1
|
Gorr SU, Chen R, Abrahante JE, Joyce PBM. The oral pathogen Porphyromonas gingivalis gains tolerance to the antimicrobial peptide DGL13K by synonymous mutations in hagA. PLoS One 2024; 19:e0312200. [PMID: 39446776 PMCID: PMC11500903 DOI: 10.1371/journal.pone.0312200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen for periodontal disease. The bacteria are black-pigmented and require heme for growth. P. gingivalis exhibit resistance to many antimicrobial peptides, which contributes to their success in the oral cavity. P. gingivalis W50 was resistant to the antimicrobial peptide LGL13K but susceptible to the all-D-amino acid stereoisomer, DGL13K. Upon prolonged exposure to DGL13K, a novel non-pigmented mutant was isolated. Exposure to the L-isomer, LGL13K, did not produce a non-pigmented mutant. The goal of this study was to characterize the genomic and cellular changes that led to the non-pigmented phenotype upon treatment with DGL13K. The non-pigmented mutant showed a low minimum inhibitory concentration and two-fold extended minimum duration for killing by DGL13K, consistent with tolerance to this peptide. The DGL13K-tolerant bacteria exhibited synonymous mutations in the hagA gene. The mutations did not prevent mRNA expression but were predicted to alter mRNA structure. The non-pigmented bacteria were deficient in hemagglutination and hemoglobin binding, suggesting that the HagA protein was not expressed. This was supported by whole cell enzyme-linked immunosorbent assay and gingipain activity assays, which suggested the absence of HagA but not of two closely related gingipains. In vivo virulence was similar for wild type and non-pigmented bacteria in the Galleria mellonella model. The results suggest that, unlike LGL13K, DGL13K can defeat multiple bacterial resistance mechanisms but bacteria can gain tolerance to DGL13K through mutations in the hagA gene.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul B. M. Joyce
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
2
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. mBio 2024; 15:e0214024. [PMID: 39207098 PMCID: PMC11481493 DOI: 10.1128/mbio.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 mitogen-activated protein kinase signaling pathways, respectively, with contributions by GRA16/18 and counter-regulation by effector TEEGR. Furthermore, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors. IMPORTANCE Intracellular pathogens can hijack the cellular functions of infected host cells to their advantage, for example, for intracellular survival and dissemination. However, how microbes orchestrate the hijacking of complex cellular processes, such as host cell migration, remains poorly understood. As such, the common parasite Toxoplasma gondii actively invades the immune cells of humans and other vertebrates and modifies their migratory properties. Here, we show that the concerted action of a number of secreted effector proteins from the parasite, principally GRA15 and GRA24, acts on host cell signaling pathways to activate chemotaxis. Furthermore, the protein effector GRA28 selectively acted on chromatin accessibility in the host cell nucleus to selectively boost host gene expression. The joint activities of GRA effectors culminated in pro-migratory signaling within the infected phagocyte. We provide a molecular framework delineating how T. gondii can orchestrate a complex biological phenotype, such as the migratory activation of phagocytes to boost dissemination.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Vijayrajratnam S, Milek S, Maggi S, Ashen K, Ferrell M, Hasanovic A, Holgerson A, Kannaiah S, Singh M, Ghosal D, Jensen GJ, Vogel JP. Membrane association and polar localization of the Legionella pneumophila T4SS DotO ATPase mediated by two nonredundant receptors. Proc Natl Acad Sci U S A 2024; 121:e2401897121. [PMID: 39352935 PMCID: PMC11474061 DOI: 10.1073/pnas.2401897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI). Although deletion of icmT or dotJI individually does not affect DotO's membrane association, the simultaneous inactivation of all three genes results in increased amounts of soluble DotO. Nevertheless, deleting each receptor separately profoundly affects positioning of DotO, disrupting its link with the Dot/Icm complex at the bacterial poles, rendering the receptors nonredundant. Furthermore, a collection of dotO point mutants that we isolated established that DotO's N-terminal domain interacts with the membrane receptors and is involved in dimerization, whereas DotO's C-terminal ATPase domain primarily contributes to the protein's formation of oligomers. Modeling data revealed the complex interaction between DotO and its receptors is responsible for formation of DotO's unique "hexamer of dimers" configuration, which is a defining characteristic of VirB4 family members.
Collapse
Affiliation(s)
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich 8008, Switzerland
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kaleigh Ashen
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| | - Micah Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| | - Agnieszka Holgerson
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| | | | - Manpreet Singh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110
| |
Collapse
|
4
|
McKaig CW, Malfetano J, Tran Y, Yang X, Pal U, Wycoff K, Lin YP. Complement therapeutic Factor H-IgG proteins as pre-exposure prophylaxes against Lyme borreliae infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615144. [PMID: 39386713 PMCID: PMC11463399 DOI: 10.1101/2024.09.26.615144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere and is caused by the bacteria Borrelia burgdorferi sensu lato (also known as Lyme borreliae) with no effective prevention available. Lyme borreliae evade complement killing, a critical arm of host immune defense, by producing outer surface proteins that bind to a host complement inhibitor, factor H (FH). These outer surface proteins include CspA and CspZ, which bind to the 6th and 7th short consensus repeats of FH (SCR(6-7)), and the OspE family of proteins (OspE), which bind to the 19th and 20th SCR (SCR19-20). In this study, we produced two chimeric proteins, FH-Fc, containing the Fc region of immunoglobulin G (Fc) with SCR(6-7) or SCR(19-20). We found that both FH-Fc constructs killed B. burgdorferi in the presence of complement and reduced bacterial colonization and LD-associated joint inflammation in vivo. While SCR(6-7)-Fc displayed Lyme borreliae species-specific bacterial killing, SCR(19-20)-Fc versatilely eradicated all tested bacterial species/strains. This correlated with SCR(6-7)-Fc binding to select variants of CspA and CspZ, but SCR(19-20)-Fc binding to all tested OspE variants. Overall, we demonstrated the concept of using FH-Fc constructs to kill Lyme borreliae and defined underlying mechanisms, highlighting the potential of FH-Fc as a pre-exposure prophylaxis against LD infection.
Collapse
Affiliation(s)
- Connor W. McKaig
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jill Malfetano
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Y Tran
- Planet Biotechnology, Inc., Hayward, CA, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | | | - Yi-Pin Lin
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| |
Collapse
|
5
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Sudol C, Kilz LM, Marchand V, Thullier Q, Guérineau V, Goyenvalle C, Faivre B, Toubdji S, Lombard M, Jean-Jean O, de Crécy-Lagard V, Helm M, Motorin Y, Brégeon D, Hamdane D. Functional redundancy in tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:5880-5894. [PMID: 38682613 PMCID: PMC11162810 DOI: 10.1093/nar/gkae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.
Collapse
Affiliation(s)
- Claudia Sudol
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Lea-Marie Kilz
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Quentin Thullier
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Catherine Goyenvalle
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Bruno Faivre
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Sabrine Toubdji
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Murielle Lombard
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL 32610, USA
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Damien Brégeon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Djemel Hamdane
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
7
|
Reed JM, Wolfe BE, Romero LM. Is resilience a unifying concept for the biological sciences? iScience 2024; 27:109478. [PMID: 38660410 PMCID: PMC11039332 DOI: 10.1016/j.isci.2024.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
There is increasing interest in applying resilience concepts at different scales of biological organization to address major interdisciplinary challenges from cancer to climate change. It is unclear, however, whether resilience can be a unifying concept consistently applied across the breadth of the biological sciences, or whether there is limited capacity for integration. In this review, we draw on literature from molecular biology to community ecology to ascertain commonalities and shortcomings in how resilience is measured and interpreted. Resilience is studied at all levels of biological organization, although the term is often not used. There is a suite of resilience mechanisms conserved across biological scales, and there are tradeoffs that affect resilience. Resilience is conceptually useful to help diverse researchers think about how biological systems respond to perturbations, but we need a richer lexicon to describe the diversity of perturbations, and we lack widely applicable metrics of resilience.
