1
|
Cao H, Lin J, Yuan H, Yang Z, Nie M, Pathak JL, Yuan ZG, Yu M. The emerging role of Toxoplasma gondii in periodontal diseases and underlying mechanisms. Front Immunol 2024; 15:1464108. [PMID: 39430742 PMCID: PMC11487530 DOI: 10.3389/fimmu.2024.1464108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular protozoan parasite, is increasingly recognized for its role in various human diseases, including periodontal diseases. Periodontal diseases comprise a wide range of inflammatory conditions that not only affect the supporting structures of the teeth and oral health but also contribute to systemic diseases. The parasite's ability to modulate the host's immune response and induce chronic inflammation within the periodontium is a key factor in periodontal tissue damage. Through its virulence factors, T. gondii disrupts the balance of inflammatory cytokines, leading to dysregulated immune responses, and exacerbates oxidative stress in periodontal tissues. And T. gondii invasion could affect specific proteins in host cells including HSP70, BAGs, MICs, ROPs, SAGs, and GRAs leading to periodontal tissue damage. The indirect role of the host immune response to T. gondii via natural killer cells, monocytes, macrophages, neutrophils, dendritic cells, T cells, and B cells also contributes to periodontal diseases. Understanding these complex interactions of T. gondii with host cells could unravel disease mechanisms and therapeutic targets for periodontal diseases. This review delves into the pathogenic mechanisms of T. gondii in periodontal diseases, offering a detailed exploration of both direct and indirect pathways of its impact on periodontal health.
Collapse
Affiliation(s)
- Henglong Cao
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Lin
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hao Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zipeng Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min Nie
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak L. Pathak
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zi-Guo Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Yu
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Oral Health Sciences-BIOMAT, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Cunningham KT, Mills KHG. Modulation of haematopoiesis by protozoal and helminth parasites. Parasite Immunol 2023; 45:e12975. [PMID: 36797216 PMCID: PMC10909493 DOI: 10.1111/pim.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
During inflammation, haematopoietic stem cells (HSCs) in the bone marrow (BM) and periphery rapidly expand and preferentially differentiate into myeloid cells that mediate innate immune responses. HSCs can be directed into quiescence or differentiation by sensing alterations to the haematopoietic niche, including cytokines, chemokines, and pathogen-derived products. Most studies attempting to identify the mechanisms of haematopoiesis have focused on bacterial and viral infections. From intracellular protozoan infections to large multicellular worms, parasites are a global health burden and represent major immunological challenges that remain poorly defined in the context of haematopoiesis. Immune responses to parasites vary drastically, and parasites have developed sophisticated immunomodulatory mechanisms that allow development of chronic infections. Recent advances in imaging, genomic sequencing, and mouse models have shed new light on how parasites induce unique forms of emergency haematopoiesis. In addition, parasites can modify the haematopoiesis in the BM and periphery to improve their survival in the host. Parasites can also induce long-lasting modifications to HSCs, altering future immune responses to infection, inflammation or transplantation, a term sometimes referred to as central trained immunity. In this review, we highlight the current understanding of parasite-induced haematopoiesis and how parasites target this process to promote chronic infections.
