 μg/mL and reduced the OD600 nm of EDTA-pretreated E. coli JM109 from 0.8 to 0.2 within 5 min. XFII exhibited good thermo-resistance, as it was very stable at different temperatures from 20 to 80℃. Its bactericidal activity could keep constant at 4 °C for 175 days. In addition, the endolysin was able to exert lytic activity in eutrophic conditions, including LB medium and rabbit serum, and the lytic activity was even increased by 13.8% in 10% serum matrices. XFII also showed bactericidal activity against many Gram-negative bacteria, including Salmonella, E. coli, Acinetobacter baumannii, and Klebsiella pneumoniae. Surprisingly, the combination of endolysin XFII and chitosan showed a strong synergy in lysing E. coli and Salmonella without EDTA-pretreatment, and the OD600 nm of E. coli decreased from 0.88 to 0.58 within 10 min. CONCLUSIONS The novel globular endolysin XFII was screened and successfully expressed in E. coli BL21. Endolysin XFII exhibits a broad lysis spectrum, a rapid and strong bactericidal activity, good stability at high temperatures and under eutrophic conditions. Combined with chitosan, XFII could spontaneously lyse Gram-negative bacteria without pretreatment. This work presented the first characterization of combining endolysin and chitosan in spontaneously lysing Gram-negative bacteria in vitro.
Collapse
Affiliation(s)
- Shuhang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Chang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
Marzhoseyni Z, Shayestehpour M, Salimian M, Esmaeili D, Saffari M, Fathizadeh H. Designing a novel fusion protein from Streptococcus agalactiae with apoptosis induction effects on cervical cancer cells. Microb Pathog 2022; 169:105670. [PMID: 35809755 DOI: 10.1016/j.micpath.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022]
Abstract
Cervical cancer remains life-threatening cancer in women around the world. Due to the limitations of conventional treatment approaches, there is an urgent need to develop novel and more efficient strategies against cervical cancer. Therefore, the researchers attend to the alternative anti-cancer compounds like bacterial products. Rib and α are known as surface proteins of Streptococcus agalactiae with immunologic effects. In the present study, we designed a new anti-cancer fusion protein (Rib-α) originating from S. agalactiae with in silico methods, and then, the recombinant gene was cloned in the pET-22 (+) expression vector. The recombinant protein was expressed in E. coli BL21. To purify the expressed protein, we applied the Ni-NTA column. The molecular mechanism by which Rib-α is cytotoxic to cancer cells has been discussed based on MTT, flow cytometry, and real-time PCR methods. The engineered fusion protein suppressed the proliferation of the cancer cells at 180 μg/ml. Cytotoxic assessment and morphological changes, augmentation of apoptotic-related genes, upregulation of caspase-3 mRNA, and flow cytometric analysis confirmed that apoptosis might be the principal mechanism of cell death. According to our findings, Rib-α fusion protein motivated the intrinsic apoptosis pathway. Therefore, it can be an exciting candidate to discover a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Salimian
- Anatomical Science Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Davoud Esmaeili
- Department of Microbiology and Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
12
|
Balaban CL, Suárez CA, Boncompain CA, Peressutti-Bacci N, Ceccarelli EA, Morbidoni HR. Evaluation of factors influencing expression and extraction of recombinant bacteriophage endolysins in Escherichia coli. Microb Cell Fact 2022; 21:40. [PMID: 35292023 PMCID: PMC8922839 DOI: 10.1186/s12934-022-01766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysins are peptidoglycan hydrolases with promising use as environment-friendly antibacterials mainly when used topically. However, in general, endolysin expression is hampered by its low solubility. Thus, a critical point in endolysin industrial production is optimizing their expression, including improvement of solubility and recovery from cell extracts. RESULTS We report the expression of two endolysins encoded in the genome of phages infecting Staphylococcus aureus. Expression was optimized through changes in the concentration of the inducer and growth temperature during the expression. Usually, only 30-40% of the total endolysin was recovered in the soluble fraction. Co-expression of molecular chaperones (DnaK, GroEL) or N-term fusion tags endowed with increased solubility (DsbC, Trx, Sumo) failed to improve that yield substantially. Inclusion of osmolytes (NaCl, CaCl2, mannitol, glycine betaine, glycerol and trehalose) or tensioactives (Triton X-100, Tween 20, Nonidet P-40, CHAPS, N-lauroylsarcosine) in the cell disruption system (in the absence of any molecular chaperone) gave meager improvements excepted by N-lauroylsarcosine which increased recovery to 54% of the total endolysin content. CONCLUSION This is the first attempt to systematically analyze methods for increasing yields of recombinant endolysins. We herein show that neither solubility tags nor molecular chaperones co-expression are effective to that end, while induction temperature, (His)6-tag location and lysis buffer additives (e.g. N-lauroylsarcosine), are sensible strategies to obtain higher levels of soluble S. aureus endolysins.
Collapse
Affiliation(s)
- Cecilia Lucía Balaban
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristian Alejandro Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina Andrea Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Peressutti-Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo Augusto Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
13
|
Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AAL. Lactococcus lactis secreting phage lysins as a potential antimicrobial against multi-drug resistant Staphylococcus aureus. PeerJ 2022; 10:e12648. [PMID: 35251775 PMCID: PMC8896023 DOI: 10.7717/peerj.12648] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA. METHOD Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88. RESULTS Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88. CONCLUSION Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.