Collapse
Affiliation(s)
- J. Michael Reed
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | | | |
Collapse
|
8
|
Vogel AL, Thompson KJ, Straub D, Musat F, Gutierrez T, Kleindienst S. Genetic redundancy in the naphthalene-degradation pathway of Cycloclasticus pugetii strain PS-1 enables response to varying substrate concentrations. FEMS Microbiol Ecol 2024; 100:fiae060. [PMID: 38614960 PMCID: PMC11099662 DOI: 10.1093/femsec/fiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes [e.g. those encoding ring-hydroxylating dioxygenases (RHDs)] has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help to monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1β, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. By contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1β genes might be potential target genes to monitor its environmental naphthalene-degradation activity.
Collapse
Affiliation(s)
- Anjela L Vogel
- Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
- University of Stuttgart, Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Am Bandtäle 2, Stuttgart 70569, Germany
| | - Katharine J Thompson
- Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
- University of Stuttgart, Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Am Bandtäle 2, Stuttgart 70569, Germany
| | - Daniel Straub
- Eberhard Karls University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, Tübingen 72076, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Florin Musat
- Aarhus University, Department of Biology, Section for Microbiology, Ny Munkegade 116, Aarhus C 8000, Denmark
- Babeş-Bolyai University, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Str. Republicii nr 44, Cluj-Napoca 400015, Romania
| | - Tony Gutierrez
- Heriot-Watt University, Institute of Mechanical Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Edinburgh EH14 4AS, UK
| | - Sara Kleindienst
- Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
- University of Stuttgart, Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Am Bandtäle 2, Stuttgart 70569, Germany
| |
Collapse
|
9
|
Lehman SS, Williamson CD, Tucholski T, Ellis NA, Bouchard S, Jarnik M, Allen M, Nita-Lazar A, Machner MP. The Legionella pneumophila effector DenR hijacks the host NRas proto-oncoprotein to downregulate MAPK signaling. Cell Rep 2024; 43:114033. [PMID: 38568811 PMCID: PMC11141579 DOI: 10.1016/j.celrep.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.
Collapse
Affiliation(s)
- Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad D Williamson
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trisha Tucholski
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Ellis
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Bouchard
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Morgan Allen
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579146. [PMID: 38370679 PMCID: PMC10871220 DOI: 10.1101/2024.02.06.579146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616 California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Ghosh S, Bandyopadhyay S, Smith DM, Adak S, Semenkovich CF, Nagy L, Wolfgang MJ, O’Connor TJ. Legionella pneumophila usurps host cell lipids for vacuole expansion and bacterial growth. PLoS Pathog 2024; 20:e1011996. [PMID: 38386622 PMCID: PMC10883544 DOI: 10.1371/journal.ppat.1011996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Vacuolar pathogens reside in membrane-bound compartments within host cells. Maintaining the integrity of this compartment is paramount to bacterial survival and replication as it protects against certain host surveillance mechanisms that function to eradicate invading pathogens. Preserving this compartment during bacterial replication requires expansion of the vacuole membrane to accommodate the increasing number of bacteria, and yet, how this is accomplished remains largely unknown. Here, we show that the vacuolar pathogen Legionella pneumophila exploits multiple sources of host cell fatty acids, including inducing host cell fatty acid scavenging pathways, in order to promote expansion of the replication vacuole and bacteria growth. Conversely, when exogenous lipids are limited, the decrease in host lipid availability restricts expansion of the replication vacuole membrane, resulting in a higher density of bacteria within the vacuole. Modifying the architecture of the vacuole prioritizes bacterial growth by allowing the greatest number of bacteria to remain protected by the vacuole membrane despite limited resources for its expansion. However, this trade-off is not without risk, as it can lead to vacuole destabilization, which is detrimental to the pathogen. However, when host lipid resources become extremely scarce, for example by inhibiting host lipid scavenging, de novo biosynthetic pathways, and/or diverting host fatty acids to storage compartments, bacterial replication becomes severely impaired, indicating that host cell fatty acid availability also directly regulates L. pneumophila growth. Collectively, these data demonstrate dual roles for host cell fatty acids in replication vacuole expansion and bacterial proliferation, revealing the central functions for these molecules and their metabolic pathways in L. pneumophila pathogenesis.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Saumya Bandyopadhyay
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Danielle M. Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laszlo Nagy
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tamara J. O’Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Kamaruzaman INA, Staton GJ, Ainsworth S, Carter SD, Evans NJ. Characterisation of Putative Outer Membrane Proteins from Leptospira borgpetersenii Serovar Hardjo-Bovis Identifies Novel Adhesins and Diversity in Adhesion across Genomospecies Orthologs. Microorganisms 2024; 12:245. [PMID: 38399649 PMCID: PMC10891613 DOI: 10.3390/microorganisms12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Leptospirosis is a zoonotic bacterial disease affecting mammalian species worldwide. Cattle are a major susceptible host; infection with pathogenic Leptospira spp. represents a public health risk and results in reproductive failure and reduced milk yield, causing economic losses. The characterisation of outer membrane proteins (OMPs) from disease-causing bacteria dissects pathogenesis and underpins vaccine development. As most leptospire pathogenesis research has focused on Leptospira interrogans, this study aimed to characterise novel OMPs from another important genomospecies, Leptospira borgpetersenii, which has global distribution and is relevant to bovine and human diseases. Several putative L. borgpetersenii OMPs were recombinantly expressed, refolded and purified, and evaluated for function and immunogenicity. Two of these unique, putative OMPs (rLBL0972 and rLBL2618) bound to immobilised fibronectin, laminin and fibrinogen, which, together with structural and functional data, supports their classification as leptospiral adhesins. A third putative OMP (rLBL0375), did not exhibit saturable adhesion ability but, together with rLBL0972 and the included control, OmpL1, demonstrated significant cattle milk IgG antibody reactivity from infected cows. To dissect leptospire host-pathogen interactions further, we expressed alleles of OmpL1 and a novel multi-specific adhesin, rLBL2618, from a variety of genomospecies and surveyed their adhesion ability, with both proteins exhibiting divergences in extracellular matrix component binding specificity across synthesised orthologs. We also observed functional redundancy across different L. borgspetersenii OMPs which, together with diversity in function across genomospecies orthologs, delineates multiple levels of plasticity in adhesion that is potentially driven by immune selection and host adaptation. These data identify novel leptospiral proteins which should be further evaluated as vaccine and/or diagnostic candidates. Moreover, functional redundancy across leptospire surface proteins together with identified adhesion divergence across genomospecies further dissect the complex host-pathogen interactions of a genus responsible for substantial global disease burden.
Collapse
Affiliation(s)
- Intan Noor Aina Kamaruzaman
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Bag 36, Kota Bharu 16100, Malaysia
| | - Gareth James Staton
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| | - Stuart D. Carter
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| | - Nicholas James Evans
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK; (I.N.A.K.); (G.J.S.); (S.A.); (S.D.C.)
| |
Collapse
|
13
|
Al-Tohamy A, Grove A. Targeting bacterial transcription factors for infection control: opportunities and challenges. Transcription 2023:1-28. [PMID: 38126125 DOI: 10.1080/21541264.2023.2293523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.Abbreviations: AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant Staphylococcus aureus; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.