Collapse
Affiliation(s)
- Kyle T. Cunningham
- Wellcome Centre for Integrative ParasitologyInstitute of Infection and Immunity, University of GlasgowGlasgowUK
| | - Kingston H. G. Mills
- Immune Regulation Research GroupTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
| |
Collapse
|
3
|
Abbasali Z, Pirestani M, Dalimi A, Badri M, Fasihi-Ramandi M. Anti-parasitic activity of a chimeric peptide Cecropin A (2-8)-Melittin (6-9) (CM11) against tachyzoites of Toxoplasma gondii and the BALB/c mouse model of acute toxoplasmosis. Mol Biochem Parasitol 2023; 255:111578. [PMID: 37348706 DOI: 10.1016/j.molbiopara.2023.111578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/18/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Toxoplasmosis is a zoonotic disease that infects most animals, including humans. Pyrimethamine/sulfadiazine is the standard treatment for toxoplasmosis. Although this treatment has been successful, it is often associated with side effects that cannot be tolerated. Therefore, various compounds have been proposed as alternative treatments for toxoplasmosis. Antimicrobial peptides (AMPs) act on various pathogens, from viruses to protozoa. The purpose of the present study was to evaluate the effects of CM11 on in vitro and in vivo Toxoplasma gondii infection. For in vitro experiments, VERO cells were treated with different concentrations of CM11 (1-128 μg/ml) compared to sulfadiazine (SDZ) (0.78-100 μg/ml). MTT and lactate dehydrogenase (LDH) assays evaluated the cell viability and plasma membrane integrity. Then, the inhibitory concentration (IC50) values were determined for treating tachyzoites of T. gondii before or on cells previously infected. Annexin V-FITC/propidium iodide (PI) staining was used to distinguish viable and apoptotic cells. The effect of CM11, SDZ, and a combination of CM11 and SDZ was evaluated in the BALB/c mouse model of acute toxoplasmosis. CM11 was effective on tachyzoites of T. gondii and had a time and dose-dependent manner. The results of the MTT assay showed that the CC50 values of CM11 and SDZ were estimated at 17.4 µg/ml and 62.3 µg/ml after 24-h, respectively. The inhibitory concentration (IC50) of CM11 and SDZ on infected cells was estimated at 1.9 µg/ml and 1.4 µg/ml after 24-h, respectively. The highest rate of apoptosis (early and late) in high concentrations of SDZ and CM11 was determined for tachyzoites (2.13 % and 13.88 %), non-infected VERO cells (6.1 % and 19.76 %), and infected VERO cells (7.45 % and 29.9 %), respectively. Treating infected mice with CM11 and a combination of CM11 and SDZ had increased survival time. Based on the mentioned results, it can be concluded that CM11 has a beneficial effect on tachyzoites of T. gondii in vitro. The result of the mouse model suggests that CM11, either alone or in combination with other chemotherapeutic agents, could be a potential therapeutic for toxoplasmosis. Hence, antimicrobial peptides could be applied as promising anti-toxoplasma agents for treating toxoplasmosis.
Collapse
Affiliation(s)
- Zahra Abbasali
- Department of Parasitology, Faculty of Medical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Habib S, Hamza E, El-Gamal R, Nosser NA, Aboukamar WA, Abdelsalam S, Sobh A, Elegezy M, Elbayoumy M, Eldars W, Elmasry K, Elnagdy MH. Clinical and Immunological Impacts of Latent Toxoplasmosis on COVID-19 Patients. Cureus 2023; 15:e45989. [PMID: 37900421 PMCID: PMC10601516 DOI: 10.7759/cureus.45989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Parasites are well-known immune-modulators. They inhibit some aspects of the immune system to ensure persistence inside the host for a long time; meanwhile, they stimulate other immune aspects to assure the survival of the host. Wide variations in the severity of coronavirus disease 2019 (COVID-19) among developed and developing countries were reported during the COVID-19 pandemic. Parasitic infections, including Toxoplasma gondii (T. gondii), were claimed to contribute to such variations. Methods To explore a possible relationship between latent toxoplasmosis and COVID-19 severity, our study included 44 blood samples from moderate/severe COVID-19 patients, who were admitted to Mansoura University Hospitals, Egypt, during the pandemic. Patients' sera were screened for Toxoplasma IgG antibodies using ELISA (Roche Diagnostics, Indianapolis, USA), and the gene expression of important immune markers (iNOS, arginase-1, IFN-γ, TNF-α, IL-6, IL-10, and TGF-β) was checked using real-time quantitative PCR. Clinical and laboratory data were obtained from the patients' medical records. Results Toxoplasma IgG antibodies were detected in 33 (75%) of patients. None of the studied clinical or laboratory parameters showed any significant changes in relation to toxoplasmosis seroprevalence. Further classification of the patients according to COVID-19 severity and Toxoplasma seroprevalence did not reveal any changes related to toxoplasmosis as well. Conclusion Our study indicates that latent toxoplasmosis has no effect on the severity of COVID-19.
