1
|
Shchelkunov SN, Sergeev AA, Pyankov SA, Titova KA, Yakubitskiy SN. Smallpox vaccination in a mouse model. Vavilovskii Zhurnal Genet Selektsii 2023; 27:712-718. [PMID: 37965374 PMCID: PMC10641030 DOI: 10.18699/vjgb-23-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 11/16/2023] Open
Abstract
The monkeypox epidemic, which became unusually widespread among humans in 2022, has brought awareness about the necessity of smallpox vaccination of patients in the risk groups. The modern smallpox vaccine variants are introduced either intramuscularly or by skin scarification. Intramuscular vaccination cannot elicit an active immune response, since tissues at the vaccination site are immunologically poor. Skin has evolved into an immunologically important organ in mammals; therefore, intradermal delivery of a vaccine can ensure reliable protective immunity. Historically, vaccine inoculation into scarified skin (the s.s. route) was the first immunization method. However, it does not allow accurate vaccine dosing, and high-dose vaccines need to be used to successfully complete this procedure. Intradermal (i.d.) vaccine injection, especially low-dose one, can be an alternative to the s.s. route. This study aimed to compare the s.s. and i.d. smallpox immunization routes in a mouse model when using prototypic second- and fourth-generation low-dose vaccines (104 pfu). Experiments were conducted using BALB/c mice; the LIVP or LIVP-GFP strains of the vaccinia virus (VACV) were administered into the tail skin via the s.s. or i.d. routes. After vaccination (7, 14, 21, 28, 42, and 56 days post inoculation (dpi)), blood samples were collected from the retro-orbital venous sinus; titers of VACV-specific IgM and IgG in the resulting sera were determined by ELISA. Both VACV strains caused more profound antibody production when injected via the i.d. route compared to s.s. inoculation. In order to assess the level of the elicited protective immunity, mice were intranasally infected with a highly lethal dose of the cowpox virus on 62 dpi. The results demonstrated that i.d. injection ensures a stronger protective immunity in mice compared to s.s. inoculation for both VACV variants.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Sergeev
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S A Pyankov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - K A Titova
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S N Yakubitskiy
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
2
|
Li M, Zhang M, Ye Q, Liu Y, Qian W. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: a comprehensive review. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0202. [PMID: 37615308 PMCID: PMC10546091 DOI: 10.20892/j.issn.2095-3941.2023.0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Oncolytic virotherapy has emerged as a promising treatment for human cancers owing to an ability to elicit curative effects via systemic administration. Tumor cells often create an unfavorable immunosuppressive microenvironment that degrade viral structures and impede viral replication; however, recent studies have established that viruses altered via genetic modifications can serve as effective oncolytic agents to combat hostile tumor environments. Specifically, oncolytic vaccinia virus (OVV) has gained popularity owing to its safety, potential for systemic delivery, and large gene insertion capacity. This review highlights current research on the use of engineered mutated viruses and gene-armed OVVs to reverse the tumor microenvironment and enhance antitumor activity in vitro and in vivo, and provides an overview of ongoing clinical trials and combination therapies. In addition, we discuss the potential benefits and drawbacks of OVV as a cancer therapy, and explore different perspectives in this field.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minghuan Zhang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qian Ye
- Hangzhou Rong-Gu Biotechnology Limited Company, Hangzhou 310056, China
| | - Yunhua Liu
- Department of Pathology & Pathophysiology and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
3
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
4
|
Xie L, Li Y. Advances in vaccinia virus-based vaccine vectors, with applications in flavivirus vaccine development. Vaccine 2022; 40:7022-7031. [PMID: 36319490 DOI: 10.1016/j.vaccine.2022.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Historically, virulent variola virus infection caused hundreds of millions of deaths. The smallpox pandemic in human beings has spread for centuries until the advent of the attenuated vaccinia virus (VV) vaccine, which played a crucial role in eradicating the deadly contagious disease. Decades of exploration and utilization have validated the attenuated VV as a promising vaccine vehicle against various lethal viruses. In this review, we focus on the advances in VV-based vaccine vector studies, including construction approaches of recombinant VV, the impact of VV-specific pre-existing immunity on subsequent VV-based vaccines, and antigen-specific immune responses. More specifically, the recombinant VV-based flaviviruses are intensively discussed. Based on the publication data, this review aims to provide valuable insights and guidance for future VV-based vaccine development.