Collapse
Affiliation(s)
- Ahmed Al-Tohamy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
14
|
Li YR, Lyu Z, Tian Y, Fang Y, Zhu Y, Chen Y, Yang L. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Mol Ther Oncolytics 2023; 31:100733. [PMID: 37876793 PMCID: PMC10591018 DOI: 10.1016/j.omto.2023.100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
CRISPR screen technology enables systematic and scalable interrogation of gene function by using the CRISPR-Cas9 system to perturb gene expression. In the field of cancer immunotherapy, this technology has empowered the discovery of genes, biomarkers, and pathways that regulate tumor development and progression, immune reactivity, and the effectiveness of immunotherapeutic interventions. By conducting large-scale genetic screens, researchers have successfully identified novel targets to impede tumor growth, enhance anti-tumor immune responses, and surmount immunosuppression within the tumor microenvironment (TME). Here, we present an overview of CRISPR screens conducted in tumor cells for the purpose of identifying novel therapeutic targets. We also explore the application of CRISPR screens in immune cells to propel the advancement of cell-based therapies, encompassing T cells, natural killer cells, dendritic cells, and macrophages. Furthermore, we outline the crucial components necessary for the successful implementation of immune-specific CRISPR screens and explore potential directions for future research.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Ellis NA, Myers KS, Tung J, Davidson Ward A, Johnston K, Bonnington KE, Donohue TJ, Machner MP. A randomized multiplex CRISPRi-Seq approach for the identification of critical combinations of genes. eLife 2023; 12:RP86903. [PMID: 38095310 PMCID: PMC10721215 DOI: 10.7554/elife.86903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.
Collapse
Affiliation(s)
- Nicole A Ellis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Wisconsin Energy Institute, University of Wisconsin-MadisonMadisonUnited States
| | - Jessica Tung
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Anne Davidson Ward
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kathryn Johnston
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Katherine E Bonnington
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Timothy J Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Wisconsin Energy Institute, University of Wisconsin-MadisonMadisonUnited States
- Department of Bacteriology, University of Wisconsin-MadisonMadisonUnited States
| | - Matthias P Machner
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
16
|
Ellis NA, Myers KS, Tung J, Ward AD, Johnston K, Bonnington KE, Donohue TJ, Machner MP. A randomized multiplex CRISPRi-Seq approach for the identification of critical combinations of genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527066. [PMID: 36945652 PMCID: PMC10028747 DOI: 10.1101/2023.02.03.527066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.
Collapse
Affiliation(s)
- Nicole A. Ellis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica Tung
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Davidson Ward
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathryn Johnston
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E. Bonnington
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthias P. Machner
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Sharma R, Adams M, Griffith-Jones S, Sahr T, Gomez-Valero L, Weis F, Hons M, Gharbi S, Berkane R, Stolz A, Buchrieser C, Bhogaraju S. Structural basis for the toxicity of Legionella pneumophila effector SidH. Nat Commun 2023; 14:7068. [PMID: 37923743 PMCID: PMC10624908 DOI: 10.1038/s41467-023-42683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Legionella pneumophila (LP) secretes more than 300 effectors into the host cytosol to facilitate intracellular replication. One of these effectors, SidH, 253 kDa in size with no sequence similarity to proteins of known function is toxic when overexpressed in host cells. SidH is regulated by the LP metaeffector LubX which targets SidH for degradation in a temporal manner during LP infection. The mechanism underlying the toxicity of SidH and its role in LP infection are unknown. Here, we determined the cryo-EM structure of SidH at 2.7 Å revealing a unique alpha helical arrangement with no overall similarity to known protein structures. Surprisingly, purified SidH came bound to a E. coli EF-Tu/t-RNA/GTP ternary complex which could be modeled into the cryo-EM density. Mutation of residues disrupting the SidH-tRNA interface and SidH-EF-Tu interface abolish the toxicity of overexpressed SidH in human cells, a phenotype confirmed in infection of Acanthamoeba castellani. We also present the cryo-EM structure of SidH in complex with a U-box domain containing ubiquitin ligase LubX delineating the mechanism of regulation of SidH. Our data provide the basis for the toxicity of SidH and into its regulation by the metaeffector LubX.
Collapse
Affiliation(s)
- Rahul Sharma
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Michael Adams
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042, Grenoble, France
| | | | - Tobias Sahr
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Felix Weis
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Michael Hons
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Rayene Berkane
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
18
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Gogoi A, Rossmann SL, Lysøe E, Stensvand A, Brurberg MB. Genome analysis of Phytophthora cactorum strains associated with crown- and leather-rot in strawberry. Front Microbiol 2023; 14:1214924. [PMID: 37465018 PMCID: PMC10351607 DOI: 10.3389/fmicb.2023.1214924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4-67.6 megabases genomes in 178-204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.
Collapse
Affiliation(s)
- Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Simeon L. Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
20
|
Valciņa O, Pūle D, Ķibilds J, Labecka L, Terentjeva M, Krūmiņa A, Bērziņš A. Evaluation of Genetic Diversity and Virulence Potential of Legionella pneumophila Isolated from Water Supply Systems of Residential Buildings in Latvia. Pathogens 2023; 12:884. [PMID: 37513731 PMCID: PMC10385952 DOI: 10.3390/pathogens12070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Legionella is an opportunistic pathogen with a biphasic life cycle that occasionally infects humans. The aim of the study was to assess the distribution of virulence genes and genetic diversity among L. pneumophila isolated from water supply systems of residential buildings in Latvia. In total, 492 water samples from 200 residential buildings were collected. Identification of Legionella spp. was performed according to ISO 11731, and 58 isolates were subjected to whole-genome sequencing. At least one Legionella-positive sample was found in 112 out of 200 apartment buildings (56.0%). The study revealed extensive sequence-type diversity, where 58 L. pneumophila isolates fell into 36 different sequence types. A total of 420 virulence genes were identified, of which 260 genes were found in all sequenced L. pneumophila isolates. The virulence genes enhC, htpB, omp28, and mip were detected in all isolates, suggesting that adhesion, attachment, and entry into host cells are enabled for all isolates. The relative frequency of virulence genes among L. pneumophila isolates was high. The high prevalence, extensive genetic diversity, and the wide range of virulence genes indicated that the virulence potential of environmental Legionella is high, and proper risk management is of key importance to public health.
Collapse
Affiliation(s)
- Olga Valciņa
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Daina Pūle
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
- Department of Water Engineering and Technology, Riga Technical University, LV-1048 Riga, Latvia
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Linda Labecka
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Angelika Krūmiņa
- Department of Infectology, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| |
Collapse
|
21
|
Ngwaga T, Chauhan D, Salberg AG, Shames SR. Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog 2023; 19:e1011473. [PMID: 37347796 PMCID: PMC10321654 DOI: 10.1371/journal.ppat.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Abigail G. Salberg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephanie R. Shames
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
22
|
Wang B, He W, Huang M, Feng J, Li Y, Yu L, Wang Y, Zhou D, Meng C, Cheng D, Tang N, Song B, Chen H. Ralstonia solanacearum type III effector RipAS associates with potato type one protein phosphatase StTOPP6 to promote bacterial wilt. HORTICULTURE RESEARCH 2023; 10:uhad087. [PMID: 37334181 PMCID: PMC10273071 DOI: 10.1093/hr/uhad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 06/20/2023]
Abstract
The bacterial pathogen Ralstonia solanacearum (R. solanacearum) delivered type III secretion effectors to inhibit the immune system and cause bacterial wilt on potato. Protein phosphatases are key regulators in plant immunity, which pathogens can manipulate to alter host processes. Here, we show that a type III effector RipAS can reduce the nucleolar accumulation of a type one protein phosphatase (PP1) StTOPP6 to promote bacterial wilt. StTOPP6 was used as bait in the Yeast two-Hybrid (Y2H) assay and acquired an effector RipAS that interacts with it. RipAS was characterized as a virulence effector to contribute to R. solanacearum infection, and stable expression of RipAS in potato impaired plant resistance against R. solanacearum. Overexpression of StTOPP6 showed enhanced disease symptoms when inoculated with wild strain UW551 but not the ripAS deletion mutant, indicating that the expression of StTOPP6 facilitates the virulence of RipAS. RipAS reduced the nucleolar accumulation of StTOPP6, which occurred during R. solanacearum infection. Moreover, the association also widely existed between other PP1s and RipAS. We argue that RipAS is a virulence effector associated with PP1s to promote bacterial wilt.
