1
|
Imperlini E, Massaro F, Grifoni A, Maiurano F, Taddei AR, Borocci S, Buonocore F, Porcelli F. Membrane alteration, anti-virulence properties and metabolomic perturbation of a chionodracine-derived antimicrobial peptide, KHS-Cnd, on two bacteria models. Peptides 2024; 182:171311. [PMID: 39426570 DOI: 10.1016/j.peptides.2024.171311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Antarctic fishes, living in an extreme environment and normally exposed to pathogens, are a promising source of antimicrobial peptides (AMPs). These are emerging as next-generation drugs due to their activity against multidrug resistant (MDR) bacteria. To infect hosts, beyond intrinsic/acquired resistance, MDR species also use virulence factors such as protease secretion. Hence, AMPs targeting virulence factors could represent a novel strategy to counteract the antimicrobial resistance (AMR). In this paper, we focused on a mutant peptide, named KHS-Cnd, that was obtained from the scaffold of the chionodracine (Cnd), a natural peptide identified in the icefish Chionodraco hamatus. We studied different effects caused by the peptide interaction with the cell membrane of two model bacteria, E. coli and B. cereus. First, we investigated its membranolytic activity revealing that the peptide action is more evident on E. coli, with a 69 % uptake of the used dye at 3 μM, whereas for B. cereus we found only a 65 % uptake at 6 μM. Successively, we determined the impact of this lysis on total protein concentration in the medium and an increase was estimated for both bacteria (84 % after 1 h for E. coli and 90 % for B. cereus, respectively). Moreover, we evaluated the changes in the proteolytic activity of the supernatant, that is an important aspect of bacterial resistance, showing that there was a significant reduction for both bacteria, although at higher level in the case of E. coli. The membranolytic activity was evidenced also morphologically with TEM analysis and a different alteration was evidenced for the two bacteria. Moreover, NMR metabolomics analysis showed that peptide induces changes in E. coli and B. cereus extracellular metabolites especially at the higher tested concentrations: this metabolic variation could be used as a fingerprinting of the peptide action on bacteria physiology due to its interaction with cell wall. Finally, we determined the KHS-Cnd cytotoxicity on human primary cell lines to verify its selectivity toward bacterial cell membranes and we found low toxicity until a concentration of 5 μM. Considering that the peptide exerts both membranolytic and anti-virulence activity on E. coli at 1.5 μM, we confirmed the interesting potential of this AMP as a new drug to counteract AMR.
Collapse
Affiliation(s)
- Esther Imperlini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Federica Massaro
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Angelica Grifoni
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Francesco Maiurano
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Universit`a Snc, Viterbo 01100, Italy
| | - Stefano Borocci
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy; Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, La Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy.
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Largo dell'Università snc, Viterbo, Italy
| |
Collapse
|
2
|
de la Cuesta-Zuluaga J, Müller P, Maier L. Balancing act: counteracting adverse drug effects on the microbiome. Trends Microbiol 2024:S0966-842X(24)00259-2. [PMID: 39395850 DOI: 10.1016/j.tim.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
The human gut microbiome, a community of microbes that plays a crucial role in our wellbeing, is highly adaptable but also vulnerable to drug treatments. This vulnerability can have serious consequences for the host, for example, increasing susceptibility to infections, immune, metabolic, and cognitive disorders. However, the microbiome's adaptability also provides opportunities to prevent, protect, or even reverse drug-induced damage. Recently, several innovative approaches have emerged aimed at minimizing the collateral damage of drugs on the microbiome. Here, we outline these approaches, discuss their applicability in different treatment scenarios, highlight current challenges, and suggest avenues that may lead to an effective protection of the microbiome.
