1
|
Cao G, Luo Q, Wu Y, Chen G. Inflammatory bowel disease and rheumatoid arthritis share a common genetic structure. Front Immunol 2024; 15:1359857. [PMID: 38938570 PMCID: PMC11208460 DOI: 10.3389/fimmu.2024.1359857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background The comorbidity rate of inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) is high; nevertheless, the reasons behind this high rate remain unclear. Their similar genetic makeup probably contributes to this comorbidity. Methods Based on data obtained from the genome-wide association study of IBD and RA, we first assessed an overall genetic association by performing the linkage disequilibrium score regression (LDSC) analysis. Further, a local correlation analysis was performed by estimating the heritability in summary statistics. Next, the causality between the two diseases was analyzed by two-sample Mendelian randomization (MR). A genetic overlap was analyzed by the conditional/conjoint false discovery rate (cond/conjFDR) method.LDSC with specific expression of gene analysis was performed to identify related tissues between the two diseases. Finally, GWAS multi-trait analysis (MTAG) was also carried out. Results IBD and RA are correlated at the genomic level, both overall and locally. The MR results suggested that IBD induced RA. We identified 20 shared loci between IBD and RA on the basis of a conjFDR of <0.01. Additionally, we identified two tissues, namely spleen and small intestine terminal ileum, which were commonly associated with both IBD and RA. Conclusion Herein, we proved the presence of a polygenic overlap between the genetic makeup of IBD and RA and provided new insights into the genetic architecture and mechanisms underlying the high comorbidity between these two diseases.
Collapse
Affiliation(s)
- Guoling Cao
- Department of Anorectal Surgery, The People’s Hospital of Cangnan, Wenzhou, China
| | - Qinghua Luo
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yunxiang Wu
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guanghua Chen
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Minniakhmetov I, Yalaev B, Khusainova R, Bondarenko E, Melnichenko G, Dedov I, Mokrysheva N. Genetic and Epigenetic Aspects of Type 1 Diabetes Mellitus: Modern View on the Problem. Biomedicines 2024; 12:399. [PMID: 38398001 PMCID: PMC10886892 DOI: 10.3390/biomedicines12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Omics technologies accumulated an enormous amount of data that advanced knowledge about the molecular pathogenesis of type 1 diabetes mellitus and identified a number of fundamental problems focused on the transition to personalized diabetology in the future. Among them, the most significant are the following: (1) clinical and genetic heterogeneity of type 1 diabetes mellitus; (2) the prognostic significance of DNA markers beyond the HLA genes; (3) assessment of the contribution of a large number of DNA markers to the polygenic risk of disease progress; (4) the existence of ethnic population differences in the distribution of frequencies of risk alleles and genotypes; (5) the infancy of epigenetic research into type 1 diabetes mellitus. Disclosure of these issues is one of the priorities of fundamental diabetology and practical healthcare. The purpose of this review is the systemization of the results of modern molecular genetic, transcriptomic, and epigenetic investigations of type 1 diabetes mellitus in general, as well as its individual forms. The paper summarizes data on the role of risk HLA haplotypes and a number of other candidate genes and loci, identified through genome-wide association studies, in the development of this disease and in alterations in T cell signaling. In addition, this review assesses the contribution of differential DNA methylation and the role of microRNAs in the formation of the molecular pathogenesis of type 1 diabetes mellitus, as well as discusses the most currently central trends in the context of early diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | - Bulat Yalaev
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | | | | | | | | | | |
Collapse
|
3
|
Sakalyte R, Stropuviene S, Jasionyte G, Bagdonaite L, Venalis A. Association between PYTPN22 rs2476601, VEGF rs833070, TNFAIP3 rs6920220 Polymorphisms and Risk for Rheumatoid Arthritis in Early Undifferentiated Arthritis Patients: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1824. [PMID: 37893542 PMCID: PMC10607990 DOI: 10.3390/medicina59101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: About 40% of early undifferentiated arthritis (UA) progresses to rheumatoid (RA) or other chronic arthritis. Novel diagnostic tools predicting the risk for this progression are needed to identify the patients who would benefit from early aggressive treatment. Evidence on the role of single-nucleotide polymorphisms (SNPs) in the development of RA has emerged. The aim of our study was to investigate the association between rs2476601, rs833070, and rs6920220 SNPs and UA progression to RA. Materials and Methods: Ninety-two UA patients were observed for 12 months. At study entry, demographic and clinical characteristics were recorded, musculoskeletal ultrasonography was performed, and blood samples were drawn to investigate levels of inflammatory markers, rheumatoid factor (RF), anti-citrullinated protein antibodies (anti-CCP)detect SNPs. After 12 months, UA outcomes were assessed, and patients were divided into two (RA and non-RA) groups. The association between the risk of progression to chronic inflammatory arthritis and analyzed SNPs was measured by computing odds ratios (OR). Results: After a 12-month follow-up, 27 (29.3%) patients developed RA, and 65 (70.7%) patients were assigned to the non-RA group. The arthritis of 21 patients (22.8%) from the non-RA group resolved completely, while the other 44 (47.2%) patients were diagnosed with another rheumatic inflammatory disease. The patients who developed RA had a significantly greater number of tender and swollen joints (p = 0.010 and p = 0.021 respectively) and were more frequently RF or anti-CCP (p < 0.001), and both RF and anti-CCP positive (p < 0.001) at the baseline as compared with the patients in the non-RA group. No significant association between rs2476601 (OR = 0.99, p = 0.98), rs833070 (OR = 1.0, p = 0.97), and rs6920220 (OR = 0.48, p = 0.13) polymorphisms and the risk of developing RA were found. Conclusions: No association between analyzed SNPs and a greater risk to progress from UA to RA was confirmed, although patients with rs6920220 AA + AG genotypes had fewer tender joints at the disease onset.