Collapse
Affiliation(s)
- Lilan Xie
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China; Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan, China.
| | - Yaoming Li
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, China; Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan, China.
| |
Collapse
|
5
|
Shchelkunov SN, Bauer TV, Yakubitskiy SN, Sergeev AA, Kabanov AS, Pyankov SA. [Mutations in the A34R gene increase the immunogenicity of vaccinia virus]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:139-146. [PMID: 34901711 PMCID: PMC8627874 DOI: 10.18699/vj21.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Самым простым и надежным способом защиты от вирусных инфекций является вакцинопрофилактика. При этом наибольшей протективной эффективностью обладают живые вакцины, в основе которых
используют слабовирулентные для человека вирусы, близкородственные патогенным, или аттенуированные
(ослабленные за счет мутаций/делеций в вирусном геноме) варианты патогенного для человека вируса. Вакцинация против оспы с использованием живого вируса осповакцины (vaccinia virus, VACV), близкородственного вирусу натуральной оспы, сыграла важнейшую роль в успехе программы глобальной ликвидации оспы,
которая осуществлялась под эгидой Всемирной организации здравоохранения. Прекращение после 1980 г.
противооспенной вакцинации привело к тому, что огромная часть населения Земли в настоящее время не
имеет иммунитета не только к оспе, но и любым другим зоонозным ортопоксвирусным инфекциям. Это создает возможность циркуляции зоонозных ортопоксвирусов в человеческой популяции и, как следствие, приводит к изменению экологии и круга чувствительных хозяев для разных видов ортопоксвирусов. При этом
использование классической живой вакцины на основе VACV для защиты от этих инфекций в настоящее время не приемлемо, так как она может обусловливать тяжелые побочные реакции. В связи с этим все более
актуальной становится разработка новых безопасных вакцин против ортопоксвирусных инфекций человека
и животных. Аттенуация (ослабление вирулентности) VACV достигается в результате направленной инактивации определенных генов вируса и обычно приводит к уменьшению эффективности размножения VACV in vivo.
Следствием этого может быть снижение иммунного ответа при введении аттенуированного вируса пациентам в стандартных дозах. Часто используемым для встройки/инактивации в геноме VACV является ген тимидинкиназы, нарушение которого приводит к аттенуации вируса. В данной работе изучено, как введение двух
точечных мутаций в ген A34R аттенуированного штамма LIVP-GFP (ТК-), увеличивающих выход внеклеточных
оболочечных вирионов (EEV), влияет на свойства пато- и иммуногенности варианта VACV LIVP-GFP-A34R при
интраназальном заражении лабораторных мышей. Показано, что увеличение продукции EEV рекомбинантным штаммом VACV LIVP-GFP-A34R не меняет аттенуированный фенотип, характерный для родительского
штамма LIVP-GFP, но приводит к существенно большей продукции VACV-специфичных антител.
Ключевые слова: вирус осповакцины; направленные мутации; аттенуация; иммуногенность.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T V Bauer
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S N Yakubitskiy
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A A Sergeev
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - A S Kabanov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - S A Pyankov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
6
|
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice. Pathogens 2021; 10:pathogens10030377. [PMID: 33801026 PMCID: PMC8004012 DOI: 10.3390/pathogens10030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. The obtained data demonstrate that intradermal inoculation of the studied viruses induces higher production of VACV-specific antibodies compared to their levels after intranasal administration. Introduction of two point mutations into the A34R gene, which increase the yield of extracellular enveloped virions, and deletion of the A35R gene, the protein product of which inhibits presentation of antigens by MHC II, enhances protective potency of the created LIVP-TK--A34R*-dA35R virus against secondary lethal orthopoxvirus infection of BALB/c mice even at an intradermal dose as low as 103 plaque forming units (PFU)/mouse. This virus may be considered not only as a candidate attenuated live vaccine against smallpox and other human orthopoxvirus infections but also as a vector platform for development of safe multivalent live vaccines against other infectious diseases using genetic engineering methods.