Collapse
Affiliation(s)
- Jacobo de la Cuesta-Zuluaga
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen, Tübingen, Germany
| | - Patrick Müller
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen, Tübingen, Germany
| | - Lisa Maier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Alexander PJ, Oyama LB, Olleik H, Godoy Santos F, O'Brien S, Cookson A, Cochrane SA, Gilmore BF, Maresca M, Huws SA. Microbiome-derived antimicrobial peptides show therapeutic activity against the critically important priority pathogen, Acinetobacter baumannii. NPJ Biofilms Microbiomes 2024; 10:92. [PMID: 39349945 PMCID: PMC11443000 DOI: 10.1038/s41522-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Acinetobacter baumannii is designated by the World Health Organisation as a critical priority pathogen. Previously we discovered antimicrobial peptides (AMPs), namely Lynronne-1, -2 and -3, with efficacy against bacterial pathogens, such as Staphylococcus aureus and Pseudomonas aeruginosa. Here we assessed Lynronne-1, -2 and -3 structure by circular dichroism and efficacy against clinical strains of A. baumannii. All Lynronne AMPs demonstrated alpha-helical secondary structures and had antimicrobial activity towards all tested strains of A. baumannii (Minimum Inhibitory Concentrations 2-128 μg/ml), whilst also having anti-biofilm activity. Lynronne-2 and -3 demonstrated additive effects with amoxicillin and erythromycin, and synergy with gentamicin. The AMPs demonstrated little toxicity towards mammalian cell lines or Galleria mellonella. Fluorescence-based assay data demonstrated that Lynronne-1 and -3 had higher membrane-destabilising action against A. baumannii in comparison with Lynronne-2, which was corroborated by transcriptomic analysis. For the first time, we demonstrate the therapeutic activity of Lynronne AMPs against A. baumannii.
Collapse
Affiliation(s)
- P J Alexander
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - L B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - H Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - F Godoy Santos
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - S O'Brien
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - A Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - B F Gilmore
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - M Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - S A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Fulgencio S, Scaccaglia M, Frei A. Exploration of Rhenium Bisquinoline Tricarbonyl Complexes for their Antibacterial Properties. Chembiochem 2024; 25:e202400435. [PMID: 38785033 DOI: 10.1002/cbic.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Metal complexes have emerged as a promising source for novel classes of antibacterial agents to combat the rise of antimicrobial resistance around the world. In the exploration of the transition metal chemical space for novel metalloantibiotics, the rhenium tricarbonyl moiety has been identified as a promising scaffold. Here we have prepared eight novel rhenium bisquinoline tricarbonyl complexes and explored their antibacterial properties. Significant activity against both Gram-positive and Gram-negative bacteria was observed. However, all complexes also showed significant toxicity against human cells, putting into question the prospects of this specific rhenium compound class as metalloantibiotics. To better understand their biological effects, we conduct the first mode of action studies on rhenium bisquinoline complexes and show that they are able to form pores through bacterial membranes. Their straight-forward synthesis and tuneability suggests that further optimisation of this compound class could lead to compounds with enhanced bacterial specificity.
Collapse
Affiliation(s)
- Sofia Fulgencio
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Mirco Scaccaglia
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, University of York, York, YO10 5DD, U.K
| |
Collapse
|
6
|
Zmerli O, Hodzic A, Bellali S, Azar E, Bou Khalil J. Early prediction of the bactericidal and bacteriostatic effect of imipenem and doxycycline using tabletop scanning electron microscopy. Front Cell Infect Microbiol 2024; 14:1431141. [PMID: 39268484 PMCID: PMC11390654 DOI: 10.3389/fcimb.2024.1431141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Our work aims at establishing a proof-of-concept for a method that allows the early prediction of the bactericidal and bacteriostatic effects of antibiotics on bacteria using scanning electron microscopy (SEM) as compared to traditional culture-based methods. Methods We tested these effects using Imipenem (bactericidal) and Doxycycline (bacteriostatic) with several strains of sensitive and resistant Escherichia coli. We developed a SEM-based predictive score based on three main criteria: Bacterial Density, Morphology/Ultrastructure, and Viability. We determined the results for each of these criteria using SEM micrographs taken with the TM4000Plus II-Tabletop-SEM (Hitachi, Japan) following an optimized, rapid, and automated acquisition and analysis protocol. We compared our method with the traditional culture colony counting gold standard method and classic definitions of the two effects. Results Our method revealed total agreement with the CFU method and classic definition by visualizing the effect of the antibiotic at 60 minutes and 120 minutes using SEM. Discussion This early prediction allows a rapid and early identification of the bactericidal and bacteriostatic effects as compared to culture that would take a minimum of 18 hours. This has several future applications in the development of SEM-automated assays coupled to machine learning models that identify the antibiotic effect and facilitate determination of bacterial susceptibility.