Collapse
Affiliation(s)
- Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiachen Feng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Yanping Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengzhen Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | | | | |
Collapse
|
23
|
Li M, Li X, Wu Z, Zhang G, Wang N, Dou M, Liu S, Yang C, Meng G, Sun H, Hvilsom C, Xie G, Li Y, Li ZH, Wang W, Jiang Y, Heller R, Wang Y. Convergent molecular evolution of thermogenesis and circadian rhythm in Arctic ruminants. Proc Biol Sci 2023; 290:20230538. [PMID: 37253422 PMCID: PMC10229229 DOI: 10.1098/rspb.2023.0538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.
Collapse
Affiliation(s)
- Manman Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Guanghui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Nini Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Chentao Yang
- BGI Shenzhen, Shenzhen 518083, People's Republic of China
| | - Guanliang Meng
- Centre of Taxonomy and Evolutionary Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hailu Sun
- BGI Shenzhen, Shenzhen 518083, People's Republic of China
| | | | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zhuo hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Wei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
24
|
Serrat J, Becerro-Recio D, Torres-Valle M, Simón F, Valero MA, Bargues MD, Mas-Coma S, Siles-Lucas M, González-Miguel J. Fasciola hepatica juveniles interact with the host fibrinolytic system as a potential early-stage invasion mechanism. PLoS Negl Trop Dis 2023; 17:e0010936. [PMID: 37083884 PMCID: PMC10155961 DOI: 10.1371/journal.pntd.0010936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/03/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The trematode Fasciola hepatica is the most widespread causative agent of fasciolosis, a parasitic disease that mainly affects humans and ruminants worldwide. During F. hepatica infection, newly excysted juveniles (FhNEJ) emerge in the duodenum of the mammalian host and migrate towards their definitive location, the intra-hepatic biliary ducts. Understanding how F. hepatica traverses the intestinal wall and migrates towards the liver is pivotal for the development of more successful strategies against fasciolosis. The central enzyme of the mammalian fibrinolytic system is plasmin, a serine protease whose functions are exploited by a number of parasite species owing to its broad spectrum of substrates, including components of tissue extracellular matrices. The aim of the present work is to understand whether FhNEJ co-opt the functions of their host fibrinolytic system as a mechanism to facilitate trans-intestinal migration. METHODOLOGY/PRINCIPAL FINDINGS A tegument-enriched antigenic extract of FhNEJ (FhNEJ-Teg) was obtained in vitro, and its capability to bind the zymogen plasminogen (PLG) and enhance its conversion to the active protease, plasmin, were analyzed by a combination of enzyme-linked immunosorbent, chromogenic and immunofluorescence assays. Additionally, PLG-binding proteins in FhNEJ-Teg were identified by bidimensional electrophoresis coupled to mass spectrometry analysis, and the interactions were validated using FhNEJ recombinant proteins. CONCLUSIONS/SIGNIFICANCE Our results show that FhNEJ-Teg contains proteins that bind PLG and stimulate its activation to plasmin, which could facilitate the traversal of the intestinal wall by FhNEJ and contribute to the successful establishment of the parasite within its mammalian host. Altogether, our findings contribute to a better understanding of host-parasite relationships during early fasciolosis and may be exploited from a pharmacological and/or immunological perspective for the development of treatment and control strategies against this global disease.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - David Becerro-Recio
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - María Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - María Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
25
|
Shames SR. Eat or Be Eaten: Strategies Used by Legionella to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infect Immun 2023; 91:e0044122. [PMID: 36912646 PMCID: PMC10112212 DOI: 10.1128/iai.00441-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.
Collapse
Affiliation(s)
- Stephanie R. Shames
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Ariute JC, Felice AG, Soares S, da Gama MAS, de Souza EB, Azevedo V, Brenig B, Aburjaile F, Benko-Iseppon AM. Characterization and Association of Rips Repertoire to Host Range of Novel Ralstonia solanacearum Strains by In Silico Approaches. Microorganisms 2023; 11:microorganisms11040954. [PMID: 37110377 PMCID: PMC10144018 DOI: 10.3390/microorganisms11040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/24/2022] [Accepted: 01/28/2023] [Indexed: 04/29/2023] Open
Abstract
Ralstonia solanacearum species complex (RSSC) cause several phytobacteriosis in many economically important crops around the globe, especially in the tropics. In Brazil, phylotypes I and II cause bacterial wilt (BW) and are indistinguishable by classical microbiological and phytopathological methods, while Moko disease is caused only by phylotype II strains. Type III effectors of RSSC (Rips) are key molecular actors regarding pathogenesis and are associated with specificity to some hosts. In this study, we sequenced and characterized 14 newly RSSC isolates from Brazil's Northern and Northeastern regions, including BW and Moko ecotypes. Virulence and resistance sequences were annotated, and the Rips repertoire was predicted. Confirming previous studies, RSSC pangenome is open as α≅0.77. Genomic information regarding these isolates matches those for R. solanacearum in NCBI. All of them fit in phylotype II with a similarity above 96%, with five isolates in phylotype IIB and nine in phylotype IIA. Almost all R. solanacearum genomes in NCBI are actually from other species in RSSC. Rips repertoire of Moko IIB was more homogeneous, except for isolate B4, which presented ten non-shared Rips. Rips repertoire of phylotype IIA was more diverse in both Moko and BW, with 43 common shared Rips among all 14 isolates. New BW isolates shared more Rips with Moko IIA and Moko IIB than with other public BW genome isolates from Brazil. Rips not shared with other isolates might contribute to individual virulence, but commonly shared Rips are good avirulence candidates. The high number of Rips shared by new Moko and BW isolates suggests they are actually Moko isolates infecting solanaceous hosts. Finally, infection assays and Rips expression on different hosts are needed to better elucidate the association between Rips repertoire and host specificities.