Collapse
Affiliation(s)
- Carumathy Chandran
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hong Yun Tham
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Hua Erin Lim
- Health Science Division, Abu Dhabi Women’s College, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Mehkri Y, Felisma P, Panther E, Lucke-Wold B. Osteomyelitis of the spine: treatments and future directions. INFECTIOUS DISEASES RESEARCH 2022; 3:3. [PMID: 35211699 PMCID: PMC8865404 DOI: 10.53388/idr20220117003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Osteomyelitis of the spine is a serious condition that has been increasing with the intravenous drug pandemic and aging population. Multiple different organisms can cause osteomyelitis and mainstay of treatment is early recognition and antibiotics. The course can sometimes be indolent leading to delayed presentations. Once suspected, comprehensive workup and initiation of management should be employed. In rare circumstances, surgical evacuation or deformity correction is indicated. Continued antibiotic treatment should be considered post-operatively. METHODS Emerging treatment solutions are being developed to help target osteomyelitis in a more effective manner. In this review, we highlight the epidemiology and pathophysiology of spinal osteomyelitis. We overview the diagnostic workup and treatment options. Finally, we present new options that are currently being investigated and are on the near horizon. CONCLUSION This review offers a user friendly resource for clinicians and researchers regarding osteomyelitis of the spine and will serve as a catalyst for further discovery.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| | - Patrick Felisma
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| | - Eric Panther
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, the USA
| |
Collapse
|
15
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
16
|
Ho MKY, Zhang P, Chen X, Xia J, Leung SSY. Bacteriophage endolysins against gram-positive bacteria, an overview on the clinical development and recent advances on the delivery and formulation strategies. Crit Rev Microbiol 2021; 48:303-326. [PMID: 34478359 DOI: 10.1080/1040841x.2021.1962803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Facing the increasing threat of multi-drug antimicrobial resistance (AMR), humans strive to search for antibiotic drug candidates and antibacterial alternatives from all possible places, from soils in remote areas to deep in the sea. In this "gold rush for antibacterials," researchers turn to the natural enemy of bacterial cells, bacteriophage (phages), and find them a rich source of weapons for AMR bacteria. Endolysins (lysins), the enzymes phages use to break the bacterial cells from within, have been shown to be highly selective and efficient in killing their target bacteria from outside while maintaining a low occurrence of bacterial resistance. In this review, we start with the structures and mechanisms of action of lysins against Gram-positive (GM+) bacteria. The developmental history of lysins is also outlined. Then, we detail the latest preclinical and clinical research on their safety and efficacy against GM+ bacteria, focusing on the formulation strategies of these enzymes. Finally, the challenges and potential hurdles are discussed. Notwithstanding these limitations, the trends in development indicate that the first, approved lysin drugs will be available soon in the near future. Overall, this review presents a timely summary of the current progress on lysins as antibacterial enzymes for AMR GM+ bacteria, and provides a guidebook for biomaterial researchers who are dedicating themselves to the battle against bacterial infections.
Collapse
Affiliation(s)
- Marco Kai Yuen Ho
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Pengfei Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
17
|
Jiang Y, Xu D, Wang L, Qu M, Li F, Tan Z, Yao L. Characterization of a broad-spectrum endolysin LysSP1 encoded by a Salmonella bacteriophage. Appl Microbiol Biotechnol 2021; 105:5461-5470. [PMID: 34241646 DOI: 10.1007/s00253-021-11366-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Foodborne pathogens have caused many public health incidents and heavy economic burden. Endolysins have been proven to have efficient bactericidal activity against pathogens with low incidence of resistance. In this study, the recombinant endolysin LysSP1 encoded by Salmonella Typhimurium lytic bacteriophage SLMP1 was obtained by prokaryotic expression, and its characteristics were analyzed. Ethylenediaminetetraacetic acid (EDTA) can be used as the outer membrane permeabilizer to increase the bactericidal activity of LysSP1. Under the synergism of 5 mmol/L EDTA, LysSP1 exhibited a strong bactericidal activity against Salmonella Typhimurium ATCC14028. LysSP1 was stable at 4°C for 7 days and at -20°C for 180 days. LysSP1 remained the optimal activity at 40°C and was efficiently active at alkaline condition (pH 8.0-10.0). Divalent metal ions could not enhance the bactericidal activity of LysSP1 and even caused the significant reduction of bactericidal activity. LysSP1 not only could lyse Salmonella, but also could lyse other Gram-negative strains and Gram-positive strains. These results indicated that LysSP1 is a broad-spectrum endolysin and has potential as an antimicrobial agent against Salmonella and other foodborne pathogens. KEY POINTS: • Recombinant endolysin LysSP1 can be prepared by prokaryotic expression. • LysSP1 has stable nature and strong bactericidal activity on Salmonella Typhimurium with EDTA. • LysSP1 has a broad range of hosts including Gram-negative bacteria and Gram-positive bacteria.