Collapse
Affiliation(s)
- Omar Zmerli
- IHU - Méditerranée Infection, Marseille, France
- Aix Marseille Univ, MEPHI, Marseille, France
- Division of Infectious Diseases, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Alma Hodzic
- IHU - Méditerranée Infection, Marseille, France
| | | | - Eid Azar
- Division of Infectious Diseases, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Jacques Bou Khalil
- IHU - Méditerranée Infection, Marseille, France
- Aix Marseille Univ, MEPHI, Marseille, France
| |
Collapse
|
7
|
Thitirungreangchai T, Roytrakul S, Aunpad R. Deciphering the Intracellular Action of the Antimicrobial Peptide A11 via an In-Depth Analysis of Its Effect on the Global Proteome of Acinetobacter baumannii. ACS Infect Dis 2024; 10:2795-2813. [PMID: 39075773 PMCID: PMC11320580 DOI: 10.1021/acsinfecdis.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
The potential antimicrobial activity and low propensity to induce the development of bacterial resistance have rendered antimicrobial peptides (AMPs) as novel and ideal candidate therapeutic agents for the treatment of infections caused by drug-resistant pathogenic bacteria. The targeting of bacterial membranes by AMPs has been typically considered their sole mode of action; however, increasing evidence supports the existence of multiple and complementary functions of AMPs that result in bacterial death. An in-depth characterization of their mechanism of action could facilitate further research and development of AMPs with higher potency. The current study employs biophysics and proteomics approaches to unveil the mechanisms underlying the antibacterial activity of A11, a potential candidate AMP, against Acinetobacter baumannii, a leading cause of hospital-acquired infections (HAIs) and consequently, a serious global threat. A11 peptide was found to induce membrane depolarization to a high extent, as revealed by flow cytometry and electron microscopy analyses. The prompt intracellular penetration of A11 peptide, observed using confocal microscopy, was found to occur concomitantly with a very low degree of membrane lysis, suggesting that its mode of action predominantly involves a nonlytic killing mechanism. Quantitative proteomics analysis employed for obtaining insights into the mechanisms underlying the antimicrobial activity of A11 peptide revealed that it disrupted energy metabolism, interfered with protein homeostasis, and inhibited fatty acid synthesis that is essential for cell membrane integrity; all these impacted the cellular functions of A. baumannii. A11 treatment also impacted signal transduction associated with the regulation of biofilm formation, hindered the stress response, and influenced DNA repair processes; these are all crucial survival mechanisms of A. baumannii. Additionally, robust antibacterial activity was exhibited by A11 peptide against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates of A. baumannii; moreover, A11 peptide exhibited synergy with levofloxacin and minocycline as well as low propensity for inducing resistance. Taken together, the findings emphasize the therapeutic potential of A11 peptide as an antibacterial agent against drug-resistant A. baumannii and underscore the need for further investigation.
