1
|
Shi Y, Xiong LT, Li H, Li WL, O'Neill Rothenberg D, Liao LS, Deng X, Song GP, Cui ZN. Derivative of cinnamic acid inhibits T3SS of Xanthomonas oryzae pv. oryzae through the HrpG-HrpX regulatory cascade. Bioorg Chem 2023; 141:106871. [PMID: 37734193 DOI: 10.1016/j.bioorg.2023.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has a significant impact on rice yield and quality worldwide. Traditionally, bactericide application has been commonly used to control this devastating disease. However, the overuse of fungicides has led to a number of problems such as the development of resistance and environmental pollution. Therefore, the development of new methods and approaches for disease control are still urgent. In this paper, a series of cinnamic acid derivatives were designed and synthesized, and three novel T3SS inhibitors A10, A12 and A20 were discovered. Novel T3SS inhibitors A10, A12 and A20 significantly inhibited the hpa1 promoter activity without affecting Xoo growth. Further studies revealed that the title compounds A10, A12 and A20 significantly impaired hypersensitivity in non-host plant tobacco leaves, while applications on rice significantly reduced symptoms of bacterial leaf blight. RT-PCR showed that compound A20 inhibited the expression of T3SS-related genes. In summary, this work exemplifies the potential of the title compound as an inhibitor of T3SS and its efficacy in the control of bacterial leaf blight.
Collapse
Affiliation(s)
- Yu Shi
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Lan-Tu Xiong
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Long Li
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Li-Sheng Liao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Gao-Peng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Liang Q, Ma C, Crowley SM, Allaire JM, Han X, Chong RWW, Packer NH, Yu HB, Vallance BA. Sialic acid plays a pivotal role in licensing Citrobacter rodentium's transition from the intestinal lumen to a mucosal adherent niche. Proc Natl Acad Sci U S A 2023; 120:e2301115120. [PMID: 37399418 PMCID: PMC10334811 DOI: 10.1073/pnas.2301115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023] Open
Abstract
Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Shauna M. Crowley
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Joannie M. Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Xiao Han
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Raymond W. W. Chong
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Nicolle H. Packer
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW2109, Australia
| | - Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute and the University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| |
Collapse
|
3
|
Ngwaga T, Chauhan D, Salberg AG, Shames SR. Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog 2023; 19:e1011473. [PMID: 37347796 PMCID: PMC10321654 DOI: 10.1371/journal.ppat.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Abigail G. Salberg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephanie R. Shames
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
4
|
Baumgartner M, Zirnbauer R, Schlager S, Mertens D, Gasche N, Sladek B, Herbold C, Bochkareva O, Emelianenko V, Vogelsang H, Lang M, Klotz A, Moik B, Makristathis A, Berry D, Dabsch S, Khare V, Gasche C. Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis. Gut Microbes 2022; 14:2143218. [PMID: 36415023 PMCID: PMC9704410 DOI: 10.1080/19490976.2022.2143218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With increasing urbanization and industrialization, the prevalence of inflammatory bowel diseases (IBDs) has steadily been rising over the past two decades. IBD involves flares of gastrointestinal (GI) inflammation accompanied by microbiota perturbations. However, microbial mechanisms that trigger such flares remain elusive. Here, we analyzed the association of the emerging pathogen atypical enteropathogenic E. coli (aEPEC) with IBD disease activity. The presence of diarrheagenic E. coli was assessed in stool samples from 630 IBD patients and 234 age- and sex-matched controls without GI symptoms. Microbiota was analyzed with 16S ribosomal RNA gene amplicon sequencing, and 57 clinical aEPEC isolates were subjected to whole-genome sequencing and in vitro pathogenicity experiments including biofilm formation, epithelial barrier function and the ability to induce pro-inflammatory signaling. The presence of aEPEC correlated with laboratory, clinical and endoscopic disease activity in ulcerative colitis (UC), as well as microbiota dysbiosis. In vitro, aEPEC strains induce epithelial p21-activated kinases, disrupt the epithelial barrier and display potent biofilm formation. The effector proteins espV and espG2 distinguish aEPEC cultured from UC and Crohn's disease patients, respectively. EspV-positive aEPEC harbor more virulence factors and have a higher pro-inflammatory potential, which is counteracted by 5-ASA. aEPEC may tip a fragile immune-microbiota homeostasis and thereby contribute to flares in UC. aEPEC isolates from UC patients display properties to disrupt the epithelial barrier and to induce pro-inflammatory signaling in vitro.
Collapse
Affiliation(s)
- Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Rebecca Zirnbauer
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Sabine Schlager
- National Reference Laboratory for Escherichia coli, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Daniel Mertens
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | | | | | - Craig Herbold
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Olga Bochkareva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vera Emelianenko
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Harald Vogelsang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Anton Klotz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Birgit Moik
- National Reference Laboratory for Escherichia coli, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Athanasios Makristathis
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Stefanie Dabsch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,CONTACT Christoph Gasche Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090Austria
| |
Collapse
|
5
|
Comparative Genomics of Escherichia coli Serotype O55:H7 Using Complete Closed Genomes. Microorganisms 2022; 10:microorganisms10081545. [PMID: 36013963 PMCID: PMC9413875 DOI: 10.3390/microorganisms10081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli O55:H7 is a human foodborne pathogen and is recognized as the progenitor strain of E. coli O157:H7. While this strain is important from a food safety and genomic evolution standpoint, much of the genomic diversity of E. coli O55:H7 has been demonstrated using draft genomes. Here, we combine the four publicly available E. coli O55:H7 closed genomes with six newly sequenced closed genomes to provide context to this strain’s genomic diversity. We found significant diversity within the 10 E. coli O55:H7 strains that belonged to three different sequence types. The prophage content was about 10% of the genome, with three prophages common to all strains and seven unique to one strain. Overall, there were 492 insertion sequences identified within the six new sequence strains, with each strain on average containing 75 insertions (range 55 to 114). A total of 31 plasmids were identified between all isolates (range 1 to 6), with one plasmid (pO55) having an identical phylogenetic tree as the chromosome. The release and comparison of these closed genomes provides new insight into E. coli O55:H7 diversity and its ability to cause disease in humans.
Collapse
|
6
|
Jenkins J, Worrall L, Strynadka N. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 2022; 47:795-809. [DOI: 10.1016/j.tibs.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
7
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
8
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
9
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|