Collapse
Affiliation(s)
- Juan Carlos Ariute
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Genetics Department, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil
| | - Andrei Giachetto Felice
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | - Siomar Soares
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | | | - Elineide Barbosa de Souza
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife 52171-900, Pernambuco, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution Department, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, 37077 Göttingen, Germany
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Departament, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ana Maria Benko-Iseppon
- Genetics Department, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil
| |
Collapse
|
27
|
Salamzade R, Cheong JA, Sandstrom S, Swaney MH, Stubbendieck RM, Starr NL, Currie CR, Singh AM, Kalan LR. Evolutionary investigations of the biosynthetic diversity in the skin microbiome using lsaBGC. Microb Genom 2023; 9:mgen000988. [PMID: 37115189 PMCID: PMC10210951 DOI: 10.1099/mgen.0.000988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/20/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial secondary metabolites, synthesized by enzymes encoded in biosynthetic gene clusters (BGCs), can underlie microbiome homeostasis and serve as commercialized products, which have historically been mined from a select group of taxa. While evolutionary approaches have proven beneficial for prioritizing BGCs for experimental characterization efforts to uncover new natural products, dedicated bioinformatics tools designed for comparative and evolutionary analysis of BGCs within focal taxa are limited. We thus developed l ineage s pecific a nalysis of BGCs (lsa BGC; https://github.com/Kalan-Lab/lsaBGC ) to aid exploration of microdiversity and evolutionary trends across homologous groupings of BGCs, gene cluster families (GCFs), in any bacterial taxa of interest. lsa BGC enables rapid and direct identification of GCFs in genomes, calculates evolutionary statistics and conservation for BGC genes, and builds a framework to allow for base resolution mining of novel variants through metagenomic exploration. Through application of the suite to four genera commonly found in skin microbiomes, we uncover new insights into the evolution and diversity of their BGCs. We show that the BGC of the virulence-associated carotenoid staphyloxanthin in Staphylococcus aureus is ubiquitous across the genus Staphylococcus . While one GCF encoding the biosynthesis of staphyloxanthin showcases evidence for plasmid-mediated horizontal gene transfer (HGT) between species, another GCF appears to be transmitted vertically amongst a sub-clade of skin-associated Staphylococcus . Further, the latter GCF, which is well conserved in S. aureus , has been lost in most Staphylococcus epidermidis , which is the most common Staphylococcus species on human skin and is also regarded as a commensal. We also identify thousands of novel single-nucleotide variants (SNVs) within BGCs from the Corynebacterium tuberculostearicum sp. complex, a narrow, multi-species clade that features the most prevalent Corynebacterium in healthy skin microbiomes. Although novel SNVs were approximately 10 times as likely to correspond to synonymous changes when located in the top five percentile of conserved sites, lsa BGC identified SNVs that defied this trend and are predicted to underlie amino acid changes within functionally key enzymatic domains. Ultimately, beyond supporting evolutionary investigations of BGCs, lsa BGC also provides important functionalities to aid efforts for the discovery or directed modification of natural products.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - J.Z. Alex Cheong
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | | | - Nicole Lane Starr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Bhandari P, Tingley J, Abbott DW, Hill JE. Glycogen-Degrading Activities of Catalytic Domains of α-Amylase and α-Amylase-Pullulanase Enzymes Conserved in Gardnerella spp. from the Vaginal Microbiome. J Bacteriol 2023; 205:e0039322. [PMID: 36744900 PMCID: PMC9945562 DOI: 10.1128/jb.00393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Gardnerella spp. are associated with bacterial vaginosis in which normally dominant lactobacilli are replaced with facultative and anaerobic bacteria, including Gardnerella spp. Co-occurrence of multiple species of Gardnerella is common in the vagina, and competition for nutrients such as glycogen likely contributes to the differential abundances of Gardnerella spp. Glycogen must be digested into smaller components for uptake, a process that depends on the combined action of glycogen-degrading enzymes. In this study, the ability of culture supernatants of 15 isolates of Gardnerella spp. to produce glucose, maltose, maltotriose, and maltotetraose from glycogen was demonstrated. Carbohydrate-active enzymes (CAZymes) were identified bioinformatically in Gardnerella proteomes using dbCAN2. Identified proteins included a single-domain α-amylase (EC 3.2.1.1) (encoded by all 15 isolates) and an α-amylase-pullulanase (EC 3.2.1.41) containing amylase, carbohydrate binding modules, and pullulanase domains (14/15 isolates). To verify the sequence-based functional predictions, the amylase and pullulanase domains of the α-amylase-pullulanase and the single-domain α-amylase were each produced in Escherichia coli. The α-amylase domain from the α-amylase-pullulanase released maltose, maltotriose, and maltotetraose from glycogen, and the pullulanase domain released maltotriose from pullulan and maltose from glycogen, demonstrating that the Gardnerella α-amylase-pullulanase is capable of hydrolyzing α-1,4 and α-1,6 glycosidic bonds. Similarly, the single-domain α-amylase protein also produced maltose, maltotriose, and maltotetraose from glycogen. Our findings show that Gardnerella spp. produce extracellular amylase enzymes as "public goods" that can digest glycogen into maltose, maltotriose, and maltotetraose that can be used by the vaginal microbiota. IMPORTANCE Increased abundance of Gardnerella spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms, and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community, but little is known about the contribution of bacterial enzymes to the metabolism of glycogen, a major food source available to vaginal bacteria. The significance of our research is characterizing the activity of enzymes conserved in Gardnerella species that contribute to the ability of these bacteria to utilize glycogen.
Collapse
Affiliation(s)
- Pashupati Bhandari
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jeffrey Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Álvarez-Lugo A, Becerra A. The Fate of Duplicated Enzymes in Prokaryotes: The Case of Isomerases. J Mol Evol 2023; 91:76-92. [PMID: 36580111 DOI: 10.1007/s00239-022-10085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, México.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
30
|
VpdC is a ubiquitin-activated phospholipase effector that regulates Legionella vacuole expansion during infection. Proc Natl Acad Sci U S A 2022; 119:e2209149119. [PMID: 36413498 PMCID: PMC9860323 DOI: 10.1073/pnas.2209149119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intravacuolar pathogens need to gradually expand their surrounding vacuole to accommodate the growing number of bacterial offspring during intracellular replication. Here we found that Legionella pneumophila controls vacuole expansion by fine-tuning the generation of lysophospholipids within the vacuolar membrane. Upon allosteric activation by binding to host ubiquitin, the type IVB (Dot/Icm) effector VpdC converts phospholipids into lysophospholipids which, at moderate concentrations, are known to promote membrane fusion but block it at elevated levels by generating excessive positive membrane curvature. Consequently, L. pneumophila overproducing VpdC were prevented from adequately expanding their surrounding membrane, trapping the replicating bacteria within spatially confined vacuoles and reducing their capability to proliferate intracellularly. Quantitative lipidomics confirmed a VpdC-dependent increase in several types of lysophospholipids during infection, and VpdC production in transiently transfected cells caused tubulation of organelle membranes as well as mitochondria fragmentation, processes that can be phenocopied by supplying cells with exogenous lysophospholipids. Together, these results demonstrate an important role for bacterial phospholipases in vacuolar expansion.
Collapse
|
31
|
Vanden Broek K, Han X, Hansen D. Redundant mechanisms regulating the proliferation vs. differentiation balance in the C. elegans germline. Front Cell Dev Biol 2022; 10:960999. [PMID: 36120589 PMCID: PMC9479330 DOI: 10.3389/fcell.2022.960999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The proper production of gametes over an extended portion of the life of an organism is essential for a high level of fitness. The balance between germline stem cell (GSC) proliferation (self-renewal) and differentiation (production of gametes) must be tightly regulated to ensure proper gamete production and overall fitness. Therefore, organisms have evolved robust regulatory systems to control this balance. Here we discuss the redundancy in the regulatory system that controls the proliferation vs. differentiation balance in the C. elegans hermaphrodite germline, and how this redundancy may contribute to robustness. We focus on the various types of redundancy utilized to regulate this balance, as well as the approaches that have enabled these redundant mechanisms to be uncovered.