Collapse
Affiliation(s)
- Samar Habib
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Eman Hamza
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Horus University, New Damietta, EGY
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Horus University, New Damietta, EGY
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Nessma A Nosser
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Wafaa A Aboukamar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Sherehan Abdelsalam
- Department of Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Mohamed Elegezy
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Mohamed Elbayoumy
- Department of Gastroenterology and Hepatology, King Saud Medical City, Riyadh, SAU
| | - Waleed Eldars
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Basic Medical Sciences, Faculty of Medicine, New Mansoura University, New Mansoura, EGY
| | - Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, USA
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Marwa H Elnagdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, EGY
- Department of Basic Medical Sciences, Faculty of Medicine, New Mansoura University, New Mansoura, EGY
| |
Collapse
|
5
|
Mutka T, Seyfang A, Yoo JY, Dutra SVO, Ji M, Louis-Jacques A, Bruder K, Prescott S, Kim K, Groer M. Adverse pregnancy outcomes in Toxoplasma gondii seropositive Hispanic women. J Obstet Gynaecol Res 2023; 49:893-903. [PMID: 36495217 PMCID: PMC9991953 DOI: 10.1111/jog.15511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 12/14/2022]
Abstract
AIMS Chronic Toxoplasma gondii infection is not thought to affect pregnancy or birth outcomes, but there are few prospective studies. The study aims were T. gondii immunoglobulin G measurement and relationship of chronic T. gondii infection with gestational age at birth and adverse pregnancy outcomes in 690 Hispanic women in Tampa, Florida. METHODS Hispanic women, born either in the United States or in Latin America or the Caribbean had a venous blood sample drawn to measure T. gondii IgG and T. gondii serotype at the first prenatal visit, along with collection of demographic and health-related measures. Seropositive and seronegative women were followed throughout their pregnancy. Gestational age, infant weights, and adverse pregnancy outcomes (miscarriages, preterm births) were compared in the two groups. RESULTS There were 740 women of self-reported Hispanic ethnicity screened and enrolled in Tampa, Florida, with 690 having birth data extracted from the electronic health record (538 T. gondii negative and 152 T. gondii seropositive). T. gondii seropositivity was 22.4% and the majority (83%) had high avidity titers, indicating chronic infection. Compared to T. gondii seronegative Hispanic women, seroseropositive women had more smaller for gestational age infants and higher prevalences of miscarriages and preterm birth. CONCLUSION This is one of the largest longitudinal cohort studies of women with chronic T. gondii infection followed through pregnancy. There was a higher percentages of adverse pregnancy outcomes in this group compared to T. gondii seronegative controls. The mechanism for this is unknown and warrants reexamination of the dogma that chronic T. gondii infection in pregnant women has no significant clinical consequences.