Collapse
Affiliation(s)
- Thanit Thitirungreangchai
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional
Proteomics Technology Laboratory, National Center for Genetic Engineering
and Biotechnology, National Science and
Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ratchaneewan Aunpad
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
8
|
Squitieri D, Massaro F, Graziano MM, Borocci S, Cacaci M, Di Vito M, Porcelli F, Rosato R, Ceccacci F, Sanguinetti M, Buonocore F, Bugli F. Trematocine-derived antimicrobial peptides from the Antarctic fish Trematomus bernacchaii: potent antibacterial agents against ESKAPE pathogens. Front Microbiol 2024; 15:1447301. [PMID: 39171261 PMCID: PMC11335685 DOI: 10.3389/fmicb.2024.1447301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction This study investigated the interaction with membrane mimetic systems (LUVs), bacterial membranes, the CD spectra, and the bactericidal activity of two designed trematocine mutants, named Trem-HK and Trem-HSK. Mutants were constructed from the scaffold of Trematocine (Trem), a natural 22-amino acid AMP from the Antarctic fish Trematomus bernacchii, aiming to increase their positive charge. Methods The selectivity of the designed AMPs towards bacterial membranes was improved compared to Trematocine, verified by their interaction with different LUVs and their membranolytic activity. Additionally, their α-helical conformation was not influenced by the amino acid substitutions. Our findings revealed a significant enhancement in antibacterial efficacy against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae family) pathogens for both Trem-HK and Trem-HSK. Results Firstly, we showed that the selectivity of the two new designed AMPs towards bacterial membranes was greatly improved compared to Trematocine, verifying their interaction with different LUVs and their membranolytic activity. We determined that their α-helical conformation was not influenced by the amino acid substitutions. We characterized the tested bacterial collection for resistance traits to different classes of antibiotics. The minimum inhibitory and bactericidal concentration (MIC and MBC) values of the ESKAPE collection were reduced by up to 80% compared to Trematocine. The bactericidal concentrations of Trematocine mutants showed important membranolytic action, evident by scanning electron microscopy, on all tested species. We further evaluated the cytotoxicity and hemolytic activity of the mutants. At 2.5 μM concentration, both mutants demonstrated low cytotoxicity and hemolysis, indicating selectivity towards bacterial cells. However, these effects increased at higher concentrations. Discussion Assessment of in vivo toxicity using the Galleria mellonella model revealed no adverse effects in larvae treated with both mutants, even at concentrations up to 20 times higher than the lowest MIC observed for Acinetobacter baumannii, suggesting a high potential safety profile for the mutants. This study highlights the significant improvement in antibacterial efficacy achieved by increasing the positive charge of Trem-HK and Trem-HSK. This improvement was reached at the cost of reduced biocompatibility. Further research is necessary to optimize the balance between efficacy and safety for these promising AMPs.
Collapse
Affiliation(s)
- Damiano Squitieri
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
| | - Federica Massaro
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Monica Mollica Graziano
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Stefano Borocci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, La Sapienza University of Rome, Rome, Italy
| | - Margherita Cacaci
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Maura Di Vito
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
| | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Roberto Rosato
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesca Ceccacci
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, La Sapienza University of Rome, Rome, Italy
| | - Maurizio Sanguinetti
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Francesca Bugli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| |
Collapse
|
9
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
10
|
Marinho Righetto G, Alves Santos-Filho N, Oliveira Catarin Nunes L, André C, Souza JM, Andricopulo AD, Martins Bispo PJ, Cilli EM, Camargo ILBDC. Optimizing Bothropstoxin-I-Derived Peptides: Exploring the Antibacterial Potential of p-BthW. ACS OMEGA 2024; 9:23662-23674. [PMID: 38854567 PMCID: PMC11154919 DOI: 10.1021/acsomega.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial peptides are an emerging class of antibiotics that present a series of advantageous characteristics such as wide structural variety, broad spectrum of activity, and low propensity to select for resistance. They are found in all classes of life as defense molecules. A group of peptides derived from the protein Bothropstoxin-I has been previously studied as an alternative treatment against multi-drug-resistant bacteria. The peptide p-BthTX-I (sequence: KKYRYHLKPFCKK) and its homodimer, linked by disulfide oxidation through the residues of Cys11 and the serum degradation product [sequence: (KKYRYHLKPFC)2], were evaluated and showed similar antimicrobial activity. In this study, we synthesized an analogue of p-BthTX-I that uses the strategy of Fmoc-Lys(Fmoc)-OH in the C-terminal region for dimerization and tryptophan for all aromatic amino acids to provide better membrane interactions. This analogue, named p-BthW, displayed potent antibacterial activity at lower concentrations and maintained the same hemolytic levels as the original molecule. Our assessment revealed that p-BthW has a quick in vitro bactericidal action and prolonged post-antibiotic effect, comparable to the action of polymyxin B. The mode of action of p-BthW seems to rely not only on membrane depolarization but also on necrosis-like effects, especially in Gram-negative bacteria. Overall, the remarkable results regarding the propensity to develop resistance reaffirmed the great potential of the developed molecule.