Collapse
|
32
|
Functional Role of YnfA, an Efflux Transporter in Resistance to Antimicrobial Agents in Shigella flexneri. Antimicrob Agents Chemother 2022; 66:e0029322. [PMID: 35727058 PMCID: PMC9295541 DOI: 10.1128/aac.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri has become a significant public health concern accounting for the majority of shigellosis cases worldwide. Even though a multitude of efforts is being made into the development of a vaccine to prevent infections, the absence of a licensed global vaccine compels us to enormously depend on antibiotics as the major treatment option. The extensive-unregulated use of antibiotics for treatment along with natural selection in bacteria has led to the rising of multidrug-resistance Shigella strains. Out of the various mechanisms employed by bacteria to gain resistance, efflux transporters are considered to be one of the principal contributors to antimicrobial resistance. The small multidrug-resistance family consists of unique small proteins that act as efflux pumps and are involved in extruding various antimicrobial compounds. The present study aims to demonstrate the role of an efflux transporter YnfA belonging to the SMR family and its functional involvement in promoting antimicrobial resistance in S. flexneri. Employing various genetic, computational, and biochemical techniques, we show how disrupting the YnfA transporter, renders the mutant Shigella strain more susceptible to some antimicrobial compounds tested in this study, and significantly affects the overall transport activity of the bacteria against ethidium bromide and acriflavine when compared with the wild-type Shigella strain. We also assessed how mutating some of the conserved amino acid residues of YnfA alters the resistance profile and efflux activity of the mutant YnfA transporter. This study provides a functional understanding of an uncharacterized SMR transporter YnfA of Shigella.
Collapse
|
33
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
34
|
Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria. THE ISME JOURNAL 2022; 16:423-434. [PMID: 34408268 PMCID: PMC8776746 DOI: 10.1038/s41396-021-01082-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Bacteria have highly flexible pangenomes, which are thought to facilitate evolutionary responses to environmental change, but the impacts of environmental stress on pangenome evolution remain unclear. Using a landscape pangenomics approach, I demonstrate that environmental stress leads to consistent, continuous reduction in genome content along four environmental stress gradients (acidity, aridity, heat, salinity) in naturally occurring populations of Bradyrhizobium diazoefficiens (widespread soil-dwelling plant mutualists). Using gene-level network and duplication functional traits to predict accessory gene distributions across environments, genes predicted to be superfluous are more likely lost in high stress, while genes with multi-functional roles are more likely retained. Genes with higher probabilities of being lost with stress contain significantly higher proportions of codons under strong purifying and positive selection. Gene loss is widespread across the entire genome, with high gene-retention hotspots in close spatial proximity to core genes, suggesting Bradyrhizobium has evolved to cluster essential-function genes (accessory genes with multifunctional roles and core genes) in discrete genomic regions, which may stabilise viability during genomic decay. In conclusion, pangenome evolution through genome streamlining are important evolutionary responses to environmental change. This raises questions about impacts of genome streamlining on the adaptive capacity of bacterial populations facing rapid environmental change.
Collapse
|
35
|
Voth K, Pasricha S, Chung IYW, Wibawa RR, Zainudin ENHE, Hartland EL, Cygler M. Structural and Functional Characterization of Legionella pneumophila Effector MavL. Biomolecules 2021; 11:biom11121802. [PMID: 34944446 PMCID: PMC8699189 DOI: 10.3390/biom11121802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires’ disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose “reader” proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.
Collapse
Affiliation(s)
- Kevin Voth
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (K.V.); (I.Y.W.C.)
| | - Shivani Pasricha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.P.); (R.R.W.)
| | - Ivy Yeuk Wah Chung
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (K.V.); (I.Y.W.C.)
| | - Rachelia R. Wibawa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.P.); (R.R.W.)
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia;
| | - Engku Nuraishah Huda E. Zainudin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia;
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.P.); (R.R.W.)
- Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia
- Correspondence: (E.L.H.); (M.C.)
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (K.V.); (I.Y.W.C.)
- Correspondence: (E.L.H.); (M.C.)
| |
Collapse
|
36
|
Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, Ageitos L, Rumbo-Feal S, Martínez-Guitián M, Trigo-Tasende N, Rodríguez J, Bou G, Jiménez C, Beceiro A, Poza M. In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Front Microbiol 2021; 12:752070. [PMID: 34675911 PMCID: PMC8524058 DOI: 10.3389/fmicb.2021.752070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.
Collapse
Affiliation(s)
- Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Lucía Ageitos
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Noelia Trigo-Tasende
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Jiménez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| |
Collapse
|
37
|
Ibe NU, Subramanian A, Mukherjee S. Non-canonical activation of the ER stress sensor ATF6 by Legionella pneumophila effectors. Life Sci Alliance 2021; 4:4/12/e202101247. [PMID: 34635501 PMCID: PMC8507491 DOI: 10.26508/lsa.202101247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Legionella pneumophila secretes toxins into the host cell that induce the non-canonical processing and activation of the ER stress sensor and transcription factor ATF6 via a mechanism that is distinct from the canonical pathway activated by unfolded protein buildup. The intracellular bacterial pathogen Legionella pneumophila (L.p.) secretes ∼330 effector proteins into the host cell to sculpt an ER-derived replicative niche. We previously reported five L.p. effectors that inhibit IRE1, a key sensor of the homeostatic unfolded protein response (UPR) pathway. In this study, we discovered a subset of L.p. toxins that selectively activate the UPR sensor ATF6, resulting in its cleavage, nuclear translocation, and target gene transcription. In a deviation from the conventional model, this L.p.–dependent activation of ATF6 does not require its transport to the Golgi or its cleavage by the S1P/S2P proteases. We believe that our findings highlight the unique regulatory control that L.p. exerts upon the three UPR sensors and expand the repertoire of bacterial proteins that selectively perturb host homeostatic pathways.
Collapse
Affiliation(s)
- Nnejiuwa U Ibe
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA
| | - Advait Subramanian
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA .,George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Walch P, Selkrig J, Knodler LA, Rettel M, Stein F, Fernandez K, Viéitez C, Potel CM, Scholzen K, Geyer M, Rottner K, Steele-Mortimer O, Savitski MM, Holden DW, Typas A. Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host Microbe 2021; 29:1316-1332.e12. [PMID: 34237247 PMCID: PMC8561747 DOI: 10.1016/j.chom.2021.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/24/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.
Collapse
Affiliation(s)
- Philipp Walch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, USA; Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mandy Rettel
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Frank Stein
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Keith Fernandez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Cristina Viéitez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL European Bioinformatics Institute, (EMBL-EBI), Hinxton, UK
| | - Clément M Potel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Karoline Scholzen
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
39
|
Liu K, Kong L, Graham DB, Carey KL, Xavier RJ. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. Cell Rep 2021; 36:109434. [PMID: 34320354 PMCID: PMC8327279 DOI: 10.1016/j.celrep.2021.109434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositides are important molecules in lipid signaling, membrane identity, and trafficking that are spatiotemporally controlled by factors from both mammalian cells and intracellular pathogens. Here, using small interfering RNA (siRNA) directed against phosphoinositide kinases and phosphatases, we screen for regulators of the host innate defense response to intracellular bacterial replication. We identify SAC1, a transmembrane phosphoinositide phosphatase, as an essential regulator of xenophagy. Depletion or inactivation of SAC1 compromises fusion between Salmonella-containing autophagosomes and lysosomes, leading to increased bacterial replication. Mechanistically, the loss of SAC1 results in aberrant accumulation of phosphatidylinositol-4-phosphate [PI(4)P] on Salmonella-containing autophagosomes, thus facilitating recruitment of SteA, a PI(4)P-binding Salmonella effector protein, which impedes lysosomal fusion. Replication of Salmonella lacking SteA is suppressed by SAC-1-deficient cells, however, demonstrating bacterial adaptation to xenophagy. Our findings uncover a paradigm in which a host protein regulates the level of its substrate and impairs the function of a bacterial effector during xenophagy.