Collapse
Affiliation(s)
- Tina Mutka
- University of South Florida College of Nursing, Tampa, FL
| | | | - Ji Youn Yoo
- University of Tennessee College of Nursing, Knoxville, TN
| | | | - Ming Ji
- University of South Florida College of Nursing, Tampa, FL
| | | | | | | | - Kami Kim
- Morsani College of Medicine, Tampa, FL
| | - Maureen Groer
- University of South Florida College of Nursing, Tampa, FL
- Morsani College of Medicine, Tampa, FL
- University of Tennessee College of Nursing, Knoxville, TN
| |
Collapse
|
6
|
Belkacemi M, Heddi B. Toxoplasmosis Immunity Status of Blood Donors in Sidi Bel Abbès, West Algeria. Cureus 2022; 14:e28826. [PMID: 36225427 PMCID: PMC9535615 DOI: 10.7759/cureus.28826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Background Toxoplasmosis is a zoonotic disease. It is due to an obligate intracellular protozoan called Toxoplasma gondii (T. gondii). Felids are considered definitive hosts, and humans take part as intermediate hosts. At least one-third of the world’s population is seropositive to the parasite. In addition, to the known modes of transmission, the infection can be transmitted through blood transfusions. The aim of this study is to assess the immune status of blood donors about this disease and estimate the potential risk by blood components. Methodology A single cross-sectional study was conducted based on the search for T. gondii antibodies (IgG and IgM) in blood donors. This research was performed using a latex particle agglutination assay confirmed by an enzyme-linked immunosorbent assay (ELISA). Results In all, 103 blood donors were involved in this study. The sex ratio of male/ female was 0.75. The recorded rate of exposure to toxoplasmosis in blood donors was 47.7% (95% CI: 35.1-54.3). Significant differences were observed between the prevalence and those of other African countries in West, East, and Central Africa, but not with those of Algerian pregnant women and neighboring North African countries. There was no association between T. gondii seropositivity and the following factors: sex, age, and blood group ABO or Rhesus. Antitoxoplasma IgG was detectable in all positive donors, while IgM was undetectable. All seropositive donors had an IgG titer ≥9 IU/ml. The potential risk of T. gondii transmission ranges from 1 per 100,000 to 17 per 100,000 blood donations. Conclusion The seroprevalence of T. gondii infection was comparable to those found in Algerian pregnant women and neighboring North African countries. However, the seroprevalence rate was lower than recorded in other African countries. There is even a risk of transmission of toxoplasmosis through blood transfusions. There is a need to enhance blood safety measures for pregnant, immunocompromised, and multi-transfused people. As the immune status of blood donors may vary by region, there is a need to extend the national studies to the entire country. This study provides the first data on the seroprevalence of T. gondii infection among Algerian blood donors and the risk of its transmission by transfusion of blood components.
Collapse
|
7
|
Naranjo-Galvis CA, Cardona-Londoño KY, Orrego-Cardozo M, Elcoroaristizabal-Martín X. Toxoplasma gondii infection and peripheral-blood gene expression profiling of older people reveals dysregulation of cytokines and identifies hub genes as potential therapeutic targets. Heliyon 2022; 8:e10576. [PMID: 36119857 PMCID: PMC9478394 DOI: 10.1016/j.heliyon.2022.e10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Infections of humans with the protozoan parasite Toxoplasma gondii (T. gondii) can lead to the disease's development, even in an asymptomatic status. However, the mechanisms that result in these clinical outcomes after infection are poorly understood. This study aimed to explore the molecular pathogenesis of toxoplasmosis-related inflammation through next-generation sequencing, to assess RNA expression profiles in peripheral blood from 5 female patients with chronic toxoplasmosis and 5 healthy female controls. All plasma samples were analyzed for anti-Toxoplasma IgG and IgM antibody titers by using electrochemiluminescence. Detection of acute and chronic toxoplasmosis was carried out using the ELISA IgG avidity. We evaluated the levels of INF-γ, IL-2, IL-12, TNF-α, IL-10, and IL-1β in culture supernatants of Peripheral Blood Mononuclear Cells infected with Toxoplasma lysate antigen (TLA) prepared with tachyzoites of strain T. gondii RH. Differential expression analysis was performed using DESeq2, pathway and enrichment analysis of DEGs was done on WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and Protein-protein interaction was carried out using NetworkAnalyst with STRING. In older people with chronic asymptomatic infection, a significant difference in the levels of inflammatory cytokines INF-γ and IL-2 was observed compared to seronegative individuals. Our results revealed differences in the regulation of critical biological processes involved in host responses to chronic T. gondii infection. Gene ontology analysis revealed several biologically relevant inflammatory and immune-related pathways.