Collapse
Affiliation(s)
- Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Dongqin Xu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Lianzhu Wang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266033, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
18
|
Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool M, Ahmad M, Rasool MH, Fahim M, Hussain R, Xia X, Baloch Z. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infect Dis Ther 2021; 10:1171-1193. [PMID: 34170506 PMCID: PMC8322358 DOI: 10.1007/s40121-021-00446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction The mounting incidence of multidrug-resistant bacterial strains and the dearth of novel antibiotics demand alternate therapies to manage the infections caused by resistant superbugs. Bacteriophages and phage=derived proteins are considered as potential alternates to treat such infections, and have several applications in health care systems. The aim of this review is to explore the hidden potential of bacteriophage proteins which may be a practical alternative approach to manage the threat of antibiotic resistance. Results Clinical trials are in progress for the use of phage therapy as a tool for routine medical use; however, the existing regulations may hamper their development of routine antimicrobial agents. The advancement of molecular techniques and the advent of sequencing have opened new potentials for the design of engineered bacteriophages as well as recombinant bacteriophage proteins. The phage enzymes and proteins encoded by the lysis cassette genes, especially endolysins, holins, and spanins, have shown plausible potentials as therapeutic candidates. Conclusion This review offers an integrated viewpoint that aims to decipher the insights and abilities of bacteriophages and their derived proteins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohammad Fahim
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| |
Collapse
|
19
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
20
|
Lu Y, Wang Y, Wang J, Zhao Y, Zhong Q, Li G, Fu Z, Lu S. Phage Endolysin LysP108 Showed Promising Antibacterial Potential Against Methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:668430. [PMID: 33937105 PMCID: PMC8082462 DOI: 10.3389/fcimb.2021.668430] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
As a potential antibacterial agent, endolysin can directly lyse Gram-positive bacteria from the outside and does not lead to drug resistance. Considering that XN108 is the first reported methicillin-resistant Staphylococcus aureus (MRSA) strain in mainland China with a vancomycin MIC that exceeds 8 µg mL-1, we conducted a systematic study on its phage-encoded endolysin LysP108. Standard plate counting method revealed that LysP108 could lyse S. aureus and Pseudomonas aeruginosa with damaged outer membrane, resulting in a significant reduction in the number of live bacteria. Scanning electron microscopy results showed that S. aureus cells could be lysed directly from the outside by LysP108. Live/dead bacteria staining results indicated that LysP108 possessed strong bactericidal ability, with an anti-bacterial rate of approximately 90%. Crystal violet staining results implied that LysP108 could also inhibit and destroy bacterial biofilms. In vivo animal experiments suggested that the area of subcutaneous abscess of mice infected with MRSA was significantly reduced after the combined injection of LysP108 and vancomycin in comparison with monotherapy. The synergistic antibacterial effects of LysP108 and vancomycin were confirmed. Therefore, the present data strongly support the idea that endolysin LysP108 exhibits promising antibacterial potential to be used as a candidate for the treatment of infections caused by MRSA.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Yingran Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhifeng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| |
Collapse
|
21
|
Mondal SI, Draper LA, Ross RP, Hill C. Bacteriophage endolysins as a potential weapon to combat Clostridioides difficile infection. Gut Microbes 2020; 12:1813533. [PMID: 32985336 PMCID: PMC7524323 DOI: 10.1080/19490976.2020.1813533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridioides difficile is the leading cause of health-care-associated infection throughout the developed world and contributes significantly to patient morbidity and mortality. Typically, antibiotics are used for the primary treatment of C. difficile infections (CDIs), but they are not universally effective for all ribotypes and can result in antibiotic resistance and recurrent infection, while also disrupting the microbiota. Novel targeted therapeutics are urgently needed to combat CDI. Bacteriophage-derived endolysins are required to disrupt the bacterial cell wall of their target bacteria and are possible alternatives to antibiotics. These lytic proteins could potentially replace or augment antibiotics in CDI treatment. We discuss candidate therapeutic lysins derived from phages/prophages of C. difficile and their potential as antimicrobials against CDI. Additionally, we review the antibacterial potential of some recently identified homologues of C. difficile endolysins. Finally, the challenges of endolysins are considered with respect to the development of novel lysin-based therapies.
Collapse
Affiliation(s)
- Shakhinur Islam Mondal
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Lorraine A. Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,CONTACT Colin Hill APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Effect of intraoperative dexmedetomidine infusion during functional endoscopic sinus surgery: a prospective cohort study. Patient Saf Surg 2020; 14:38. [PMID: 33072186 PMCID: PMC7557003 DOI: 10.1186/s13037-020-00264-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background Dexmedetomidine, an α2 agonist, has well-known anesthetic and analgesic-sparing effects. We designed this study to evaluate the effect of intraoperative dexmedetomidine infusion on intra operative blood loss and postoperative pain in functional endoscopic sinus surgery. Methods This prospective cohort study included 90 patients planning to undergo endoscopic sinus surgery, who were randomly divided into three groups. 2 to 2.5 mg/kg of propofol was used in all groups to induce anesthesia. One group received dexmedetomidine 0.2 μg/kg per hour infusion whereas the other group received dexmedetomidine 0.5 μg/kg per hour infusion. The control group received normal saline infusion. Results The mean age of patients was 41.02 ± 11.93. 33 patients in the dexmedetomidine 0.2 μg/kg/h group, 30 patients in the dexmedetomidine 0.5 μg/kg/h group and 27 patients in the placebo group. The lowest amount of bleeding was related to the dexmedetomidine 0.5 μg/kg/h group. The volume of bleeding between the three groups was significantly different (p = 0.012). The satisfaction of the surgeon in the dexmedetomidine 0.5 μg/kg/h group was more than other groups. There was a significant relationship between the satisfaction of the surgeon and the treatment groups (p < 0.001). The lowest duration of surgery was related to the dexmedetomidine 0.2 μg/kg/h group. The most Trinitroglycerin (TNG) consumption was in the placebo group and the highest dose of labetalol was in the dexmedetomidine 0.5 μg/kg/h group. There was no significant difference in the TNG and labetalol consumption between three groups. The lowest consumption of morphine and pethidine in the dexmedetomidine 0.5 μg/kg/h group. Conclusions Infusion of dexmedetomidine 0.5 μg/kg/h decreased blood loss and consumption of morphine and pethidine in patients who underwent endoscopic sinus surgery.