Collapse
|
7
|
Matía A, Lorenzo MM, Blasco R. Tools for the targeted genetic modification of poxvirus genomes. Curr Opin Virol 2020; 44:183-190. [PMID: 33242829 DOI: 10.1016/j.coviro.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
The potential of viruses as biotechnology platforms is becoming more appealing due to technological advances in synthetic biology techniques and to the increasing accessibility of means to manipulate virus genomes. Among viral systems, poxviruses, and their prototype member Vaccinia Virus, are one of the outstanding choices for different biotechnological and medical applications based on heterologous gene expression, recombinant vaccines or oncolytic viruses. The refinement of genetic engineering methods on Vaccinia Virus over the last decades have contributed to facilitate the manipulation of the genomes of poxviruses, and may aid in the improvement of virus variants designed for different goals through reverse genetic approaches. Targeted genetic changes are usually performed by homologous recombination with the viral genome. In addition to the classic approach, recent methodological advances that may assist new strategies for the mutation or edition of poxvirus genomes are reviewed.
Collapse
Affiliation(s)
- Alejandro Matía
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Ctra. La Coruña km 7.5, E-28040 Madrid, Spain
| | - María M Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Ctra. La Coruña km 7.5, E-28040 Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (I.N.I.A.), Ctra. La Coruña km 7.5, E-28040 Madrid, Spain.
| |
Collapse
|
8
|
Zhu Y, Li Y, Bai B, Fang J, Zhang K, Yin X, Li S, Li W, Ma Y, Cui Y, Wang J, Liu X, Li X, Sun L, Jin N. Construction of an attenuated goatpox virus AV41 strain by deleting the TK gene and ORF8-18. Antiviral Res 2018; 157:111-119. [PMID: 30030019 DOI: 10.1016/j.antiviral.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
Abstract
Goatpox virus (GTPV) is prevalent in goats and is associated with high mortality. This virus causes fever, skin nodules, lesions in the respiratory and lymph node enlargement. Considering the safety risks and side effects of vaccination with attenuated live GPTV vaccine strain AV41, an attenuated goatpox virus (GTPV-TK-ORF), was constructed by deleting non-essential gene fragments without affecting replication and related to the virulence and immunomodulatory functions of the goatpox virus AV41 strain (GTPV-AV41) using homologous recombination and the Cre (Cyclization Recombination Enzyme)/Loxp system. The results of both in vivo and in vitro experiments demonstrated that GTPV-TK-ORF was safer than wild type GTPV-AV41, possessed satisfactory immunogenicity, and could protect goats from a virulent GTPV-AV40 infection. Moreover, the IFN-γ, GTPV-specific antibody, and neutralizing antibody levels in the GTPV-TK-ORF-immunized group were significantly higher than that in the normal saline control group following immunization (P < 0.01). Thus, GTPV-TK-ORF may be used as a potential novel vaccine and viral vector with good safety and immunogenicity.
Collapse
Affiliation(s)
- Yilong Zhu
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yiquan Li
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Medical College, Yanbian University, Yanji, 133002, China
| | - Bing Bai
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Jinbo Fang
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Kelong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xunzhe Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Shanzhi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Wenjie Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yizhen Ma
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yingli Cui
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Jing Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xing Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xiao Li
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Institute of Virology, Wenzhou University Town, Wenzhou, 325035, China.
| | - Lili Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, 130012, China.
| | - Ningyi Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Institute of Virology, Wenzhou University Town, Wenzhou, 325035, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|