Collapse
Affiliation(s)
- Carlos A Naranjo-Galvis
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Kelly Y Cardona-Londoño
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Mary Orrego-Cardozo
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | | |
Collapse
|
8
|
The anti-parasite action of imidazole derivatives likely involves oxidative stress but not HIF-1α signaling. Chem Biol Interact 2021; 349:109676. [PMID: 34592218 DOI: 10.1016/j.cbi.2021.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Therapeutic options for toxoplasmosis are limited. This fact underscores ongoing research efforts to identify and develop better therapy. Previously, we reported the anti-parasitic potential of a new series of derivatives of imidazole. OBJECTIVE In the current investigation, we attempted the investigation of the possible action mechanism of few promising anti-parasite imidazole derivatives namely C1 (bis-imidazole), C2 (phenyl-substituted 1H-imidazole) and C3 (thiophene-imidazole) METHODS: We evaluated if oxidative stress, hypoxia as well as metabolic reprogramming of host l-tryptophan pathway form part of the parasite growth inhibition by imidazoles. Anti-parasite assay was performed for imidazoles at concentrations ranging from 0 to 10 μM, while pyrimethamine was used as reference drug to validate assay. RESULTS Imidazole compounds restricted parasite growth dose-dependently. However, in the presence of an antioxidant (Trolox), l-tryptophan and/or CoCl2 (chemical inducer of hypoxia), the growth inhibitory efficacy of imidazoles was appreciably abolished. Further, imidazole treatment led to elevated level of reactive oxygen species, while reducing parasite mitochondrial membrane potential compared with control. In contrast, imidazole had no effect on host HIF-1α level suggesting its exclusion in the anti-parasite action. CONCLUSION Taken together, imidazole-based compounds might restrict parasite growth by causing oxidative stress. The findings provide new insight on the likely biochemical mechanisms of imidazoles as prospective anti-parasite therapy. Data gives new perspective that not only underscores the anti-parasite prospects of imidazoles, but implicates the host l-tryptophan pathway as a feasible treatment option for T. gondii infections.
Collapse
|
9
|
Hamie M, Najm R, Deleuze-Masquefa C, Bonnet PA, Dubremetz JF, El Sabban M, El Hajj H. Imiquimod Targets Toxoplasmosis Through Modulating Host Toll-Like Receptor-MyD88 Signaling. Front Immunol 2021; 12:629917. [PMID: 33767699 PMCID: PMC7986122 DOI: 10.3389/fimmu.2021.629917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii is a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences. Imiquimod is an efficient immunomodulatory drug against certain viral and parasitic infections. In vivo, treatment with Imiquimod, throughout AT, reduces the number of brain cysts while rendering the remaining cysts un-infectious. Post-establishment of CT, Imiquimod significantly reduces the number of brain cysts, leading to a delay or abortion of reactivation. At the molecular level, Imiquimod upregulates the expression of Toll-like receptors 7, 11, and 12, following interconversion from bradyzoïtes to tachyzoïtes. Consequently, MyD88 pathway is activated, resulting in the induction of the immune response to control reactivated Toxoplasma foci. This study positions Imiquimod as a potent drug against toxoplasmosis and elucidates its mechanism of action particularly against chronic toxoplasmosis, which is the most prevalent form of the disease.