Collapse
|
23
|
Cobb LH, McCabe EM, Priddy LB. Therapeutics and delivery vehicles for local treatment of osteomyelitis. J Orthop Res 2020; 38:2091-2103. [PMID: 32285973 PMCID: PMC8117475 DOI: 10.1002/jor.24689] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, or the infection of the bone, presents a major complication in orthopedics and may lead to prolonged hospital visits, implant failure, and in more extreme cases, amputation of affected limbs. Typical treatment for this disease involves surgical debridement followed by long-term, systemic antibiotic administration, which contributes to the development of antibiotic-resistant bacteria and has limited ability to eradicate challenging biofilm-forming pathogens including Staphylococcus aureus-the most common cause of osteomyelitis. Local delivery of high doses of antibiotics via traditional bone cement can reduce systemic side effects of an antibiotic. Nonetheless, growing concerns over burst release (then subtherapeutic dose) of antibiotics, along with microbial colonization of the nondegradable cement biomaterial, further exacerbate antibiotic resistance and highlight the need to engineer alternative antimicrobial therapeutics and local delivery vehicles with increased efficacy against, in particular, biofilm-forming, antibiotic-resistant bacteria. Furthermore, limited guidance exists regarding both standardized formulation protocols and validated assays to predict efficacy of a therapeutic against multiple strains of bacteria. Ideally, antimicrobial strategies would be highly specific while exhibiting a broad spectrum of bactericidal activity. With a focus on S. aureus infection, this review addresses the efficacy of novel therapeutics and local delivery vehicles, as alternatives to the traditional antibiotic regimens. The aim of this review is to discuss these components with regards to long bone osteomyelitis and to encourage positive directions for future research efforts.
Collapse
Affiliation(s)
- Leah H. Cobb
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Emily M. McCabe
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,corresponding author: Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
24
|
Mehrabani Natanzi M, Soleimanifard F, Haddad Kashani H, Azadchehr MJ, Mirzaei A, Khodaii Z. The effect of calcium on the adhesion of Streptococcus mutans to Human Gingival Epithelial Cells in the presence of probiotic bacteria Lactobacillus plantarum and Lactobacillus salivarius. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Manohar P, Loh B, Athira S, Nachimuthu R, Hua X, Welburn SC, Leptihn S. Secondary Bacterial Infections During Pulmonary Viral Disease: Phage Therapeutics as Alternatives to Antibiotics? Front Microbiol 2020; 11:1434. [PMID: 32733404 PMCID: PMC7358648 DOI: 10.3389/fmicb.2020.01434] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Secondary bacterial infections manifest during or after a viral infection(s) and can lead to negative outcomes and sometimes fatal clinical complications. Research and development of clinical interventions is largely focused on the primary pathogen, with research on any secondary infection(s) being neglected. Here we highlight the impact of secondary bacterial infections and in particular those caused by antibiotic-resistant strains, on disease outcomes. We describe possible non-antibiotic treatment options, when small molecule drugs have no effect on the bacterial pathogen and explore the potential of phage therapy and phage-derived therapeutic proteins and strategies in treating secondary bacterial infections, including their application in combination with chemical antibiotics.
Collapse
Affiliation(s)
- Prasanth Manohar
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Sudarsanan Athira
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Susan C Welburn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Infection Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Alaksandr Ž, Sergey G, Maksim P, Sergey K, Niyaz S, Uladzimir P, Mikhail S. Efficient matrix-assisted refolding of the recombinant anti-staphylococcal truncated endolysin LysKCA and its structural and enzymatic description. Protein Expr Purif 2020; 174:105683. [PMID: 32534980 DOI: 10.1016/j.pep.2020.105683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 01/21/2023]
Abstract
The recombinant truncated endolysin LysK consisting of two catalytic domains, N-terminal CHAP and amidase-2 (LysKCA) was overexpressed in E. coli in the form of inclusion bodies (IBs). These IBs were dissolved in 6 M solution of urea followed by the refolding process. The refolding efficacy of the dilution and matrix-assisted renaturation method on SP Sepharose was compared at different purification stages of LysKCA. Solubilizate of IBs, DEAE Sepharose flowthrough, and SP Sepharose elution fractions were examined. The presence of negatively charged nucleic acids (NA) in the solution has shown a decrease in the recombinant LysKCA refolding yield (less than 11.5 ± 1.3% for both renaturation methods) due to their non-specific interaction with the positively charged endolysin. The renaturation efficiency of the enzyme purified from NA (SP elution fraction) was about 29.5 ± 6.7% and 28.2 ± 3.75% for dilution and matrix-assisted methods respectively. The later approach allows conducting one-step LysKCA refolding, purification and collection, and also noticeably cuts time and material expenses. The analysis of CD spectroscopy data of LysKCA, renatured on the resin matrix, revealed alpha helices and beta strands content similar to that of the modeled 3D structure. The theoretical 3D model with two predicted domains (CHAP and amidase-2) agrees well with the differential scanning calorimetry (DSC) results of the renatured LysKCA showing two well-resolved peaks corresponding to the two calorimetrically-revealed domains with the midpoint transition temperature (Tm) of 40.1 and 65.3°С. The enzyme so obtained exhibited in vitro anti-staphylococcal activity with 2.3 ± 0.45 × 103 U/mg and retained it for at least one year.