Collapse
Affiliation(s)
- Regina Sakalyte
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Santariškių g. 5, 08406 Vilnius, Lithuania
| | - Sigita Stropuviene
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Santariškių g. 5, 08406 Vilnius, Lithuania
| | - Gabija Jasionyte
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania
| | - Loreta Bagdonaite
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania
| | - Algirdas Venalis
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Santariškių g. 5, 08406 Vilnius, Lithuania
| |
Collapse
|
4
|
Santos ASE, Parks CG, Senna MM, Meyer A. Levels of anti-cyclic citrullinated peptide and antinuclear antibodies in Brazilian agricultural workers exposed to pesticides and fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156360. [PMID: 35662602 DOI: 10.1016/j.scitotenv.2022.156360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Despite evidence from human and animal studies of pesticide immunotoxicity, little is known about the relationship between agricultural pesticide use and autoimmunity. The objective of the present study was to assess the association between pesticide use and anti-cyclic citrullinated peptide (anti-CCP) antibodies and antinuclear antibodies (ANA) levels. A cross-sectional study including healthy 52 agricultural and 68 non-agricultural workers aged 17-69 years was conducted in the Rio de Janeiro State, Brazil. Serum samples were tested for anti-CCP and ANA by ELISA. Data on pesticide use and covariates were obtained through structured questionnaires. We estimated associations of pesticides and other exposures with log-transformed antibody levels, adjusted for sex, age, education, crops, and fertilizers by multiple linear regression analyzes. Anti-CCP levels were associated with growing certain crops, agricultural tasks, and the use of mancozeb, paraquat, and methomyl. ANA levels were positively associated with azoxystrobin and inversely associated with linuron. These novel findings suggest associations of specific pesticides and fertilizers with anti-CCP antibodies in this healthy agricultural population, supporting the need for larger human studies of preclinical autoimmunity and pesticides.
Collapse
Affiliation(s)
- Aline S E Santos
- Occupational and Environmental Health Branch, Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Mariana M Senna
- Worker's Health and Human Ecology Center, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Armando Meyer
- Occupational and Environmental Health Branch, Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Dow CT, Alvarez BL. Mycobacterium paratuberculosis zoonosis is a One Health emergency. ECOHEALTH 2022; 19:164-174. [PMID: 35655048 PMCID: PMC9162107 DOI: 10.1007/s10393-022-01602-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/29/2022] [Indexed: 05/05/2023]
Abstract
A singular pathogen has been killing animals, contaminating food and causing an array of human diseases. Mycobacterium avium subspecies paratuberculosis (MAP) is the cause of a fatal enteric infectious disease called Johne's (Yo'-nees), a disorder mostly studied in ruminant animals. MAP is globally impacting animal health and imparting significant economic burden to animal agriculture. Confounding the management of Johne's disease is that animals are typically infected as calves and while commonly not manifesting clinical disease for years, they shed MAP in their milk and feces in the interval. This has resulted in a "don't test, don't tell" scenario for the industry resulting in greater prevalence of Johne's disease; furthermore, because MAP survives pasteurization, the contaminated food supply provides a source of exposure to humans. Indeed, greater than 90% of dairy herds in the US have MAP-infected animals within the herd. The same bacterium, MAP, is the putative cause of Crohn's disease in humans. Countries historically isolated from importing/exporting ruminant animals and free of Johne's disease subsequently acquired the disease as a consequence of opening trade with what proved to be infected animals. Crohn's disease in those populations became a lagging indicator of MAP infection. Moreover, MAP is associated with an increasingly long list of human diseases. Despite MAP scientists entreating regulatory agencies to designate MAP a "zoonotic agent," it has not been forthcoming. One Health is a global endeavor applying an integrative health initiative that includes the environment, animals and humans; One Health asserts that stressors affecting one affects all three. Recognizing the impact MAP has on animal and human health as well as on the environment, it is time for One Health, as well as other global regulatory agencies, to recognize that MAP is causing an insidious slow-motion tsunami of zoonosis and implement public health mitigation.
Collapse
Affiliation(s)
- Coad Thomas Dow
- Department of Ophthalmology and Visual Sciences, 9431 Wisconsin Institutes for Medical Research (WIMR), McPherson Eye Research Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Briana Lizet Alvarez
- Biology and Global Health, University of Wisconsin-Madison, 120 N Orchard St #1, Madison, WI, 53705, USA
| |
Collapse
|
6
|
Ozana V, Hruska K, Sechi LA. Neglected Facts on Mycobacterium Avium Subspecies Paratuberculosis and Type 1 Diabetes. Int J Mol Sci 2022; 23:3657. [PMID: 35409018 PMCID: PMC8998319 DOI: 10.3390/ijms23073657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Civilization factors are responsible for the increasing of human exposure to mycobacteria from environment, water, and food during the last few decades. Urbanization, lifestyle changes and new technologies in the animal and plant industry are involved in frequent contact of people with mycobacteria. Type 1 diabetes is a multifactorial polygenic disease; its origin is conditioned by the mutual interaction of genetic and other factors. The environmental factors and certain pathogenetic pathways are shared by some immune mediated chronic inflammatory and autoimmune diseases, which are associated with triggers originating mainly from Mycobacterium avium subspecies paratuberculosis, an intestinal pathogen which persists in the environment. Type 1 diabetes and some other chronic inflammatory diseases thus pose the global health problem which could be mitigated by measures aimed to decrease the human exposure to this neglected zoonotic mycobacterium.