Collapse
Affiliation(s)
- Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rania Najm
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Shinjyo N, Nakayama H, Li L, Ishimaru K, Hikosaka K, Suzuki N, Yoshida H, Norose K. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113525. [PMID: 33129946 DOI: 10.1016/j.jep.2020.113525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. has been widely used as a natural antidepressant. However, it is unknown whether it is effective in treating infection-induced neuropsychiatric disorders. AIM OF THE STUDY In order to evaluate the effectiveness of H. perforatum against infection with neurotropic parasite Toxoplasma gondii, which has been linked to neuropsychiatric disorders, this study investigated the anti-Toxoplasma activity using in vitro models. MATERIALS AND METHODS Dried alcoholic extracts were prepared from three Hypericum species: H. perforatum, H. erectum, and H. ascyron. H. perforatum extract was further separated by solvent-partitioning. Hyperforin and hypericin levels in the extracts and fractions were analyzed by high resolution LC-MS. Anti-Toxoplasma activities were tested in vitro, using cell lines (Vero and Raw264), murine primary mixed glia, and primary neuron-glia. Toxoplasma proliferation and stage conversion were analyzed by qPCR. Infection-induced damages to the host cells were analyzed by Sulforhodamine B cytotoxicity assay (Vero) and immunofluorescent microscopy (neurons). Infection-induced inflammatory responses in glial cells were analysed by qPCR and immunofluorescent microscopy. RESULTS Hyperforin was identified only in H. perforatum among the three tested species, whereas hypericin was present in H. perforatum and H. erectum. H. perforatum extract and hyperforin-enriched fraction, as well as hyperforin, exhibited significant anti-Toxoplasma property as well as inhibitory activity against infection-induced inflammatory responses in glial cells. In addition, H. perforatum-derived hyperforin-enriched fraction restored neuro-supportive environment in mixed neuron-glia culture. CONCLUSIONS H. perforatum and its major constituent hyperforin are promising anti-Toxoplasma agents that could potentially protect neurons and glial cells against infection-induced damages. Further study is warranted to establish in vivo efficacy.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Hideyuki Nakayama
- Saga Prefectural Institute of Public Health and Pharmaceutical Research, 1-20 Hacchounawate, Saga, 849-0925, Japan
| | - Li Li
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kanji Ishimaru
- Department of Biological Resource Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Noriyuki Suzuki
- Department of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kazumi Norose
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
11
|
Seers T, Myneni J, Chaudhry NL, Ugarte M. Bilateral ocular toxoplasmosis in a returning traveller: age and route of infection as potential risk factors. BMJ Case Rep 2021; 14:14/1/e237068. [PMID: 33509864 PMCID: PMC7845719 DOI: 10.1136/bcr-2020-237068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the case of a 69-year-old man, who presented in the UK with a short history of deteriorating vision and clinical features of bilateral atypical retinochoroiditis, after travelling to South America. Vitreous samples demonstrated Toxoplasma gondii DNA by PCR. Serology tests demonstrated recent acquired Toxoplasma gondii infection with IgM antibodies. He responded well to treatment with trimethoprim-sulfamethoxazole, azithromycin and oral steroids. This case is a reminder of the global importance of Toxoplasma related eye disease, and its uncommon bilateral severe presentation in a returning traveller, where the risk factors were age and the route of infection likely to be a virulent parasite oocyst from vegetables or water rather than undercooked meat or direct contact with cats.
Collapse
Affiliation(s)
- Tim Seers
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jayavani Myneni
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nadia L Chaudhry
- Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport, UK
| | - Marta Ugarte
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK .,Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
13
|
Acosta-Dávila A, Acosta-Espinel A, Hernández-de-Los-Ríos A, Gómez-Marín JE. Human peripheral blood mononuclear cells as an ex vivo model to study the host parasite interaction in Toxoplasma gondii. Exp Parasitol 2020; 219:108020. [PMID: 33058858 DOI: 10.1016/j.exppara.2020.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii is a parasite that can invade any cell in the human body. Here, we implemented and described an ex vivo model with human peripheral blood mononuclear cells (PBMCs) without using culture supplements/antibiotics and without cryopreserved cells (EXMOWS) to study the interactions between T. gondii and human cells. To establish the EXMOWS, three independent tests were carried out. Firstly, blood samples from 5 individuals were included to assess the viability and adherence of PBMCs in plate culture. In a second trial, blood samples from three seropositive and two seronegative individuals for T. gondii were used to evaluate human PBMCs cells: parasites, multiplicity of infection (MOI) 1:1, 1:3 and 1:5 at different times post infection (1 h, 6 h and 24 h). The possible immunomodulatory effect of the infection for this EXMOWS were evaluated in a third trial where HFF cells were infected with T. gondii and co-cultured with PBMCs obtained from anti-Toxoplasma IgG positive and IgG negative individuals. One hour was enough time for T. gondii infection of human PBMCs and 2 h was the minimum incubation time to guarantee adherence before carrying out any infection assay. A minimum of 1:3 MOI was necessary to guarantee efficient infection in human PBMCs with T. gondii RH-GFP. All protocols, including PBMCs isolation and stimulation, should be conducted the same day. This EXMOWS can be adapted to study the early stages of interaction with other microorganisms of human interest, without need of using cryopreservation and supplements/antibiotics.