Collapse
Affiliation(s)
- Gabriela Marinho Righetto
- Laboratory
of Molecular Epidemiology and Microbiology, Department of Physics
and Interdisciplinary Science, University
of Sao Paulo, 13563-120 São Carlos, Brazil
| | - Norival Alves Santos-Filho
- Department
of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-060 Araraquara, Brazil
| | - Letícia Oliveira Catarin Nunes
- Department
of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-060 Araraquara, Brazil
| | - Camille André
- Infectious
Disease Institute, Department of Ophthalmology, Massachusetts Eye
and Ear, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Julia Medeiros Souza
- Laboratory
of Medicinal and Computational Chemistry, Department of Physics and
Interdisciplinary Science, University of
Sao Paulo, 13563-120 São Carlos, Brazil
| | - Adriano Defini Andricopulo
- Laboratory
of Medicinal and Computational Chemistry, Department of Physics and
Interdisciplinary Science, University of
Sao Paulo, 13563-120 São Carlos, Brazil
| | - Paulo José Martins Bispo
- Infectious
Disease Institute, Department of Ophthalmology, Massachusetts Eye
and Ear, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eduardo Maffud Cilli
- Department
of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-060 Araraquara, Brazil
| | - Ilana Lopes Baratella da Cunha Camargo
- Laboratory
of Molecular Epidemiology and Microbiology, Department of Physics
and Interdisciplinary Science, University
of Sao Paulo, 13563-120 São Carlos, Brazil
| |
Collapse
|
11
|
Sidarta M, Lorente Martín AI, Monsalve A, Marinho Righetto G, Schäfer AB, Wenzel M. Lipid phase separation impairs membrane thickness sensing by the Bacillus subtilis sensor kinase DesK. Microbiol Spectr 2024; 12:e0392523. [PMID: 38717171 PMCID: PMC11237406 DOI: 10.1128/spectrum.03925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
Membrane fluidity and thickness have emerged as crucial factors for the activity of and resistance to several antimicrobials. However, the lack of tools to study membrane fluidity and, in particular, thickness in living bacteria limits our understanding of this interplay. The Bacillus subtilis histidine kinase/phosphatase DesK is a molecular sensor that directly detects membrane thickness. It controls activity of DesR, which regulates expression of the lipid desaturase Des, known for its role in cold adaptation and daptomycin susceptibility. We hypothesized that this property could be exploited to develop biosensors and reporters for antibiotic-induced changes in membrane fluidity and thickness. To test this, we designed three assays based on the des system: activation of the Pdes promoter as reporter for membrane thickening, localization of DesK-GFP(green-fluorescent protein) as proxy for rigidified membrane domains, and antibiotic sensitivity of des, desK, and desR deletion mutants as readout for the importance of membrane rigidification/thickening under the tested condition. While we could not confirm the suitability of the des system as reporter for antibiotic-induced changes in membrane thickness, we did observe that des expression is only activated by mild temperature shocks, likely due to partitioning of the sensor DesK into fluid membrane domains upon phase separation, precluding effective thickness sensing under harsh cold shock and antibiotic stress conditions. Similarly, we did not observe any sensitivity of the deletion mutants to either temperature or antibiotic stress, raising the question to what extent the des system contributes to fluidity adaptation under these conditions. IMPORTANCE The B. subtilis des system is a prime model for direct molecular membrane thickness sensor and, as such, has been well studied in vitro. Our study shows that our understanding of its function in vivo and its importance under temperature and antibiotic stress is still very limited. Specifically, our results suggest that (i) the des system senses very subtle membrane fluidity changes that escape detection by established fluidity reporters like laurdan; (ii) membrane thickness sensing by DesK is impaired by phase separation due to partitioning of the protein into the fluid phase; and (iii) fluidity adaptations by Des are too subtle to elicit growth defects under rigidifying conditions, raising the question of how much the des system contributes to adaptation of overall membrane fluidity.