Collapse
Affiliation(s)
- Veronika Ozana
- Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic;
- Orlova Department, Karvina-Raj Hospital, 734 01 Karvina, Czech Republic
| | - Karel Hruska
- Veterinary Research Institute, 612 00 Brno, Czech Republic
- Institute for Research and Education, 621 00 Brno, Czech Republic
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Università degli Studi di Sassari, 07100 Sassari, Italy
- AOU Sassari, UC Microbiologia e Virologia, 07100 Sassari, Italy
| |
Collapse
|
7
|
Kasher M, Freidin MB, Williams FM, Cherny SS, Malkin I, Livshits G. Shared Genetic Architecture Between Rheumatoid Arthritis and Varying Osteoporotic Phenotypes. J Bone Miner Res 2022; 37:440-453. [PMID: 34910834 DOI: 10.1002/jbmr.4491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) and low bone mineral density (BMD), an indicator of osteoporosis (OP), appear epidemiologically associated. Shared genetic factors may explain this association. This study aimed to investigate the presence of pleiotropy to clarify the potential genetic association between RA and OP. We examined BMDs at varying skeletal sites reported in UK Biobank as well as OP fracture acquired from the Genetic Factors for Osteoporosis (GEFOS) Consortium and the TwinsUK study. PRSice-2 was used to assess the potential shared genetic overlap between RA and OP. The presence of pleiotropy was examined using colocalization analysis. PRSice-2 revealed that RA was significantly associated with OP fracture (β = 351.6 ± 83.9, p value = 2.76E-05), total BMD (β = -1763.5 ± 612.8, p = 4.00E-03), spine BMD (β = -919.8 ± 264.6, p value = 5.09E-04), and forearm BMD (β = -66.09 ± 31.40, p value = 3.53E-02). Through colocalization analysis, the same causal genetic variants, associated with both RA and OP, were apparent in 12 genes: PLCL1, BOLL, AC011997.1, TNFAIP3, RP11-158I9.1, CDK6, CHCHD4P2, RP11-505C13.1, PHF19, TRAF1, C5, and C11orf49 with moderate posterior probabilities (>50%). Pleiotropy is involved in the association between RA and OP phenotypes. These findings contribute to the understanding of disease mechanisms and provide insight into possible therapeutic advancements and enhanced screening measures. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Melody Kasher
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Frances Mk Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Stacey S Cherny
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ida Malkin
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK.,Adelson Medical School, Ariel University, Ariel, Israel
| |
Collapse
|
8
|
Shaw AM, Qasem A, Naser SA. Modulation of PTPN2/22 Function by Spermidine in CRISPR-Cas9-Edited T-Cells Associated with Crohn's Disease and Rheumatoid Arthritis. Int J Mol Sci 2021; 22:8883. [PMID: 34445589 PMCID: PMC8396355 DOI: 10.3390/ijms22168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Crohn's Disease (CD) and Rheumatoid Arthritis (RA) share some single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-receptor types 2 and 22 (PTPN2/22). Recently, we reported that clinical samples from CD and RA patients associated with PTPN2:rs478582 or PTPN22:rs2476601 genotypes were linked to overactive immune response and exacerbation of inflammation. Here, we investigated in vitro the effects of these SNPs in Jurkat T-cells using CRISPR-Cas9. All cells were evaluated for PTPN22/22 loss of function and effects on cell response. We measured gene expression via RT-qPCR and cytokines by ELISA. We also measured cell proliferation using a BrdU labeling proliferation ELISA, and T-cell activation using CD-25 fluorescent immunostaining. In PTPN2 SNP-edited cells, PTPN2 expression decreased by 3.2-fold, and proliferation increased by 10.2-fold compared to control. Likewise, expression of PTPN22 decreased by 2.4-fold and proliferation increased by 8.4-fold in PTPN22 SNP-edited cells. IFN-γ and TNF-α secretions increased in both edited cell lines. CD25 expression (cell activation) was 80.32% in PTPN2 SNP-edited cells and 85.82% in PTPN22 SNP-edited cells compared to 70.48% in unedited Jurkat T-cells. Treatment of PTPN2 and PTPN22-edited cells with a maximum 20 μM spermidine restored PTPN2/22 expression and cell response including cell proliferation, activation, and cytokines secretion. Most importantly, the effect of spermidine on edited cells restored normal expression and secretion of IFN-γ and TNF-α. The data clearly demonstrated that edited SNPs in PTPN2 or PTPN22 were associated with reduced gene expression, which resulted in an increase in cell proliferation and activation and overactive immune response. The data validated our earlier observations in CD and RA clinical samples. Surprisingly, spermidine restored PTPN2/22 expression in edited Jurkat T-cells and the consequent beneficial effect on cell response and inflammation. The study supports the use of polyamines dietary supplements for management of CD and in RA patients.