Collapse
Affiliation(s)
- Kai Liu
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
40
|
Linsky M, Segal G. A horizontally acquired Legionella genomic island encoding a LuxR type regulator and effector proteins displays variation in gene content and regulation. Mol Microbiol 2021; 116:766-782. [PMID: 34120381 DOI: 10.1111/mmi.14770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
The intracellular pathogen Legionella pneumophila translocates >300 effector proteins into host cells, many of which are regulated at the transcriptional level. Here, we describe a novel L. pneumophila genomic island, which undergoes horizontal gene transfer within the Legionella genus. This island encodes two Icm/Dot effectors: LegK3 and a previously uncharacterized effector which we named CegK3, as well as a LuxR type regulator, which we named RegK3. Analysis of this island in different Legionella species revealed a conserved regulatory element located upstream to the effector-encoding genes in the island. Further analyses, including gene expression analysis, mutagenesis of the RegK3 regulatory element, controlled expression studies, and gel-mobility shift assays, all demonstrate that RegK3 directly activates the expression levels of legK3 and cegK3 effector-encoding genes. Additionally, the expression of all the components of the island is silenced by the Fis repressors. Comparison of expression profiles of these three genes among different Legionella species revealed variability in the activation levels mediated by RegK3, which were positively correlated with the Fis-mediated repression. Furthermore, LegK3 and CegK3 effectors moderately inhibit yeast growth, and importantly, they have a strong synergistic inhibitory effect on yeast growth, suggesting these two effectors are not only co-regulated but also might function together.
Collapse
Affiliation(s)
- Marika Linsky
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
41
|
Bruger EL, Chubiz LM, Rojas Echenique JI, Renshaw CJ, Espericueta NV, Draghi JA, Marx CJ. Genetic Context Significantly Influences the Maintenance and Evolution of Degenerate Pathways. Genome Biol Evol 2021; 13:6245841. [PMID: 33885815 PMCID: PMC8214414 DOI: 10.1093/gbe/evab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the evolution of novel physiological traits is highly relevant for expanding the characterization and manipulation of biological systems. Acquisition of new traits can be achieved through horizontal gene transfer (HGT). Here, we investigate drivers that promote or deter the maintenance of HGT-driven degeneracy, occurring when processes accomplish identical functions through nonidentical components. Subsequent evolution can optimize newly acquired functions; for example, beneficial alleles identified in an engineered Methylorubrum extorquens strain allowed it to utilize a “Foreign” formaldehyde oxidation pathway substituted for its Native pathway for methylotrophic growth. We examined the fitness consequences of interactions between these alleles when they were combined with the Native pathway or both (Dual) pathways. Unlike the Foreign pathway context where they evolved, these alleles were often neutral or deleterious when moved into these alternative genetic backgrounds. However, there were instances where combinations of multiple alleles resulted in higher fitness outcomes than individual allelic substitutions could provide. Importantly, the genetic context accompanying these allelic substitutions significantly altered the fitness landscape, shifting local fitness peaks and restricting the set of accessible evolutionary trajectories. These findings highlight how genetic context can negatively impact the probability of maintaining native and HGT-introduced functions together, making it difficult for degeneracy to evolve. However, in cases where the cost of maintaining degeneracy was mitigated by adding evolved alleles impacting the function of these pathways, we observed rare opportunities for pathway coevolution to occur. Together, our results highlight the importance of genetic context and resulting epistasis in retaining or losing HGT-acquired degenerate functions.
Collapse
Affiliation(s)
- Eric L Bruger
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.,The BEACON Center for the Study of Evolution in Action, University of Idaho, Moscow, Idaho, USA
| | - Lon M Chubiz
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, University of Missouri, St. Louis, Missouri, USA
| | - José I Rojas Echenique
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Caleb J Renshaw
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| | - Nora Victoria Espericueta
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Jeremy A Draghi
- Department of Biological Sciences, Virginia Institute of Technology, Blacksburg, Virginia, USA
| | - Christopher J Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.,The BEACON Center for the Study of Evolution in Action, University of Idaho, Moscow, Idaho, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Chung IYW, Li L, Tyurin O, Gagarinova A, Wibawa R, Li P, Hartland EL, Cygler M. Structural and functional study of Legionella pneumophila effector RavA. Protein Sci 2021; 30:940-955. [PMID: 33660322 DOI: 10.1002/pro.4057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 01/20/2023]
Abstract
Legionella pneumophila is an intracellular pathogen that causes Legionnaire's disease in humans. This bacterium can be found in freshwater environments as a free-living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella-containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER-derived secretory vesicles and membranes forming the Legionella-containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α-helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C-terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C-terminal sequence C409 WTSFCGLF417 . Yeast-two-hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.
Collapse
Affiliation(s)
- Ivy Y W Chung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lei Li
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Oleg Tyurin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Symvivo Corporation, Burnaby, British Columbia, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raissa Wibawa
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Pengfei Li
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
43
|
Abstract
Xanthomonas is a notorious plant pathogen causing serious diseases in hundreds of plant hosts. Xanthomonas species are equipped with an array of signal transduction systems that regulate gene expression to survive in various harsh environments and successfully infect hosts. Although certain pathogenicity-associated regulators have been functionally characterized, signal transduction systems always function as a regulatory network which remains to be elucidated in Xanthomonas. This study used a systematic approach to characterize all identified pathogenicity-associated regulators in Xanthomonas oryzae pv. oryzae (Xoo), including a transcriptional regulator with unknown function, and their interactive regulatory network. RNA sequencing was used in elucidating the patterns of the 10 pathogenicity-associated regulators identified. Results revealed that each pathogenicity-associated regulator has cross talk with others and all these regulators function as a regulatory network, with VemR and PXO_RS20790 being the master pathogenicity-associated regulators and HrpX being the final executant. Moreover, regulome analysis showed that numerous genes other than genes in pathogenicity islands are finely regulated within the regulatory network. Given that most of the pathogenicity-associated regulators are conserved in Xanthomonadales, our findings suggest a global network of gene regulation in this evolutionarily conserved pathogen. In conclusion, our study provides essential basic information about the regulatory network in Xoo, suggesting that this complicated regulatory network is one of the reasons for the robustness and fitness of Xanthomonas spp. IMPORTANCE The host plant infection process of pathogenic bacteria is a coordinating cellular behavior, which requires dynamic regulation at several levels in response to variations in host plants or fluctuations in the external environment. As one of the most important genera of plant-pathogenic bacteria, Xanthomonas has been studied as a model. Although certain pathogenicity-associated regulators have been functionally characterized, interactions among them remain to be elucidated. This study systematically characterized pathogenicity-associated regulators in Xoo and revealed that cross talk exists among pathogenicity-associated regulators and function as a regulatory network in which a hierarchy exists among the regulators. Our study elucidated the landscape of the pathogenicity-associated regulatory network in Xanthomonas, promoting understanding of the infection process of pathogenic bacteria.
Collapse
|
44
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
45
|
Abstract
Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires’ pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.
