1
|
Redrado-Hernández S, Macías-León J, Castro-López J, Belén Sanz A, Dolader E, Arias M, González-Ramírez AM, Sánchez-Navarro D, Petryk Y, Farkaš V, Vincke C, Muyldermans S, García-Barbazán I, Del Agua C, Zaragoza O, Arroyo J, Pardo J, Gálvez EM, Hurtado-Guerrero R. Broad Protection against Invasive Fungal Disease from a Nanobody Targeting the Active Site of Fungal β-1,3-Glucanosyltransferases. Angew Chem Int Ed Engl 2024; 63:e202405823. [PMID: 38856634 DOI: 10.1002/anie.202405823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Invasive fungal disease accounts for about 3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal β-1,3-glucanosyltransferases (Gel) involved in β-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for β-1,3-glucan remodelling in C. deneoformans survival. These findings add new insight about the role of β-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.
Collapse
Grants
- PID2022-136362NB-I00 Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
- BIO2016-79289-P Ministerio de Economía y Competitividad, Gobierno de España
- PID2019-105223GB-I00 Ministerio de Ciencia, Innovación y Universidades y Agencia Estatal de Investigación, Gobierno de España
- PID2022-136888NB-I00 Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación, Gobierno de España
- PID2020-114546RB Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación, Gobierno de España
- PID2020-113963RB-I00 Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación, Gobierno de España
- S2017/BMD3691-InGEMICS-CM Comunidad de Madrid
- B29_17R, E34_R17, LMP58_18 and LMP139_21 Gobierno de Aragon
- Nanofungi Precipita (crowdfunding)
- BIOSTRUCTX_5186 FP7 (2007-2013), BioStruct-X
Collapse
Affiliation(s)
- Sergio Redrado-Hernández
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
| | - Javier Macías-León
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Elena Dolader
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Maykel Arias
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Andrés Manuel González-Ramírez
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - David Sánchez-Navarro
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Yuliya Petryk
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Vladimír Farkaš
- Department of Glycobiology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, 84538, Bratislava, Slovakia
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Irene García-Barbazán
- Mycology Reference Laboratory. National Centre for Microbiology., Health Institute Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Celia Del Agua
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Pathology, Hospital Clínico Universitario Lozano Blesa, IIS-Aragón, 50009, Zaragoza, Spain
| | - Oscar Zaragoza
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
- Mycology Reference Laboratory. National Centre for Microbiology., Health Institute Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julián Pardo
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Eva M Gálvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
2
|
Madhu B, Lakdawala MF, Gumienny TL. The DBL-1/TGF-β signaling pathway tailors behavioral and molecular host responses to a variety of bacteria in Caenorhabditis elegans. eLife 2023; 12:e75831. [PMID: 37750680 PMCID: PMC10567113 DOI: 10.7554/elife.75831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/25/2023] [Indexed: 09/27/2023] Open
Abstract
Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.
Collapse
Affiliation(s)
- Bhoomi Madhu
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mohammed Farhan Lakdawala
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- AbbVie (United States)WorcesterUnited States
| | - Tina L Gumienny
- Department of Biology, Texas Woman’s UniversityDentonUnited States
| |
Collapse
|
3
|
Fusco-Almeida AM, de Matos Silva S, dos Santos KS, de Lima Gualque MW, Vaso CO, Carvalho AR, Medina-Alarcón KP, Pires ACMDS, Belizario JA, de Souza Fernandes L, Moroz A, Martinez LR, Ruiz OH, González Á, Mendes-Giannini MJS. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host-Fungal Interactions. J Fungi (Basel) 2023; 9:943. [PMID: 37755051 PMCID: PMC10533014 DOI: 10.3390/jof9090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.