Collapse
MESH Headings
- Arthritis, Rheumatoid/genetics
- CRISPR-Cas Systems
- Crohn Disease/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Genetic Predisposition to Disease
- Humans
- Jurkat Cells
- Leukemia, T-Cell/drug therapy
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Lymphocyte Activation
- Polymorphism, Single Nucleotide
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Spermidine/pharmacology
Collapse
Affiliation(s)
| | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA; (A.M.S.); (A.Q.)
| |
Collapse
|
9
|
Keewan E, Beg S, Naser SA. Anti-TNF-α agents Modulate SARS-CoV-2 Receptors and Increase the Risk of Infection Through Notch-1 Signaling. Front Immunol 2021; 12:641295. [PMID: 34025650 PMCID: PMC8134694 DOI: 10.3389/fimmu.2021.641295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Although millions of patients with underlining conditions are treated primarily with anti-TNF-α agents, little is known about the safety of this standard therapy during the coronavirus disease-2019 (COVID-19) pandemic. In this study, we investigated the effect of anti-TNF-α monoclonal antibodies on the cellular entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increasing the risk of COVID-19 development. We focused on the expression of angiotensin-converting enzyme II (ACE2), type II transmembrane serine proteases (TMPRSS2)/TNF-α converting enzyme (TACE) ratio. We also investigated the involvement of Notch-1 signaling and its downstream influence on IL-6, myeloid cell leukemia sequence-1(MCL-1) in the anti-TNF-α mode of action and increased the susceptibility to Mycobacterium avium subspecies paratuberculosis (MAP) infection. Surprisingly, anti-TNF-α downregulated ACE2 expression by 0.46-fold and increased TMPRSS2/TACE ratio by 44% in THP-1 macrophages. Treatment of macrophages with rIL-6 also downregulated ACE2 and increased TMPRSS2/TACE ratio by 54%. Interestingly, anti-TNF-α treatment upregulated Notch-1, IL-6, and MCL-1 by 1.3, 1.2, and 1.9-fold, respectively, and increased viability and burden of MAP infection in macrophages. Blocking Notch signaling doubled ACE2 expression, decreased TMPRSS2/TACE ratio by 38%, and reduced MAP viability by 56%. In a small group of patients, ACE2 level was significantly lower in the plasma from rheumatoid arthritis (RA) patients on anti-TNF-α treatment compared to healthy control. The data in this critical study demonstrated that through Notch-1/IL-6 signaling, anti-TNF-α agents decreased ACE2 expression and shedding through TMPRSS2/TACE modulation and increased the susceptibility to infection. Overall, this study warns against anti-TNF-α therapy in some patients with underlining inflammatory conditions during the COVID-19 pandemic. The findings should impact current guidelines regarding treatment decisions of patients on anti-TNF-α during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Esra'a Keewan
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Shazia Beg
- UCF Health, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
10
|
Shapiro MR, Thirawatananond P, Peters L, Sharp RC, Ogundare S, Posgai AL, Perry DJ, Brusko TM. De-coding genetic risk variants in type 1 diabetes. Immunol Cell Biol 2021; 99:496-508. [PMID: 33483996 PMCID: PMC8119379 DOI: 10.1111/imcb.12438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to β-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Leeana Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Similoluwa Ogundare
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
11
|
Keewan E, Naser SA. MiR-146a rs2910164 G > C polymorphism modulates Notch-1/IL-6 signaling during infection: a possible risk factor for Crohn's disease. Gut Pathog 2020; 12:48. [PMID: 33072191 PMCID: PMC7557229 DOI: 10.1186/s13099-020-00387-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MiR-146a, an effector mediator, targets Notch-1 and regulates the innate and adaptive immune systems response. Recently, we reported that Notch-1 signaling plays a key role in macrophage polarization and response during infection. We employed Mycobacterium avium paratuberculosis (MAP) infection in Crohn's disease (CD) as a model to demonstrate the role of Notch-1/IL-6 signaling on MCL-1 based apoptosis and intracellular MAP infection and persistence. This study was designed to investigate the impact of polymorphisms in miR146a on the immune response and infection in our MAP-CD model. METHODS We determined the incidence of miR-146a rs2910164 G > C in 42 blood samples from clinical CD patients and controls. We also measured the effect of rs2910164 on expression of Notch-1 and IL-6, and plasma IL-6 protein levels in our study group. Finally, we analyzed the blood samples for MAP DNA and studied any correlation with miR-146a polymorphism. Samples were analyzed for statistical significance using unpaired tow-tailed t-test, unpaired two-tailed z-score and odds ratio. P < 0.05 considered significant. RESULTS MiR-146a rs2910164 GC was detected at a higher incidence in CD (52.6%) compared to healthy controls (21.7%) rs2910164 GC Heterozygous polymorphism upregulated Notch-1 and IL-6, by 0.9 and 1.7-fold, respectively. As expected, MAP infection was detected more in CD samples (63%) compared to healthy controls (9%). Surprisingly, MAP infection was detected at a higher rate in samples with rs2910164 GC (67%) compared to samples with normal genotype (33%). CONCLUSIONS The data clearly associates miR-146a rs2910164 GC with an overactive immune response and increases the risk to acquire infection. The study is even more relevant now in our efforts to understand susceptibility to SARS-CoV-2 infection and the development of COVID-19. This study suggests that genetic variations among COVID-19 patients may predict who is at a higher risk of acquiring infection, developing exacerbating symptoms, and possibly death. A high scale study with more clinical samples from different disease groups is planned.
Collapse
Affiliation(s)
- Esra’a Keewan
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra drive, Orlando, FL 32816 USA
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra drive, Orlando, FL 32816 USA
| |
Collapse
|
12
|
Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020; 8:microorganisms8101459. [PMID: 32977590 PMCID: PMC7598258 DOI: 10.3390/microorganisms8101459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.