Collapse
Affiliation(s)
- Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ana I. Lorente Martín
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anuntxi Monsalve
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
12
|
Zhang S, Yang N, Mao R, Hao Y, Teng D, Wang J. In Vitro/Vivo Mechanisms of Antibacterial Peptide NZ2114 against Staphylococcus pseudintermedius and Its Biofilms. Antibiotics (Basel) 2024; 13:341. [PMID: 38667017 PMCID: PMC11047522 DOI: 10.3390/antibiotics13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen commonly found in canines, and has garnered escalating interest due to its potential for zoonotic transmission and increasing antimicrobial resistance. However, the excessive use of antibiotics and the characteristic of S. pseudintermedius forming biofilms make treatment challenging. In this study, the in vivo and in vitro antimicrobial activity and mechanisms of action of NZ2114, a plectasin-derived peptide, against S. pseudintermedius were investigated. NZ2114 exhibited potent antibacterial activity towards S. pseudintermedius (minimum inhibitory concentration, MIC = 0.23 μM) with a lower probability of inducing drug-resistant mutations and efficient bactericidal action, which was superior to those of mopirucin (MIC = 0.25-0.5 μM) and lincomycin (MIC = 4.34-69.41 μM). The results of electron microscopy and flow cytometry showed that NZ2114 disrupted S. pseudintermedius' cell membrane, resulting in cellular content leakage, cytoplasmic membrane shrinkage, and, eventually, cell death. The intracellular ROS activity and Alamar Blue detection showed that NZ2114 interferes with intracellular metabolic processes. In addition, NZ2114 effectively inhibits biofilm formation, and confocal laser scanning microscopy further revealed its antibacterial and anti-biofilm activity (biofilm thickness reduced to 6.90-17.70 μm). The in vivo therapy of NZ2114 in a mouse pyoderma model showed that it was better than lincomycin in effectively decreasing the number of skin bacteria, alleviating histological damage, and reducing the skin damage area. These results demonstrated that NZ2114 may be a promising antibacterial candidate against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Shuang Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
13
|
Scaccaglia M, Birbaumer MP, Pinelli S, Pelosi G, Frei A. Discovery of antibacterial manganese(i) tricarbonyl complexes through combinatorial chemistry. Chem Sci 2024; 15:3907-3919. [PMID: 38487233 PMCID: PMC10935722 DOI: 10.1039/d3sc05326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
The continuous rise of antimicrobial resistance is a serious threat to human health and already causing hundreds of thousands of deaths each year. While natural products and synthetic organic small molecules have provided the majority of our current antibiotic arsenal, they are falling short in providing new drugs with novel modes of action able to treat multidrug resistant bacteria. Metal complexes have recently shown promising results as antimicrobial agents, but the number of studied compounds is still vanishingly small, making it difficult to identify promising compound classes or elucidate structure-activity relationships. To accelerate the pace of discovery we have applied a combinatorial chemistry approach to the synthesis of metalloantibiotics. Utilizing robust Schiff-base chemistry and combining 7 picolinaldehydes with 10 aniline derivatives, and 6 axial ligands, either imidazole/pyridine-based or solvent, we have prepared a library of 420 novel manganese tricarbonyl complexes. All compounds were evaluated for their antibacterial properties and 10 lead compounds were identified, re-synthesised and fully characterised. All 10 compounds showed high and broad activity against Gram-positive bacteria. The best manganese complex displayed low toxicity against human cells with a therapeutic index of >100. In initial mode of action studies, we show that it targets the bacterial membrane without inducing pore formation or depolarisation. Instead, it releases its carbon monoxide ligands around the membrane and inhibits the bacterial respiratory chain. This work demonstrates that large numbers of metal complexes can be accessed through combinatorial synthesis and evaluated for their antibacterial potential, allowing for the rapid identification of promising metalloantibiotic lead compounds.