Collapse
Affiliation(s)
- Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Samanta de Matos Silva
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Kelvin Sousa dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Kaila Petrolina Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Jenyffie Araújo Belizario
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Lígia de Souza Fernandes
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Andrei Moroz
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Luis R. Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Orville Hernandez Ruiz
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
- Cellular and Molecular Biology Group University of Antioquia, Corporation for Biological Research, Medellin 050010, Colombia
| | - Ángel González
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| |
Collapse
|
4
|
Juxtaposing Caenorhabditis elegans-Pathogenic Mould Model with Other Models; How Reliable Is This Nematode Model? A Mini Review. Curr Microbiol 2023; 80:105. [PMID: 36790616 DOI: 10.1007/s00284-023-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The application of Caenorhabditis elegans as a pathogenic model has spanned decades. Its use for pathogenic mould modeling has been attracting some attention lately, though not without some reservations. Several studies have shown C. elegans to be a reliable model for evaluating moulds' virulence factors and patterns as well as for screening the pathogenicity of mutant strains alongside their parental/wild type and revertant/complementary strains. There is a very high degree of reported similarities between the virulence patterns demonstrated in C. elegans and those of other invertebrate and vertebrate models. We have here presented several works in which this nematode model was adopted for virulence evaluation, and other comparative research in which virulence in C. elegans model were juxtaposed with other models. We have further presented possible reasons why there might have been variations of virulence in a few cases, thereby validating C. elegans to be an effective and reliable tool in the study of pathogenic moulds.
Collapse
|
5
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
6
|
Peng H, Bai H, Pan Y, Li J, Pei Z, Liao Y, Wu C, Li C, Tao L, Zhong S, Ma C, Chen Z, Li X, Gong Y, Wang L, Li F. Immunological pathogenesis of Bovine E. coli infection in a model of C. elegans. BMC Microbiol 2022; 22:311. [PMID: 36539715 PMCID: PMC9764636 DOI: 10.1186/s12866-022-02733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cattle industry is critical for China's livestock industry, whereas E. coli infection and relevant diseases could lead huge economic loss. Traditional mammalian models would be costly, time consuming and complicated to study pathological changes of bovine E. coli. There is an urgent need for a simple but efficient animal model to quantitatively evaluate the pathological changes of bovine-derived E. coli in vivo. Caenorhabditis elegans (C. elegans) has a broad host range of diverse E. coli strains with advantages, including a short life cycle, a simple structure, a transparent body which is easily visualized, a well-studied genetic map, an intrinsic immune system which is conservable with more complicated mammalians. RESULTS Here, we considered that O126 was the dominant serotype, and a total of 19 virulence factors were identified from 41 common E. coli virulence factors. Different E. coli strains with diverse pathogenicity strengths were tested in C. elegans in E. coli with higher pathogenicity (EC3/10), Nsy-1, Sek-1 and Pmk-1 of the p38 MAPK signaling pathway cascade and the expression of the antimicrobial peptides Abf-3 and Clec-60 were significantly up-regulated comparing with other groups. E. coli with lower pathogenicity (EC5/13) only activated the expression of Nsy-1 and Sek-1 genes in the p38 MAPK signaling pathway, Additionally, both groups of E. coli strains caused significant upregulation of the antimicrobial peptide Spp-1. CONCLUSION Thirteen E. coli strains showed diverse pathogenicity in nematodes and the detection rate of virulence factors did not corresponding to the virulence in nematodes, indicating complex pathogenicity mechanisms. We approved that C. elegans is a fast and convenient detection model for pathogenic bacteria virulence examinations.
Collapse
Affiliation(s)
- Hao Peng
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Huili Bai
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, China
| | - Jun Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Zhe Pei
- grid.254250.40000 0001 2264 7145The City College of New York, New York, USA
| | - Yuying Liao
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Cuilan Wu
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Changting Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Li Tao
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Shuhong Zhong
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Chunxia Ma
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Zhongwei Chen
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Xiaoning Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Yu Gong
- Animal Science and Technology Station of Guizhou, Guiyang, China
| | - Leping Wang
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| | - Fengsheng Li
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001 China
| |
Collapse
|
7
|
Phosphomannose Isomerase Is Involved in Development, Stress Responses, and Pathogenicity of Aspergillus flavus. Microbiol Spectr 2022; 10:e0202722. [PMID: 35980200 PMCID: PMC9603912 DOI: 10.1128/spectrum.02027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aspergillus flavus causes invasive aspergillosis in immunocompromised patients and severe contamination of agriculturally important crops by producing aflatoxins. The fungal cell wall is absent in animals and is structurally different from that of plants, which makes it a potential antifungal drug target due to its essentiality for fungal survival. Mannose is one of the important components in the fungal cell wall, which requires GDP-mannose (GDP-Man) as the primary donor. Three consecutive enzymes, namely, phosphomannose isomerase (PMI), phosphomannose mutase (PMM), and GDP-mannose phosphorylase (GMPP), are required for GDP-Man biosynthesis. Thus, PMI is of prime importance in cell wall biosynthesis and also has an active role in sugar metabolism. Here, we investigated the functional role of PMI in A. flavus by generating a pmiA-deficient strain. The mutant required exogenous mannose to survive and exhibited reduced growth rate, impaired conidiation, early germination, disturbance in stress responses, and defects in colonization of crop seeds. Furthermore, attenuated virulence of the mutant was documented in both Caenorhabditis elegans and Galleria mellonella infection models. Our results suggested that PMI plays an important role in the development, stress responses, and pathogenicity of A. flavus and therefore could serve as a potential target for battling against infection and controlling aflatoxin contamination caused by A. flavus. IMPORTANCE Aspergillus flavus is a common fungal pathogen of humans, animals, and agriculturally important crops. It causes invasive aspergillosis in humans and also produces highly carcinogenic mycotoxins in postharvest crops that threaten food safety worldwide. To alleviate or eliminate the threats posed by A. flavus, it is necessary to identify genes involved in pathogenicity and mycotoxin contamination. However, little progress has been made in this regard. Here, we focused on PMI, which is the first enzyme involved in the biosynthesis pathway of GDP-Man and thus is important for cell wall synthesis and protein glycosylation. Our study revealed that PMI is important for growth of A. flavus. It is also involved in conidiation, germination, morphogenesis, stress responses, and pathogenicity of A. flavus. Thus, PMI is a potent antifungal target to curb the threats posed by A. flavus.