Collapse
|
13
|
Garg A, Singhal N, Kumar M. Discerning novel drug targets for treating Mycobacterium avium ss. paratuberculosis-associated autoimmune disorders: an in silico approach. Brief Bioinform 2020; 22:5902595. [PMID: 32895696 DOI: 10.1093/bib/bbaa195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) exhibits 'molecular mimicry' with the human host resulting in several autoimmune diseases such as multiple sclerosis, type 1 diabetes mellitus (T1DM), Hashimoto's thyroiditis, Crohn's disease (CD), etc. The conventional therapy for autoimmune diseases includes immunosuppressants or immunomodulators that treat the symptoms rather than the etiology and/or causative mechanism(s). Eliminating MAP-the etiopathological agent might be a better strategy to treat MAP-associated autoimmune diseases. In this case study, we conducted a systematic in silico analysis to identify the metabolic chokepoints of MAP's mimicry proteins and their interacting partners. The probable inhibitors of chokepoint proteins were identified using DrugBank. DrugBank molecules were stringently screened and molecular interactions were analyzed by molecular docking and 'off-target' binding. Thus, we identified 18 metabolic chokepoints of MAP mimicry proteins and 13 DrugBank molecules that could inhibit three chokepoint proteins viz. katG, rpoB and narH. On the basis of molecular interaction between drug and target proteins finally eight DrugBank molecules, viz. DB00609, DB00951, DB00615, DB01220, DB08638, DB08226, DB08266 and DB07349 were selected and are proposed for treatment of three MAP-associated autoimmune diseases namely, T1DM, CD and multiple sclerosis. Because these molecules are either approved by the Food and Drug Administration or these are experimental drugs that can be easily incorporated in clinical studies or tested in vitro. The proposed strategy may be used to repurpose drugs to treat autoimmune diseases induced by other pathogens.
Collapse
|
14
|
Notch-1 Signaling Modulates Macrophage Polarization and Immune Defense against Mycobacterium avium paratuberculosis Infection in Inflammatory Diseases. Microorganisms 2020; 8:microorganisms8071006. [PMID: 32635645 PMCID: PMC7409363 DOI: 10.3390/microorganisms8071006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the extensive research on Notch signaling involvement in inflammation, its specific role in macrophage response in autoimmune disease and defense mechanisms against bacterial infection, such as Mycobacterium avium paratuberculosis (MAP), remains unknown. In this study, we investigated the molecular role of Notch-1 signaling in the macrophage response during MAP infection. In particular, we measured the in vitro effect of MAP on Notch-1 signaling and downstream influence on interleukin (IL)-6 and myeloid cell leukemia sequence-1 (MCL-1) and consequent cellular apoptosis, MAP viability, and macrophage polarization. Overall, the data show significant upregulation in Notch-1, IL-6, and MCL-1 in MAP-infected macrophages, parallel with a decrease in apoptosis and elevated pro-inflammatory response in these infected cells. On the contrary, blocking Notch signaling with γ-secretase inhibitor (DAPT) decreased MAP survival and burden, increased apoptosis, and diminished the pro-inflammatory response. In particular, the treatment of infected macrophages with DAPT shifted macrophage polarization toward M2 anti-inflammatory phenotypic response. The outcome of this study clearly demonstrates the critical role of Notch signaling in macrophage response during infection. We conclude that MAP infection in macrophages activates Notch-1 signaling and downstream influence on IL-6 which hijack MCL-1 dependent inhibition of apoptosis leading to its chronic persistence, and further inflammation. This study supports Notch-1 signaling as a therapeutic target to combat infection in autoimmune diseases such as Crohn’s disease and Rheumatoid Arthritis.
Collapse
|
15
|
Dow CT. Proposing BCG Vaccination for Mycobacterium avium ss. paratuberculosis (MAP) Associated Autoimmune Diseases. Microorganisms 2020; 8:E212. [PMID: 32033287 PMCID: PMC7074941 DOI: 10.3390/microorganisms8020212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) vaccination is widely practiced around the world to protect against the mycobacterial infection tuberculosis. BCG is also effective against the pathogenic mycobacteria that cause leprosy and Buruli's ulcer. BCG is part of the standard of care for bladder cancer where, when given as an intravesicular irrigant, BCG acts as an immunomodulating agent and lessens the risk of recurrence. Mycobacterium avium ss. paratuberculosis (MAP) causes a fatal enteritis of ruminant animals and is the putative cause of Crohn's disease of humans. MAP has been associated with an increasingly long list of inflammatory/autoimmune diseases: Crohn's, sarcoidosis, Blau syndrome, Hashimoto's thyroiditis, autoimmune diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis, lupus and Parkinson's disease. Epidemiologic evidence points to BCG providing a "heterologous" protective effect on assorted autoimmune diseases; studies using BCG vaccination for T1D and MS have shown benefit in these diseases. This article proposes that the positive response to BCG in T1D and MS is due to a mitigating action of BCG upon MAP. Other autoimmune diseases, having a concomitant genetic risk for mycobacterial infection as well as cross-reacting antibodies against mycobacterial heat shock protein 65 (HSP65), could reasonably be considered to respond to BCG vaccination. The rare autoimmune disease, relapsing polychondritis, is one such disease and is offered as an example. Recent studies suggesting a protective role for BCG in Alzheimer's disease are also explored. BCG-induced energy shift from oxidative phosphorylation to aerobic glycolysis provides the immunomodulating boost to the immune response and also mitigates mycobacterial infection-this cellular mechanism unifies the impact of BCG on the disparate diseases of this article.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, 9431 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
16
|
Abstract
Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a considerable impact on livestock health, welfare, and production. These are chronic "iceberg" diseases which take years to manifest and in which many subclinical cases remain undetected. Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, peptides, and expression of specific genes; however, these do not provide a strong correlation to disease. Despite these advances, disease detection still relies heavily on dated methods such as detection of pathogen shedding, skin tests, or serology. Here we review the evidence for suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are resilient to disease. A better understanding of these factors will help establish new strategies to control the spread of these diseases.