Collapse
Affiliation(s)
- Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Michael P Birbaumer
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma Via Gramsci 14 43126 Parma Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma 43124 Parma Italy
| | - Angelo Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
14
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
15
|
Schäfer AB, Sidarta M, Abdelmesseh Nekhala I, Marinho Righetto G, Arshad A, Wenzel M. Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: a phenotypic analysis starter kit. Microbiol Spectr 2024; 12:e0327523. [PMID: 38289933 PMCID: PMC10913488 DOI: 10.1128/spectrum.03275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Phenotypic analysis assays such as bacterial cytological profiling (BCP) have become increasingly popular for antibiotic mode of action analysis. A plethora of dyes, protein fusions, and reporter strains are available and have been used for this purpose, enabling both rapid mode of action categorization and in-depth analysis of antibiotic mechanisms. However, non-expert researchers may struggle choosing suitable assays and interpreting results. This is a particular problem for antibiotics that have multiple or complex targets, such as the bacterial cell envelope. Here, we set out to curate a minimal set of accessible and affordable phenotypic assays that allow distinction between membrane and cell wall targets, can identify dual-action inhibitors, and can be implemented in most research environments. To this end, we employed BCP, membrane potential, fluidity, and cell wall synthesis assays. To assess specificity and ease of interpretation, we tested three well-characterized and commercially available reference antibiotics: the potassium ionophore valinomycin, the lipid II-binding glycopeptide vancomycin, and the dual-action lantibiotic nisin, which binds lipid II and forms a membrane pore. Based on our experiments, we suggest a minimal set of BCP, a membrane-potentiometric probe, and fluorescent protein fusions to MinD and MreB as basic assay set and recommend complementing these assays with Laurdan-based fluidity measurements and a PliaI reporter fusion, where indicated. We believe that our results can provide guidance for researchers who wish to use phenotypic analysis for mode of action studies but do not possess the specialized equipment or expert knowledge to employ the full breadth of possible techniques.IMPORTANCEPhenotypic analysis assays using specialized fluorescence fusions and dyes have become increasingly popular in antibiotic mode of action analysis. However, it can be difficult to implement these methods due to the need for specialized equipment and/or the complexity of bacterial cell biology and physiology, making the interpretation of results difficult for non-experts. This is especially problematic for compounds that have multiple or pleiotropic effects, such as inhibitors of the bacterial cell envelope. In order to make phenotypic analysis assays accessible to labs, whose primary expertise is not bacterial cell biology, or with limited equipment and resources, a set of simple and broadly accessible assays is needed that is easy to implement, execute, and interpret. Here, we have curated a set of assays and strains that does not need highly specialized equipment, can be performed in most labs, and is straightforward to interpret without knowing the intricacies of bacterial cell biology.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Aysha Arshad
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
16
|
Bombelli A, Araya-Cloutier C, Boeren S, Vincken JP, Abee T, den Besten HMW. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes. Food Res Int 2024; 175:113687. [PMID: 38128979 DOI: 10.1016/j.foodres.2023.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
17
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial efflux pump modulators prevent bacterial growth in macrophages and under broth conditions that mimic the host environment. mBio 2023; 14:e0249223. [PMID: 37921493 PMCID: PMC10746280 DOI: 10.1128/mbio.02492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Bacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.
Collapse
Affiliation(s)
- Samual C. Allgood
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Amy L. Crooks
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christian T. Meyer
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Duet Biosystems, Nashville, Tennessee, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, Colorado, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Meredith D. Betterton
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, New York, USA
| | | | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Corrella S. Detweiler
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
18
|
TagElDein MA, Mohamed NG, Shahein YE, Ziko L, Hussein NA. Altering Escherichia coli envelope integrity by mimicking the lipoprotein RcsF. Arch Microbiol 2023; 206:12. [PMID: 38070002 PMCID: PMC10710380 DOI: 10.1007/s00203-023-03733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Escherichia coli cell envelope is crucial for stress sensing and signal transduction, mediated by numerous protein-protein interactions to enable adaptation and survival. Interfering with these interactions might affect envelope integrity leading to bacterial death. The outer membrane lipoprotein (RcsF) is the stress sensor of the regulator of capsule synthesis (Rcs) phosphorelay that senses envelope threats. RcsF interacts with two essential proteins, IgaA (repressing the Rcs system) and BamA (inserting β-barrel proteins in the outer membrane). Disturbing RcsF interactions may alter Rcs signaling and/or membrane integrity thus affecting bacterial survival. Here, we derived the sequence of a peptide mimicking RcsF (RcsFmim), based on the in silico docking of RcsF with IgaA. Expression of rcsFmim caused 3-to-4-fold activation of the Rcs system and perturbation of the outer membrane. Both effects result in decreased E. coli growth rate. We anticipate that RcsFmim present a candidate for future antibacterial peptide development.