Collapse
|
8
|
Zhou Y, Yan K, Qin Q, Raimi OG, Du C, Wang B, Ahamefule CS, Kowalski B, Jin C, van Aalten DMF, Fang W. Phosphoglucose Isomerase Is Important for Aspergillus fumigatus Cell Wall Biogenesis. mBio 2022; 13:e0142622. [PMID: 35913157 PMCID: PMC9426556 DOI: 10.1128/mbio.01426-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is a devastating opportunistic fungal pathogen causing hundreds of thousands of deaths every year. Phosphoglucose isomerase (PGI) is a glycolytic enzyme that converts glucose-6-phosphate to fructose-6-phosphate, a key precursor of fungal cell wall biosynthesis. Here, we demonstrate that the growth of A. fumigatus is repressed by the deletion of pgi, which can be rescued by glucose and fructose supplementation in a 1:10 ratio. Even under these optimized growth conditions, the Δpgi mutant exhibits severe cell wall defects, retarded development, and attenuated virulence in Caenorhabditis elegans and Galleria mellonella infection models. To facilitate exploitation of A. fumigatus PGI as an antifungal target, we determined its crystal structure, revealing potential avenues for developing inhibitors, which could potentially be used as adjunctive therapy in combination with other systemic antifungals. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen causing deadly infections in immunocompromised patients. Enzymes essential for fungal survival and cell wall biosynthesis are considered potential drug targets against A. fumigatus. PGI catalyzes the second step of the glycolysis pathway, linking glycolysis and the pentose phosphate pathway. As such, PGI has been widely considered as a target for metabolic regulation and therefore a therapeutic target against hypoxia-related diseases. Our study here reveals that PGI is important for A. fumigatus survival and exhibit pleiotropic functions, including development, cell wall glucan biosynthesis, and virulence. We also solved the crystal structure of PGI, thus providing the genetic and structural groundwork for the exploitation of PGI as a potential antifungal target.