Collapse
|
17
|
Naser A, Odeh AK, Sharp RC, Qasem A, Beg S, Naser SA. Polymorphisms in TNF Receptor Superfamily 1B ( TNFRSF1B:rs3397) are Linked to Mycobacterium avium paratuberculosis Infection and Osteoporosis in Rheumatoid Arthritis. Microorganisms 2019; 7:E646. [PMID: 31817071 PMCID: PMC6955732 DOI: 10.3390/microorganisms7120646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
We previously discovered that single nucleotide polymorphisms (SNPs) in PTPN2/22 (T-cell negative-regulators) occur in 78% of rheumatoid arthritis (RA), along with Mycobacterium avium paratuberculosis (MAP) infection in 33% of patients. In Crohn's disease, we reported that SNPs in TNFα and receptors (TNFRSF1A/TNFRSF1B) benefited intracellular MAP-survival, increased infection, and elevated inflammatory response mimicking the poor response to anti-TNFα treatment in some patients. Here, we studied the frequency and effects of SNPs in TNFα/TNFRSF1A/TNFRSF1B in RA including gene expression, MAP infection, and osteoporosis marker levels in blood (54 RA and 48 healthy controls). TNFα:rs1800629 (GA) was detected in 19/48 (40%) RA and 8/54 (15%) controls (p-value < 0.05, odds ratio (OR) = 3.6, 95% CI: 1.37-9.54). TNFRS1B:rs3397 (CT) was detected in 21/48 (44%) RA and 10/54 (19%) controls (p-value < 0.05, OR = 4.43, 95% CI: 1.73-11.33). In RA, rs3397 downregulated TNFRSF1B expression (CC > CT (0.34 ± 0.14) and CC > TT (0.27 ± 0.12)), compared to wildtype CC (0.51 ± 0.17), p-value < 0.05. MAP DNA was detected significantly in 17/48 (35.4%) RA compared to 11/54 (20.4%) controls (p-value < 0.05, OR = 2.14, 95% CI: 1.12-5.20). The average osteocalcin level was significantly lower (p-value < 0.05) in RA (2.70 ± 0.87 ng/mL), RA + MAP (0.60 ± 0.31 ng/mL), RA + TNFRSF1B:rs3397 (TT) (0.67 ± 0.35 ng/mL), compared to the healthy control (5.31 ± 1.39 ng/mL), and MAP-free RA (3.85 ± 1.31 ng/mL). Overall, rs3397 appears to downregulate TNFRSF1B, increase MAP infection, worsen inflammation, and cause osteocalcin deficiency and possibly osteoporosis in RA.
Collapse
Affiliation(s)
- Amna Naser
- Department of Anatomy and Cell Biology, Brody School of Medicine. East Carolina University, Greenville, NC 27858, USA;
| | - Ahmad K. Odeh
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (A.K.O.); (A.Q.)
| | - Robert C. Sharp
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Ahmad Qasem
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (A.K.O.); (A.Q.)
| | - Shazia Beg
- College of Medicine, UCF Health, University of Central Florida, Orlando, FL 32827, USA;
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (A.K.O.); (A.Q.)
| |
Collapse
|
18
|
Sun Y, Chen Q, Lin P, Xu R, He D, Ji W, Bian Y, Shen Y, Li Q, Liu C, Dong K, Tang YW, Pei Z, Yang L, Lu H, Guo X, Xiao L. Characteristics of Gut Microbiota in Patients With Rheumatoid Arthritis in Shanghai, China. Front Cell Infect Microbiol 2019; 9:369. [PMID: 31709198 PMCID: PMC6819506 DOI: 10.3389/fcimb.2019.00369] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Little is known regarding differences in the gut microbiomes of rheumatoid arthritis (RA) patients and healthy cohorts in China. This study aimed to identify differences in the fecal microbiomes of 66 Chinese patients with RA and 60 healthy Chinese controls. The V3-V4 variable regions of bacterial 16S rRNA genes were sequenced with the Illumina system to define the bacterial composition. The alpha-diversity index of the microbiome of the RA patients was significantly lower than that of the control group. The bacterial genera Bacteroides (p = 0.02202) and Escherichia-Shigella (p = 0.03137) were more abundant in RA patients. In contrast, Lactobacillus (p = 0.000014), Alloprevotella (p = 0.0000008615), Enterobacter (p = 0.000005759), and Odoribacter (p = 0.0000166) were less abundant in the RA group than in the control group. Spearman correlation analysis of blood physiological measures of RA showed that bacterial genera such as Dorea and Ruminococcus were positively correlated with RF-IgA and anti-CCP antibodies. Furthermore, Alloprevotella and Parabacteroides were positively correlated with the erythrocyte sedimentation rate, and Prevotella-2 and Alloprevotella were positively correlated with C-reactive protein, both biomarkers of inflammation. These findings suggest that the gut microbiota may contribute to RA development via interactions with the host immune system.