Collapse
Affiliation(s)
- Žydziecki Alaksandr
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus.
| | - Golenchenko Sergey
- Department of Microbiology Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| | - Patapovich Maksim
- Department of Microbiology Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| | - Kleymenov Sergey
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of Russian Academy of Science, Moscow, 119071, Russia; Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Safarov Niyaz
- Laboratory of Biotechnology, Baku State University, Baku, AZ, 1148, Azerbaijan
| | - Prakulevich Uladzimir
- Department of Microbiology Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| | - Sholukh Mikhail
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
27
|
Yuan Y, Li X, Wang L, Li G, Cong C, Li R, Cui H, Murtaza B, Xu Y. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol 2020; 14:403-418. [PMID: 32519416 PMCID: PMC7936296 DOI: 10.1111/1751-7915.13594] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
The emergence and rapid spread of multidrug‐resistant bacteria has induced intense research for novel therapeutic approaches. In this study, the Acinetobacter baumannii bacteriophage D2 (vB_AbaP_D2) was isolated, characterized and sequenced. The endolysin of bacteriophage D2, namely Abtn‐4, contains an amphipathic helix and was found to have activity against multidrug‐resistant Gram‐negative strains. By more than 3 log units, A. baumannii were killed by Abtn‐4 (5 µM) in 2 h. In absence of outer membrane permeabilizers, Abtn‐4 exhibited broad antimicrobial activity against several Gram‐positive and Gram‐negative bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus and Salmonella. Furthermore, Abtn‐4 had the ability to reduce biofilm formation. Interestingly, Abtn‐4 showed antimicrobial activity against phage‐resistant bacterial mutants. Based on these results, endolysin Abtn‐4 may be a promising candidate therapeutic agent for multidrug‐resistant bacterial infections.
Collapse
Affiliation(s)
- Yuyu Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruihua Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| |
Collapse
|
28
|
Tham EH, Koh E, Common JEA, Hwang IY. Biotherapeutic Approaches in Atopic Dermatitis. Biotechnol J 2020; 15:e1900322. [PMID: 32176834 DOI: 10.1002/biot.201900322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/24/2020] [Indexed: 12/15/2022]
Abstract
The skin microbiome plays a central role in inflammatory skin disorders such as atopic dermatitis (AD). In AD patients, an imbalance between pathogenic Staphylococcus aureus (S. aureus) and resident skin symbionts creates a state of dysbiosis which induces immune dysregulation and impairs skin barrier function. There are now exciting new prospects for microbiome-based interventions for AD prevention. In the hopes of achieving sustained control and management of disease in AD patients, current emerging biotherapeutic strategies aim to harness the skin microbiome associated with health by restoring a more diverse symbiotic skin microbiome, while selectively removing pathogenic S. aureus. Examples of such strategies are demonstrated in skin microbiome transplants, phage-derived anti-S. aureus endolysins, monoclonal antibodies, and quorum sensing (QS) inhibitors. However, further understanding of the skin microbiome and its role in AD pathogenesis is still needed to understand how these biotherapeutics alter the dynamics of the microbiome community; to optimize patient selection, drug delivery, and treatment duration; overcome rapid recolonization upon treatment cessation; and improve efficacy to allow these therapeutic options to eventually reach routine clinical practice.
Collapse
Affiliation(s)
- Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, 119074, Singapore
| | - Elvin Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore, 119228, Singapore
| | - John E A Common
- Skin Research Institute of Singapore, A*STAR, Singapore, 308232, Singapore
| | - In Young Hwang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
29
|
Žydziecki AV, Golenchenko SG, Prakulevich UA, Sholukh MV. The Screening of Refolding Conditions and Obtainment of the Recombinant Antistaphylococcal Endolysin LysKCA in Active Form from E. coli Inclusion Bodies. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Madanchi H, Shoushtari M, Kashani H, Sardari S. Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes New Infect 2020; 34:100627. [PMID: 31993204 PMCID: PMC6976936 DOI: 10.1016/j.nmni.2019.100627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Some antimicrobial peptides (AMPs) are produced in the vaginal innate immune system and play an important role in protecting this organ against pathogenic agents. Moreover, sexually transmitted diseases have become a major problem in human societies and are rapidly spreading. The emergence of antibiotic-resistant microbes (superbugs) can pose a major threat to human societies and cause rapid spread of these diseases. Finding new antimicrobial compounds to fight superbugs is therefore essential. It has been shown that AMPs have good potential to become new antibiotics. The most important AMPs in the vaginal innate immune system are defensins, secretory leucocyte protease inhibitors, calprotectin, lysozyme, lactoferrin and elafin, which play an important role in host defence against sexually transmitted infections, modulation of immune responses and anticancer activities. Some AMPs, such as LL-37, magainin 2 and nisin, show both spermicidal and antimicrobial effects in the vagina. In this summary, we will discuss vaginal AMPs and continue to address some of the challenges of using peptides to control pathogens that are effective in sexually transmitted diseases.