Collapse
Affiliation(s)
- Yao Zhou
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Kaizhou Yan
- School of Life Sciences, University of Dundeegrid.8241.f, Dundee, United Kingdom
| | - Qijian Qin
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
| | - Olawale G. Raimi
- School of Life Sciences, University of Dundeegrid.8241.f, Dundee, United Kingdom
| | - Chao Du
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Bin Wang
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
| | - Chukwuemeka Samson Ahamefule
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
| | - Bartosz Kowalski
- School of Life Sciences, University of Dundeegrid.8241.f, Dundee, United Kingdom
| | - Cheng Jin
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Wenxia Fang
- Guangxi Biological Sciences and Biotechnology Center, Guangxi Academy of Sciencesgrid.418329.5, Nanning, Guangxi, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Yao H, Xu A, Liu J, Wang F, Yao H, Chen J. Evaluation of in vivo antibacterial drug efficacy using Caenorhabditis elegans infected with carbapenem-resistant Klebsiella pneumoniae as a model host. Front Pharmacol 2022; 13:973551. [PMID: 36059996 PMCID: PMC9439659 DOI: 10.3389/fphar.2022.973551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: This study was developed to assess the in vivo antimicrobial activity of specific drugs using a model system consisting of Caenorhabditis elegans (C. elegans) infected with Carbapenem-resistant Klebsiella pneumoniae (CRKP) in an effort to identify promising drugs for CRKP-infected patient treatment. Methods: A C. elegans-CRKP liquid assay platform was developed and used to conduct limited in vivo screening for antimicrobial agents with potential activity against CRKP. Time curves for 10 different concentrations of tested antimicrobial agents were tested in this model system at 0, 2, 6, 8, and 12 h after treatment. The protective effects of these different antimicrobial agents were compared at different time points. Furthermore, ten CRKP strains samples were isolated from clinical specimens to demonstrate the applicability of the nematode model method, and two typical clinical cases are presented. Results: CRKP bacteria were sufficient to induce C. elegans death in a dose- and time-dependent fashion, while effective antimicrobial agents improved the survival of these nematodes in a dose-dependent manner. Notably, PB and TGC exhibited robust antibacterial protection within 12 h even at low tested concentrations, and clear efficacy remained evident for high doses of CAZ at this same time point as mediators of improved nematode survival. The results of C. elegans model method were well consistent with that using the Kirby-Bauer method in 10 CRKP strains samples, and two typical clinical cases showed applicability, reliability and efficacy of C. elegans model method. Conclusion: Overall, nematode models in drug sensitivity testing have shown advantages in clinical settings. Our results highlight the value of C. elegans model systems as tools for the simultaneous screening of different agents for in vivo antibacterial efficacy and are deserved further study.
Collapse
Affiliation(s)
- Huijuan Yao
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingxian Liu
- Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huimin Yao
- School of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin, China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
The sat1 Gene Is Required for the Growth and Virulence of the Human Pathogenic Fungus Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0155821. [PMID: 35107385 PMCID: PMC8809347 DOI: 10.1128/spectrum.01558-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is an important opportunistic pathogenic fungus that causes invasive aspergillosis in immunocompromised humans. Regulated fungal growth is essential for disease development and progression. Thus, screening for genes that regulate fungal growth may lead to the identification of potential therapeutic targets for invasive aspergillosis (IA). Screening of the transfer DNA (T-DNA) random-insertion A. fumigatus mutants identified a severe growth deficiency mutant AFM2954 and featured sat1 as the mutated gene described as a putative intracellular protein transporter of unknown function. The deletion of sat1 exhibited severe growth defects and significantly increased the nematode and mouse survival rates and decreased the fungal loads and histopathological damages in mouse lungs. Transcriptomic analyses revealed expression changes associated with the cell wall synthesis, the tricarboxylic acid cycle (TCA cycle), and oxidative phosphorylation genes in the sat1 mutant. Deletion of the gene resulted in resistance to cell wall-perturbing agents and thickened cell wall as well as reduced ATP contents and mitochondrial membrane potential, suggested that sat1 affected the cell wall synthesis and mitochondrial function of A. fumigatus. All together, our study uncovered novel functions of sat1 in growth and virulence of A. fumigatus and provided a theoretical basis for the development of new therapeutic target for treating IA patients. IMPORTANCE Aspergillus fumigatus is the main causative agent of invasive aspergillosis in immunocompromised hosts, with up to 90% lethality. Nevertheless, the fungal factors that regulate the pathogenesis of A. fumigatus remain largely unknown. Better understanding of the mechanisms controlling growth of A. fumigatus may provide novel therapeutic targets. In the present study, we characterized sat1 in the opportunistic pathogen A. fumigatus. The function of sat1 remains unknown. We proved its important role in growth and virulence, likely because of its effects on cell wall synthesis and mitochondrial functions.