Collapse
|
46
|
A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila. Commun Biol 2021; 4:157. [PMID: 33542442 PMCID: PMC7862264 DOI: 10.1038/s42003-021-01672-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Catalytically inactive dCas9 imposes transcriptional gene repression by sterically precluding RNA polymerase activity at a given gene to which it was directed by CRISPR (cr)RNAs. This gene silencing technology, known as CRISPR interference (CRISPRi), has been employed in various bacterial species to interrogate genes, mostly individually or in pairs. Here, we developed a multiplex CRISPRi platform in the pathogen Legionella pneumophila capable of silencing up to ten genes simultaneously. Constraints on precursor-crRNA expression were overcome by combining a strong promoter with a boxA element upstream of a CRISPR array. Using crRNAs directed against virulence protein-encoding genes, we demonstrated that CRISPRi is fully functional not only during growth in axenic media, but also during macrophage infection, and that gene depletion by CRISPRi recapitulated the growth defect of deletion strains. By altering the position of crRNA-encoding spacers within the CRISPR array, our platform achieved the gradual depletion of targets that was mirrored by the severity in phenotypes. Multiplex CRISPRi thus holds great promise for probing large sets of genes in bulk in order to decipher virulence strategies of L. pneumophila and other bacterial pathogens.
Collapse
|
47
|
Ngwaga T, Chauhan D, Shames SR. Mechanisms of Effector-Mediated Immunity Revealed by the Accidental Human Pathogen Legionella pneumophila. Front Cell Infect Microbiol 2021; 10:593823. [PMID: 33614523 PMCID: PMC7886983 DOI: 10.3389/fcimb.2020.593823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Abstract
Many Gram-negative bacterial pathogens employ translocated virulence factors, termed effector proteins, to facilitate their parasitism of host cells and evade host anti-microbial defenses. However, eukaryotes have evolved to detect effector-mediated virulence strategies through a phenomenon termed effector-triggered immunity (ETI). Although ETI was discovered in plants, a growing body of literature demonstrates that metazoans also utilize effector-mediated immunity to detect and clear bacterial pathogens. This mini review is focused on mechanisms of effector-mediated immune responses by the accidental human pathogen Legionella pneumophila. We highlight recent advancements in the field and discuss the future prospects of harnessing effectors for the development of novel therapeutics, a critical need due to the prevalence and rapid spread of antibiotic resistance.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Stephanie R Shames
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
48
|
Friedrich A, Beare PA, Schulze-Luehrmann J, Cordsmeier A, Pazen T, Sonnewald S, Lührmann A. The Coxiella burnetii effector protein CaeB modulates endoplasmatic reticulum (ER) stress signalling and is required for efficient replication in Galleria mellonella. Cell Microbiol 2021; 23:e13305. [PMID: 33355405 DOI: 10.1111/cmi.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 01/02/2023]
Abstract
The obligate intracellular pathogen Coxiella burnetii is the causative agent of the zoonosis Q fever. C. burnetii infection can have severe outcomes due to the development of chronic infection. To establish and maintain an infection, C. burnetii depends on a functional type IVB secretion system (T4BSS) and, thus, on the translocation of effector proteins into the host cell. Here, we showed that the C. burnetii T4BSS effector protein CaeB targets the conserved endoplasmatic reticulum (ER) stress sensor IRE1 during ER stress in mammalian and plant cells. CaeB-induced upregulation of IRE1 RNase activity was essential for CaeB-mediated inhibition of ER stress-induced cell death. Our data reveal a novel role for CaeB in ER stress signalling modulation and demonstrate that CaeB is involved in pathogenicity in vivo. Furthermore, we provide evidence that C. burnetii infection leads to modulation of the ER stress sensors IRE1 and PERK, but not ATF6 during ER stress. While the upregulation of the RNase activity of IRE1 during ER stress depends on CaeB, modulation of PERK is CaeB independent, suggesting that C. burnetii encodes several factors influencing ER stress during infection.
Collapse
Affiliation(s)
- Anja Friedrich
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Lehrstuhl für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Cordsmeier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Pazen
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophia Sonnewald
- Lehrstuhl für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Affecting the Effectors: Regulation of Legionella pneumophila Effector Function by Metaeffectors. Pathogens 2021; 10:pathogens10020108. [PMID: 33499048 PMCID: PMC7911563 DOI: 10.3390/pathogens10020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Many bacterial pathogens utilize translocated virulence factors called effectors to successfully infect their host. Within the host cell, effector proteins facilitate pathogen replication through subversion of host cell targets and processes. Legionella pneumophila is a Gram-negative intracellular bacterial pathogen that relies on hundreds of translocated effectors to replicate within host phagocytes. Within this large arsenal of translocated effectors is a unique subset of effectors called metaeffectors, which target and regulate other effectors. At least one dozen metaeffectors are encoded by L. pneumophila; however, mechanisms by which they promote virulence are largely unknown. This review details current knowledge of L pneumophila metaeffector function, challenges associated with their identification, and potential avenues to reveal the contribution of metaeffectors to bacterial pathogenesis.
Collapse
|
50
|
Bravo-Lopez M, Villa-Islas V, Rocha Arriaga C, Villaseñor-Altamirano AB, Guzmán-Solís A, Sandoval-Velasco M, Wesp JK, Alcantara K, López-Corral A, Gómez-Valdés J, Mejía E, Herrera A, Meraz-Moreno A, Moreno-Cabrera MDLL, Moreno-Estrada A, Nieves-Colón MA, Olvera J, Pérez-Pérez J, Iversen KH, Rasmussen S, Sandoval K, Zepeda G, Ávila-Arcos MC. Paleogenomic insights into the red complex bacteria Tannerella forsythia in Pre-Hispanic and Colonial individuals from Mexico. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190580. [PMID: 33012233 PMCID: PMC7702795 DOI: 10.1098/rstb.2019.0580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The 'red complex' is an aggregate of three oral bacteria (Tannerella forsythia, Porphyromonas gingivalis and Treponema denticola) responsible for severe clinical manifestation of periodontal disease. Here, we report the first direct evidence of ancient T.forsythia DNA in dentin and dental calculus samples from archaeological skeletal remains that span from the Pre-Hispanic to the Colonial period in Mexico. We recovered twelve partial ancient T. forsythia genomes and observed a distinct phylogenetic placement of samples, suggesting that the strains present in Pre-Hispanic individuals likely arrived with the first human migrations to the Americas and that new strains were introduced with the arrival of European and African populations in the sixteenth century. We also identified instances of the differential presence of genes between periods in the T. forsythia ancient genomes, with certain genes present in Pre-Hispanic individuals and absent in Colonial individuals, and vice versa. This study highlights the potential for studying ancient T. forsythia genomes to unveil past social interactions through analysis of disease transmission. Our results illustrate the long-standing relationship between this oral pathogen and its human host, while also unveiling key evidence to understand its evolutionary history in Pre-Hispanic and Colonial Mexico. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Miriam Bravo-Lopez
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Viridiana Villa-Islas
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Carolina Rocha Arriaga
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Ana B. Villaseñor-Altamirano
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Axel Guzmán-Solís
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Julie K. Wesp
- Department of Sociology and Anthropology, North Carolina State University, Raleigh, NC 27695, USA
| | - Keitlyn Alcantara
- Department of Anthropology, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Aurelio López-Corral
- Department of Archeology, National Institute of Anthropology and History, Tlaxcala, 90000, Mexico
| | | | - Elizabeth Mejía
- National Institute of Anthropology and History, Querétaro, 76000, Mexico
| | - Alberto Herrera
- National Institute of Anthropology and History, Querétaro, 76000, Mexico
| | | | | | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
| | - Maria A. Nieves-Colón
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Joel Olvera
- Graduate Program of Physical Anthropology, National School of Anthropology and History, Mexico City, 14030, Mexico
| | - Julia Pérez-Pérez
- National School of Anthropology and History, Mexico City, 14030, Mexico
| | - Katrine Højholt Iversen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Karla Sandoval
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
| | - Gabriela Zepeda
- National Institute of Anthropology and History, Guanajuato, 36250, Mexico
| | - María C. Ávila-Arcos
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| |
Collapse
|