Collapse
Affiliation(s)
- H. Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - M. Shoushtari
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - H.H. Kashani
- Gametogenesis Research Centre, Kashan University of Medical Sciences, Kashan, Iran
- Anatomical Sciences Research Centre, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran
| | - S. Sardari
- Drug Design and Bioinformatics Unit, Department of Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
31
|
Islam MR, Son N, Lee J, Lee DW, Sohn EJ, Hwang I. Production of bacteriophage-encoded endolysin, LysP11, in Nicotiana benthamiana and its activity as a potent antimicrobial agent against Erysipelothrix rhusiopathiae. PLANT CELL REPORTS 2019; 38:1485-1499. [PMID: 31432212 DOI: 10.1007/s00299-019-02459-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE We produced a biologically active phage-encoded endolysin, LysP11, in N. benthamiana. Plant-produced LysP11 exhibited robust antimicrobial activity against E. rhusiopathiae, and C-terminal domain of LysP11 bound specifically to E. rhusiopathiae. Bacterial resistance to antibiotics, a serious issue in terms of global public health, is one of the leading causes of death today. Thus, new antimicrobial agents are needed to combat pathogens. Recent research suggests that bacteriophages and endolysins derived from bacteriophages are potential alternatives to traditional antibiotics. Here, we examined the antimicrobial activity of LysP11, which is encoded by Propionibacterium phage P1.1 and comprises an N-terminal amidase-2 domain and a C-terminal domain with no homology to other bacteriophage endolysins. LysP11 was produced in Nicotiana benthamiana (N. benthamiana) using an Agrobacterium-mediated transient expression strategy. LysP11 was purified on microcrystalline cellulose-binding resin after attachment of the Clostridium thermocellum-derived family 3 cellulose-binding domain as an affinity tag. The affinity tag was removed using the small ubiquitin-related modifier (SUMO) domain and SUMO-specific protease. Plant-produced LysP11 showed strong antimicrobial activity toward Erysipelothrix rhusiopathiae (E. rhusiopathiae), mediated via lysis of the cell wall. Lytic activity was optimal at pH 8.0-9.0 (37 °C) and increased at higher concentrations of NaCl up to 400 mM. Furthermore, the C-terminal domain of LysP11 bound specifically to the E. rhusiopathiae cell wall. Based on these results, we propose that LysP11 is a potential candidate antimicrobial agent against E. rhusiopathiae.
Collapse
Affiliation(s)
- Md Reyazul Islam
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Namil Son
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Junho Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang, 37668, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
32
|
Matini AH, Tayebi MS, Rezvani Z, Vakili Z, Haddad Kashani H. Association of EGFR gene mutations exons 18–21 with glioblastoma multiform cancer: A descriptive and cross-sectional study. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2019; 55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Endolysins are the lytic products of bacteriophages which play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are being considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells when applied externally. Endolysins have been studied against a number of drug-resistant pathogens to assess their therapeutic ability. This review focuses on the structure of endolysins in terms of cell binding and catalytic domains, lytic ability, resistance, safety, immunogenicity and future applications. It primarily reviews recent advancements made in evaluation of the therapeutic potential of endolysins, including their origin, host range, applications, and synergy with conventional and non-conventional antimicrobial agents.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
34
|
Pennone V, Sanz-Gaitero M, O'Connor P, Coffey A, Jordan K, van Raaij MJ, McAuliffe O. Inhibition of L. monocytogenes Biofilm Formation by the Amidase Domain of the Phage vB_LmoS_293 Endolysin. Viruses 2019; 11:v11080722. [PMID: 31390848 PMCID: PMC6723838 DOI: 10.3390/v11080722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous Gram-positive bacterium that is a major concern for food business operators because of its pathogenicity and ability to form biofilms in food production environments. Bacteriophages (phages) have been evaluated as biocontrol agents for L. monocytogenes in a number of studies and, indeed, certain phages have been approved for use as anti-listerial agents in food processing environments (ListShield and PhageGuard Listex). Endolysins are proteins produced by phages in the host cell. They cleave the peptidoglycan cell wall, thus allowing release of progeny phage into the environment. In this study, the amidase domain of the phage vB_LmoS_293 endolysin (293-amidase) was cloned and expressed in Escherichia. coli (E. coli). Muralytic activity at different concentrations, pH and temperature values, lytic spectrum and activity against biofilms was determined for the purified 293-amidase protein. The results showed activity on autoclaved cells at three different temperatures (20 °C, 37 °C and 50 °C), with a wider specificity (L. monocytogenes 473 and 3099, a serotype 4b and serogroup 1/2b-3b-7, respectively) compared to the phage itself, which targets only L. monocytogenes serotypes 4b and 4e. The protein also inhibits biofilm formation on abiotic surfaces. These results show the potential of using recombinant antimicrobial proteins against pathogens in the food production environment.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland
| | - Marta Sanz-Gaitero
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland
| | - Paula O'Connor
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Aidan Coffey
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland.