Collapse
|
11
|
Zhou Y, Du C, Odiba AS, He R, Ahamefule CS, Wang B, Jin C, Fang W. Phosphoglucose Isomerase Plays a Key Role in Sugar Homeostasis, Stress Response, and Pathogenicity in Aspergillus flavus. Front Cell Infect Microbiol 2022; 11:777266. [PMID: 34976860 PMCID: PMC8715936 DOI: 10.3389/fcimb.2021.777266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 01/22/2023] Open
Abstract
Aspergillus flavus is one of the important human and plant pathogens causing not only invasive aspergillosis in immunocompromised patients but also crop contamination resulting from carcinogenic aflatoxins (AFs). Investigation of the targeting factors that are involved in pathogenicity is of unmet need to dismiss the hazard. Phosphoglucose isomerase (PGI) catalyzes the reversible conversion between glucose-6-phosphate and fructose-6-phosphate, thus acting as a key node for glycolysis, pentose phosphate pathway, and cell wall biosynthesis in fungi. In this study, we constructed an A. flavus pgi deletion mutant, which exhibited specific carbon requirement for survival, reduced conidiation, and slowed germination even under optimal experimental conditions. The Δpgi mutant lost the ability to form sclerotium and displayed hypersusceptibility to osmotic, oxidative, and temperature stresses. Furthermore, significant attenuated virulence of the Δpgi mutant was documented in the Caenorhabditis elegans infection model, Galleria mellonella larval model, and crop seeds. Our results indicate that PGI in A. flavus is a key enzyme in maintaining sugar homeostasis, stress response, and pathogenicity of A. flavus. Therefore, PGI is a potential target for controlling infection and AF contamination caused by A. flavus.
Collapse
Affiliation(s)
- Yao Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Chao Du
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Arome Solomon Odiba
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Rui He
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | | | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
12
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Jin C, Wang B, Fang W. Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Front Cell Infect Microbiol 2021; 11:751947. [PMID: 34722339 PMCID: PMC8554291 DOI: 10.3389/fcimb.2021.751947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anene N Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
13
|
Wang W, Li S, Heng X, Chu W. Weissella confusa CGMCC 19,308 Strain Protects Against Oxidative Stress, Increases Lifespan, and Bacterial Disease Resistance in Caenorhabditis elegans. Probiotics Antimicrob Proteins 2021; 14:121-129. [PMID: 34037943 DOI: 10.1007/s12602-021-09799-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the antioxidant activity of Weissella confusa CGMCC 19,308 and its influence on longevity and host defense against Salmonella Typhimurium of Caenorhabditis elegans. The CFCS (cell-free culture supernatant) of W. confusa CGMCC 19,308 possessed DPPH radicals, hydroxyl radicals, and superoxide anion scavenging activity. The lifespan of the C. elegans fed W. confusa CGMCC 19,308 was significantly (p < 0.001) longer than that of worms fed Escherichia coli OP50. Moreover, worms fed W. confusa CGMCC 19,308 were more resistant to oxidative stress induced by hydrogen peroxide and S. Typhimurium infection. RNA-seq analysis showed that the most significantly differentially expressed genes (DEGs) in C. elegans fed with W. confusa CGMCC 19,308 were mainly col genes (col-43, col-2, col-40, col-155, col-37), glutathione-S-transferase (GST)-related genes (gst-44, gst-9, gst-17, gst-18, gstk-2), cnc-9 (immune-related gene), and sod-5 (superoxide dismutase). These results indicated that cuticle collagen synthesis, immunity, and antioxidant defense (AOD) system of C. elegans were affected after being fed with W. confusa CGMCC 19,308 instead of E. coli OP50. Our study suggested W. confusa CGMCC 19,308 had the antioxidant activity and could prolong lifespan and enhance the host defense against S. Typhimurium of C. elegans. This study provided new evidences for the W. confusa CGMCC 19,308 as a potential probiotic candidate for anti-aging and anti-bacterial infection.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shipo Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Heng
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Rosiana S, Zhang L, Kim GH, Revtovich AV, Uthayakumar D, Sukumaran A, Geddes-McAlister J, Kirienko NV, Shapiro RS. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans. Genetics 2021; 217:iyab003. [PMID: 33724419 PMCID: PMC8045720 DOI: 10.1093/genetics/iyab003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.
Collapse
Affiliation(s)
- Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
15
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
16
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Wang B, Jin C, Fang W. Marine Bioactive Compounds against Aspergillus fumigatus: Challenges and Future Prospects. Antibiotics (Basel) 2020; 9:E813. [PMID: 33207554 PMCID: PMC7698247 DOI: 10.3390/antibiotics9110813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
With the mortality rate of invasive aspergillosis caused by Aspergillus fumigatus reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of A. fumigatus to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against A. fumigatus when compared to the multitude that did against some other pathogens. Here, we review the marine bioactive compounds that display a bioactivity against A. fumigatus. The challenges hampering the discovery of antifungal agents from this rich habitat are also critically analyzed. Further, we propose strategies that could speed up an efficient discovery and broaden the dimensions of screening in order to obtain promising in vivo antifungal agents with new modes of action.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | | | - James C. Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Anene N. Moneke
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Anthony C. Ike
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|