Collapse
Affiliation(s)
- Alejandro Acosta-Dávila
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Facultad de Ciencias de La Salud, Universidad Del Quindio, Colombia
| | - Alejandra Acosta-Espinel
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Facultad de Ciencias de La Salud, Universidad Del Quindio, Colombia
| | | | - Jorge Enrique Gómez-Marín
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Facultad de Ciencias de La Salud, Universidad Del Quindio, Colombia.
| |
Collapse
|
14
|
Loughland JR, Woodberry T, Field M, Andrew DW, SheelaNair A, Dooley NL, Piera KA, Amante FH, Kenangalem E, Price RN, Engwerda CR, Anstey NM, McCarthy JS, Boyle MJ, Minigo G. Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent Plasmodium falciparum infection. Clin Transl Immunology 2020; 9:e1144. [PMID: 32566226 PMCID: PMC7302943 DOI: 10.1002/cti2.1144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Malaria, caused by Plasmodium infection, remains a major global health problem. Monocytes are integral to the immune response, yet their transcriptional and functional responses in primary Plasmodium falciparum infection and in clinical malaria are poorly understood. METHODS The transcriptional and functional profiles of monocytes were examined in controlled human malaria infection with P. falciparum blood stages and in children and adults with acute malaria. Monocyte gene expression and functional phenotypes were examined by RNA sequencing and flow cytometry at peak infection and compared to pre-infection or at convalescence in acute malaria. RESULTS In subpatent primary infection, the monocyte transcriptional profile was dominated by an interferon (IFN) molecular signature. Pathways enriched included type I IFN signalling, innate immune response and cytokine-mediated signalling. Monocytes increased TNF and IL-12 production upon in vitro toll-like receptor stimulation and increased IL-10 production upon in vitro parasite restimulation. Longitudinal phenotypic analyses revealed sustained significant changes in the composition of monocytes following infection, with increased CD14+CD16- and decreased CD14-CD16+ subsets. In acute malaria, monocyte CD64/FcγRI expression was significantly increased in children and adults, while HLA-DR remained stable. Although children and adults showed a similar pattern of differentially expressed genes, the number and magnitude of gene expression change were greater in children. CONCLUSIONS Monocyte activation during subpatent malaria is driven by an IFN molecular signature with robust activation of genes enriched in pathogen detection, phagocytosis, antimicrobial activity and antigen presentation. The greater magnitude of transcriptional changes in children with acute malaria suggests monocyte phenotypes may change with age or exposure.
Collapse
Affiliation(s)
- Jessica R Loughland
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Tonia Woodberry
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Present address:
The University of NewcastleCallaghanNSWAustralia
| | - Matt Field
- Australian Institute of Tropical Health and Medicine and Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityCairnsQLDAustralia,John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Dean W Andrew
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Arya SheelaNair
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | | | - Kim A Piera
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Fiona H Amante
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Enny Kenangalem
- Timika Malaria Research ProgramPapuan Health and Community Development FoundationTimikaIndonesia,District Health AuthorityTimikaIndonesia
| | - Ric N Price
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | - Nicholas M Anstey
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | | | - Michelle J Boyle
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Menzies School of Health ResearchDarwinNTAustralia
| | - Gabriela Minigo
- Menzies School of Health ResearchDarwinNTAustralia,Charles Darwin UniversityDarwinNTAustralia,College of Health and Human SciencesCharles Darwin UniversityDarwinNTAustralia
| |
Collapse
|
15
|
Acuña SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen-Host Interactions. Cells 2020; 9:E113. [PMID: 31906500 PMCID: PMC7016591 DOI: 10.3390/cells9010113] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen-host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.
Collapse
Affiliation(s)
| | | | - Sandra Marcia Muxel
- Department of Physiology, Universidade de São Paulo, 05508-090 São Paulo, Brazil; (S.M.A.); (L.M.F.-W.)
| |
Collapse
|