| | - Kieran Jordan
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Mark J van Raaij
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Olivia McAuliffe
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
35
|
Monsef A, Eghbalian F, Rahimi N. Comparison of Purgative Manna Drop and Phototherapy with Phototherapy Treatment of Neonatal Jaundice: A Randomized Double-Blind Clinical Trial. Osong Public Health Res Perspect 2019; 10:152-157. [PMID: 31263664 PMCID: PMC6590883 DOI: 10.24171/j.phrp.2019.10.3.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objectives Herbal remedies such as purgative manna are used to treat neonatal jaundice. In this study Bilineaster drop (purgative manna) and phototherapy, and phototherapy treatment alone were compared by assessing phototherapy duration and number of days in hospital. Methods There were 150 consecutive term neonates with jaundice, weighting from 2,500 g to 4,000 g enrolled in this randomized double blind clinical trial. The neonates were randomly assigned to intervention and control groups. The control patients received only phototherapy and the intervention group underwent phototherapy treatment and purgative manna drop (5 drops per kg of body weight, 3 times a day). Direct and total measurements of bilirubin concentration in the serum were measured and the reduction in concentration of bilirubin was calculated. Results There were 28% of patients whose hospital duration following phototherapy was 2 days, for Bilineaster and phototherapy treatment this was 49.3% of patients. At 48 hours and 72 hours the reduction in the concentration of total bilirubin in the serum was statistically significantly different across groups (p < 0.05) but at 24 hours and 96 hours there were no significant differences between groups (p > 0.05). The reduction in direct bilirubin concentration in the serum was significantly different between groups at 72 hours and 96 hours (p > 0.001). Conclusion Purgative manna and phototherapy, can statistically significantly reduce total bilirubin concentration at 48 hours and 72 hours compared with phototherapy alone, and reduce the length of hospital stay for jaundiced neonates at 2 days compared with phototherapy treatment.
Collapse
Affiliation(s)
- Amirreza Monsef
- Pediatric Department, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Eghbalian
- Pediatric Department, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Rahimi
- Pediatric Department, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
36
|
Teufelberger AR, Bröker BM, Krysko DV, Bachert C, Krysko O. Staphylococcus aureus Orchestrates Type 2 Airway Diseases. Trends Mol Med 2019; 25:696-707. [PMID: 31176612 DOI: 10.1016/j.molmed.2019.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus persistently colonizes the nostrils of one-third of the population but colonizes the sinus mucosa in up to 90% of patients with nasal polyps, implying a possible role in airway disease. Recent findings give new mechanistic insights into the ability of S. aureus to trigger type 2 inflammatory responses in the upper and lower airways. This novel concept of a S. aureus-driven chronic airway inflammatory disease suggests a new understanding of disease triggers. This article reviews the role of S. aureus in chronic inflammatory airway diseases and discusses possible therapeutic approaches to target S. aureus.
Collapse
Affiliation(s)
- Andrea R Teufelberger
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia; Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium.
| |
Collapse
|
37
|
Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019; 29:e2041. [PMID: 31050070 DOI: 10.1002/rmv.2041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
Bacteriophages or phages, being the most abundant entities on earth, represent a potential solution to a diverse range of problems. Phages are successful antibacterial agents whose use in therapeutics was hindered by the discovery of antibiotics. Eventually, because of the development and spread of antibiotic resistance among most bacterial species, interest in phage as therapeutic entities has returned, because their noninfectious nature to humans should make them safe for human nanomedicine. This review highlights the most recent advances and progress in phage therapy and bacterial hosts against which phage research is currently being conducted with respect to food, human, and marine pathogens. Bacterial immunity against phages and tactics of phage revenge to defeat bacterial defense systems are also summarized. We have also discussed approved phage-based products (whole phage-based products and phage proteins) and shed light on their influence on the eukaryotic host with respect to host safety and induction of immune response against phage preparations. Moreover, creation of phages with desirable qualities and their uses in cancer treatment, vaccine production, and other therapies are also reviewed to bring together evidence from the scientific literature about the potentials and possible utility of phage and phage encoded proteins in the field of therapeutics and industrial biotechnology.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Momna Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
38
|
The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates. Appl Environ Microbiol 2019; 85:AEM.00003-19. [PMID: 30850428 DOI: 10.1128/aem.00003-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Lytic bacteriophages (or phages) drive bacterial mortality by elaborating exquisite abilities to bind, breach, and destroy bacterial cell membranes and subjugate critical bacterial cell functions. These antimicrobial activities make phages ideal candidates to serve as, or provide sources of, biological control measures for bacterial pathogens. In this study, we isolated the Myoviridae phage vB_BanS_Bcp1 (here referred to as Bcp1) from landfill soil, using a Bacillus anthracis host. The antimicrobial activities of both Bcp1 and its encoded endolysin, PlyB, were examined across different B. cereus sensu lato group species, including B. cereus sensu stricto, Bacillus thuringiensis, and Bacillus anthracis, with pathogenic potential in humans and multiple different uses in biotechnological applications. The Bcp1 phage infected only a subset (11 to 66%) of each B. cereus sensu lato species group tested. In contrast, functional analysis of purified PlyB revealed a potent bacteriolytic activity against all B. cereus sensu lato isolates tested (n = 79). PlyB was, furthermore, active across broad temperature, pH, and salt ranges, refractory to the development of resistance, bactericidal as a single agent, and synergistic with a second endolysin, PlyG. To confirm the potential for PlyB as an antimicrobial agent, we demonstrated the efficacy of a single intravenous treatment with PlyB alone or combination with PlyG in a murine model of lethal B. anthracis infection. Overall, our findings show exciting potential for the Bcp1 bacteriophage and the PlyB endolysin as potential new additions to the antimicrobial armamentarium.IMPORTANCE Organisms of the Bacillus cereus sensu lato lineage are ubiquitous in the environment and are responsible for toxin-mediated infections ranging from severe food poisoning (B. cereus sensu stricto) to anthrax (Bacillus anthracis). The increasing incidence of many of these infections, combined with the specter of antibiotic resistance, has created a need for novel antimicrobials with potent activity, including bacteriophages (or phages) and phage-encoded products (i.e., endolysins). In this study, we describe a broadly infective phage, Bcp1, and its encoded endolysin, PlyB, which exhibited a rapidly bacteriolytic effect against all B. cereus sensu lato isolates tested with no evidence of evolving resistance. Importantly, PlyB was highly efficacious in a mouse model of lethal bacteremia with B. anthracis Both the Bcp1 phage and the PlyB endolysin represent novel mechanisms of action compared to antibiotics, with potential applications to address the evolving problem of antimicrobial resistance.