Collapse
Affiliation(s)
- Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Qian Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Ping Lin
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Xu
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Weiqing Ji
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Yu Shen
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Qingtian Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Chang Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Ke Dong
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Yi-Wei Tang
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Zhiheng Pei
- Departments of Pathology and Medicine, New York University School of Medicine, New York, NY, United States.,The Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Liying Yang
- Departments of Pathology and Medicine, New York University School of Medicine, New York, NY, United States.,The Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| |
Collapse
|
19
|
Dow CT, Sechi LA. Cows Get Crohn's Disease and They're Giving Us Diabetes. Microorganisms 2019; 7:microorganisms7100466. [PMID: 31627347 PMCID: PMC6843388 DOI: 10.3390/microorganisms7100466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Increasingly, Johne's disease of ruminants and human Crohn's disease are regarded as the same infectious disease: paratuberculosis. Mycobacterium avium ss. paratuberculosis (MAP) is the cause of Johne's and is the most commonly linked infectious cause of Crohn's disease. Humans are broadly exposed to MAP in dairy products and in the environment. MAP has been found within granulomas such as Crohn's disease and can stimulate autoantibodies in diseases such as type 1 diabetes (T1D) and Hashimoto's thyroiditis. Moreover, beyond Crohn's and T1D, MAP is increasingly associated with a host of autoimmune diseases. This article suggests near equivalency between paucibacillary Johne's disease of ruminant animals and human Crohn's disease and implicates MAP zoonosis beyond Crohn's disease to include T1D.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, 9431 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| |
Collapse
|
20
|
Langan D, Kim EY, Moudgil KD. Modulation of autoimmune arthritis by environmental 'hygiene' and commensal microbiota. Cell Immunol 2019; 339:59-67. [PMID: 30638679 PMCID: PMC8056395 DOI: 10.1016/j.cellimm.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
Abstract
Observations in patients with autoimmune diseases and studies in animal models of autoimmunity have revealed that external environmental factors including exposure to microbes and the state of the host gut microbiota can influence susceptibility to autoimmunity and subsequent disease development. Mechanisms underlying these outcomes continue to be elucidated. These include deviation of the cytokine response and imbalance between pathogenic versus regulatory T cell subsets. Furthermore, specific commensal organisms are associated with enhanced severity of arthritis in susceptible individuals, while exposure to certain microbes or helminths can afford protection against this disease. In addition, the role of metabolites (e.g., short-chain fatty acids, tryptophan catabolites), produced either by the microbes themselves or from their action on dietary products, in modulation of arthritis is increasingly being realized. In this context, re-setting of the microbial dysbiosis in RA using prebiotics, probiotics, or fecal microbial transplant is emerging as a promising approach for the prevention and treatment of arthritis. It is hoped that advances in defining the interplay between gut microbiota, dietary products, and bioactive metabolites would help in the development of therapeutic regimen customized for the needs of individual patients in the near future.
Collapse
Affiliation(s)
- David Langan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States
| | - Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biomedical Sciences, Washington State University, Spokane, WA 99224, United States
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
21
|
Sharp RC, Naser ES, Alcedo KP, Qasem A, Abdelli LS, Naser SA. Development of multiplex PCR and multi-color fluorescent in situ hybridization ( m-FISH) coupled protocol for detection and imaging of multi-pathogens involved in inflammatory bowel disease. Gut Pathog 2018; 10:51. [PMID: 30534203 PMCID: PMC6280354 DOI: 10.1186/s13099-018-0278-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background Several pathogens have been debated to play a role in inflammatory bowel disease (IBD) including Crohn's disease (CD). None of these pathogens have been investigated together in same clinical samples. We developed a multiplex PCR and multi-color fluorescent in situ hybridization (m-FISH) protocols for simultaneous detection of CD-associated pathogens including Mycobacterium avium subspecies paratuberculosis (MAP), Klebsiella pneumoniae, and adherent-invasive Escherichia coli strain LF82. Methods The multiplex PCR is based on 1-h DNAzol® extraction protocol modified for rapid extraction of bacterial DNA from culture, blood, and intestinal biopsies. Oligonucleotide primers sequences unique to these pathogens were evaluated individually and in combinations using bioinformatics and experimental approaches. m-FISH was based on fluorescent-tagged oligonucleotides and confocal scanning laser microscopy (CSLM). Results Following several attempts, the concentration of the oligonucleotide primers and DNA templates and the PCR annealing temperatures were optimized. Multiplex PCR analyses revealed excellent amplification signal in trials where a single primer set and combinations of two and three primers sets were tested against a mixture of DNA from three different bacteria or a mixture of three bacterial cultures mixed in one tube before DNA extraction. Slides with individual and mixtures of bacterial cultures and intestinal tissue sections from IBD patients were tested by m-FISH and the CSLM images verified multiplex PCR results detected on 3% agarose gel. Conclusion We developed a 4-h multiplex PCR protocol, which was validated by m-FISH images, capable of detecting up to four genes from major pathogens associated with CD. The new protocol should serve as an excellent tool to support efforts to study multi-pathogens involved in CD and other autoimmune disease.
Collapse
Affiliation(s)
- Robert C Sharp
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Ebraheem S Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Karel P Alcedo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Ahmad Qasem
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Latifa S Abdelli
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| |
Collapse
|
22
|
Pierce ES. How did Lou Gehrig get Lou Gehrig's disease? Mycobacterium avium subspecies paratuberculosis in manure, soil, dirt, dust and grass and amyotrophic lateral sclerosis (motor neurone disease) clusters in football, rugby and soccer players. Med Hypotheses 2018; 119:1-5. [PMID: 30122477 DOI: 10.1016/j.mehy.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
There are several suspected infectious causes of amyotrophic lateral sclerosis (ALS) or motor neurone disease including HIV-1 and species of Brucella, Cyanobacteria and Schistosoma. The increased rates and clusters of ALS in amateur and professional outdoor sports players including rugby, football and soccer players suggest a microorganism present in the grass, dirt and dust they play on and in may be a causative factor. The probable zoonosis Mycobacterium avium subspecies paratuberculosis (MAP) is heavily excreted in an infected domestic ruminant's feces or manure and is extensively distributed throughout the soil in countries where MAP infection of domestic livestock is longstanding. Like other zoonotic pathogens, MAP can be transmitted to humans by inhalation of aerosolized pathogen-contaminated soil, by direct contact of pathogen-contaminated grass, dirt and dust with mucus membranes lining the nose or mouth or through abrasions and cuts in the skin. Outdoor sports players may develop ALS after multiple oral, nasal or subcutaneous doses of MAP present in the dirt, dust and grass of their playing fields.
Collapse
Affiliation(s)
- Ellen S Pierce
- 13212 East Blossey Avenue, Spokane Valley, Washington 99216-2807, USA.
| |
Collapse
|
23
|
Cao BL, Qasem A, Sharp RC, Abdelli LS, Naser SA. Systematic review and meta-analysis on the association of tuberculosis in Crohn’s disease patients treated with tumor necrosis factor-α inhibitors (Anti-TNFα). World J Gastroenterol 2018; 24:2764-2775. [PMID: 29991880 PMCID: PMC6034143 DOI: 10.3748/wjg.v24.i25.2764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To perform a meta-analysis on the risk of developing Mycobacterium tuberculosis (TB) infection in Crohn’s disease (CD) patients treated with tumor necrosis factor-alpha (TNFα) inhibitors.
METHODS A meta-analysis of randomized, double-blind, placebo-controlled trials of TNFα inhibitors for treatment of CD in adults was conducted. Arcsine transformation of TB incidence was performed to estimate risk difference. A novel epidemiologically-based correction (EBC) enabling inclusions of studies reporting no TB infection cases in placebo and treatment groups was developed to estimate relative odds.
RESULTS Twenty-three clinical trial studies were identified, including 5669 patients. Six TB infection cases were reported across 5 studies, all from patients receiving TNFα inhibitors. Eighteen studies reported no TB infection cases in placebo and TNFα inhibitor treatment arms. TB infection risk was significantly increased among patients receiving TNFα inhibitors, with a risk difference of 0.028 (95%CI: 0.0011-0.055). The odds ratio was 4.85 (95%CI: 1.02-22.99) with EBC and 5.85 (95%CI: 1.13-30.38) without EBC.
CONCLUSION The risk of TB infection is higher among CD patients receiving TNFα inhibitors. Understanding the immunopathogenesis of CD is crucial, since using TNFα inhibitors in these patients could favor mycobacterial infections, particularly Mycobacterium avium subspecies paratuberculosis, which ultimately could worsen their clinical condition.
Collapse
Affiliation(s)
- Brent L Cao
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| | - Ahmad Qasem
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| | - Robert C Sharp
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| | - Latifa S Abdelli
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States
| |
Collapse
|
24
|
Zhang P, Minardi LM, Kuenstner JT, Zekan SM, Kruzelock R. Anti-microbial Antibodies, Host Immunity, and Autoimmune Disease. Front Med (Lausanne) 2018; 5:153. [PMID: 29876352 PMCID: PMC5974924 DOI: 10.3389/fmed.2018.00153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/03/2018] [Indexed: 01/05/2023] Open
Abstract
Autoimmune diseases are a spectrum of clinical inflammatory syndromes with circulating autoantibodies. Autoimmune diseases affect millions of patients worldwide with enormous costs to patients and society. The diagnosis of autoimmune diseases relies on the presence of autoantibodies and the treatment strategy is to suppress the immune system using specific or non-specific immunosuppressive agents. The discovery of anti-microbial antibodies in the blood of patients with Crohn's disease and Sjogren's syndrome and cross-reactivity of anti-microbial antibodies to human tissue suggests a new molecular mechanism of pathogenesis, raising the possibility of designing a new therapeutic strategy for these patients. The presence of anti-microbial antibodies indicates the failure of the innate immunity system to clear the microbial agents from the blood and activation of adaptive immunity through B-lymphocytes/plasma cells. More importantly, the specific antibodies against the microbial proteins are directed toward the commensal microbes commonly present on the surface of the human host, and these commensal microbes are important in shaping the development of the immune system and in maintaining the interaction between the human host and the environment. Persistence of these anti-microbial antibodies in patients but not in normal healthy individuals suggests abnormal interaction between the human host and the commensal microbes in the body. Elimination of the organism/organisms that elicits the antibody response would be a new avenue of therapy to investigate in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Peilin Zhang
- PZM Diagnostics, LLC, Charleston, WV, United States
| | | | | | | | - Rusty Kruzelock
- WV Regional Technology Park, South Charleston, WV, United States
| |
Collapse
|