Collapse
|
39
|
Babaei F, Ebrahimi Shahmabadi H, Rajabi MR, Haddad Kashani H, Izadpanah F. Evaluation of Cisplatin Efficacy on HepG2 and E. coli Cells under Acidic Conditions. Asian Pac J Cancer Prev 2019; 20:723-726. [PMID: 30909670 PMCID: PMC6825765 DOI: 10.31557/apjcp.2019.20.3.723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Cisplatin (Cispt) is a common anticancer drug for the treatment of several malignancies, including hepatocarcinoma. However, this drug suffers from instability in aqueous solutions. The study aimed to evaluate cisplatin efficacy on HepG2 and E. coli cells under an acidic condition. Methods: Acidic Cispt was prepared via incubation in acidic condition (pH=2) for a month duration. The chemical structure of the acidic Cispt was evaluated by using Fourier Transform Infrared Spectroscopy (FTIR) method. The cytotoxicity of the standard and acidic Cispt were then determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and minimum inhibitory concentration (MIC) assays on HepG2 and E. coli cells, respectively. Results: After preparing of acidic Cispt, its chemical structure was determined by FTIR method. In addition, cytotoxicity effects of Cispt in the standard and acidic forms were calculated 58 ± 2.9 and 65 ± 3.25 μM, respectively. MIC results also confirmed the results of MTT assay. MIC results for the standard and acidic Cispt were estimated 9.5 ± 0.47 and 9.8 ± 0.49 μM, respectively. Conclusion: Preparing Cispt in acidic condition not only did not degrade the drug, but also kept the potency of the drug approximately equal to parent drug. Regarding the instability issues of Cispt, keeping Cispt in acidic condition could be a promising approach to preserve its efficacy.
Collapse
Affiliation(s)
- Faezeh Babaei
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food and Drug Administration of Iran, MOH and ME, Tehran, Iran.
| |
Collapse
|
40
|
Assessment of Relationship Between Expression of Survivin Protein and Histopathology Diagnosis and Malignancy Severity in Colon Specimen. J Gastrointest Cancer 2019; 51:76-82. [DOI: 10.1007/s12029-019-00206-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends Biotechnol 2018; 36:966-984. [DOI: 10.1016/j.tibtech.2018.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
42
|
Gerstmans H, Criel B, Briers Y. Synthetic biology of modular endolysins. Biotechnol Adv 2018; 36:624-640. [DOI: 10.1016/j.biotechadv.2017.12.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
|
43
|
Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics (Basel) 2018; 7:antibiotics7020029. [PMID: 29565804 PMCID: PMC6023083 DOI: 10.3390/antibiotics7020029] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Lytic enzymes encoded by bacteriophages have been intensively explored as alternative agents for combating bacterial pathogens in different contexts. The antibacterial character of these enzymes (enzybiotics) results from their degrading activity towards peptidoglycan, an essential component of the bacterial cell wall. In fact, phage lytic products have the capacity to kill target bacteria when added exogenously in the form of recombinant proteins. However, there is also growing recognition that the natural bactericidal activity of these agents can, and sometimes needs to be, substantially improved through manipulation of their functional domains or by equipping them with new functions. In addition, often, native lytic proteins exhibit features that restrict their applicability as effective antibacterials, such as poor solubility or reduced stability. Here, I present an overview of the engineering approaches that can be followed not only to overcome these and other restrictions, but also to generate completely new antibacterial agents with significantly enhanced characteristics. As conventional antibiotics are running short, the remarkable progress in this field opens up the possibility of tailoring efficient enzybiotics to tackle the most menacing bacterial infections.
Collapse
|
44
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
45
|
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies. Clin Microbiol Rev 2018; 31:e00071-17. [PMID: 29187396 PMCID: PMC5740972 DOI: 10.1128/cmr.00071-17] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is one of the most common pathogens of humans and animals, where it frequently colonizes skin and mucosal membranes. It is of major clinical importance as a nosocomial pathogen and causative agent of a wide array of diseases. Multidrug-resistant strains have become increasingly prevalent and represent a leading cause of morbidity and mortality. For this reason, novel strategies to combat multidrug-resistant pathogens are urgently needed. Bacteriophage-derived enzymes, so-called endolysins, and other peptidoglycan hydrolases with the ability to disrupt cell walls represent possible alternatives to conventional antibiotics. These lytic enzymes confer a high degree of host specificity and could potentially replace or be utilized in combination with antibiotics, with the aim to specifically treat infections caused by Gram-positive drug-resistant bacterial pathogens such as methicillin-resistant S. aureus. LysK is one of the best-characterized endolysins with activity against multiple staphylococcal species. Various approaches to further enhance the antibacterial efficacy and applicability of endolysins have been demonstrated. These approaches include the construction of recombinant endolysin derivatives and the development of novel delivery strategies for various applications, such as the production of endolysins in lactic acid bacteria and their conjugation to nanoparticles. These novel strategies are a major focus of this review.
Collapse
Affiliation(s)
- Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Immunology and Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
The effect of melatonin on expression of p53 and ovarian preantral follicle development isolated from vitrified ovary. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2555-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|