Collapse
Affiliation(s)
- Moustafa A TagElDein
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha G Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Laila Ziko
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted By the Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| |
Collapse
|
19
|
Tang Z, Jiang W, Li S, Huang X, Yang Y, Chen X, Qiu J, Xiao C, Xie Y, Zhang X, Li J, Verma CS, He Y, Yang A. Design and evaluation of tadpole-like conformational antimicrobial peptides. Commun Biol 2023; 6:1177. [PMID: 37980400 PMCID: PMC10657444 DOI: 10.1038/s42003-023-05560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Antimicrobial peptides are promising alternatives to conventional antibiotics. Herein, we report a class of "tadpole-like" peptides consisting of an amphipathic α-helical head and an aromatic tail. A structure-activity relationship (SAR) study of "tadpole-like" temporin-SHf and its analogs revealed that increasing the number of aromatic residues in the tail, introducing Arg to the α-helical head and rearranging the peptide topology dramatically increased antimicrobial activity. Through progressive structural optimization, we obtained two peptides, HT2 and RI-HT2, which exhibited potent antimicrobial activity, no hemolytic activity and cytotoxicity, and no propensity to induce resistance. NMR and molecular dynamics simulations revealed that both peptides indeed adopted "tadpole-like" conformations. Fluorescence experiments and electron microscopy confirmed the membrane targeting mechanisms of the peptides. Our studies not only lead to the discovery of a series of ultrashort peptides with potent broad-spectrum antimicrobial activities, but also provide a new strategy for rational design of novel "tadpole-like" antimicrobial peptides.
Collapse
Affiliation(s)
- Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wuqiao Jiang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuangli Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Yi Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chuyu Xiao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Ying Xie
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xu Zhang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianguo Li
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
20
|
Buonocore F, Saraceni PR, Taddei AR, Miccoli A, Porcelli F, Borocci S, Gerdol M, Bugli F, Sanguinetti M, Fausto AM, Scapigliati G, Picchietti S. Antibacterial and anticancer activity of two NK-lysin-derived peptides from the Antarctic teleost Trematomus bernacchii. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109099. [PMID: 37734650 DOI: 10.1016/j.fsi.2023.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The NK-lysin antimicrobial peptide, first identified in mammals, possesses both antibacterial and cytotoxic activity against cancer cell lines. Homologue peptides isolated from different fish species have been examined for their functional characteristics in the last few years. In this study, a NK-lysin transcript was identified in silico from the head kidney transcriptome of the Antarctic teleost Trematomus bernacchii. The corresponding amino acid sequence, slightly longer than NK-lysins of other fish species, contains six cysteine residues that in mammalian counterparts form three disulphide bridges. Real time-PCR analysis indicated its predominant expression in T. bernacchii immune-related organs and tissues, with greatest mRNA abundance detected in gills and spleen. Instead of focusing on the full T. bernacchii derived NK-lysin mature molecule, we selected a 27 amino acid residue peptide (named NKL-WT), corresponding to the potent antibiotic NK-2 sequence found in human NK-lysin. Moreover, we designed a mutant peptide (named NKL-MUT) in which two alanine residues substitute the two cysteines found in the NKL-WT. The two peptides were obtained by solid phase organic synthesis to investigate their functional features. NKL-WT and NKL-MUT displayed antibacterial activity against the human pathogenic bacterium Enterococcus faecalis and the ESKAPE pathogen Acinetobacter baumannii, respectively. Moreover, at the determined Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values against these pathogens, both peptides showed high selectivity as they did not exhibit any haemolytic activity on erythrocytes or cytotoxic activity against mammalian primary cell lines. Finally, the NKL-MUT selectively triggers the killing of the melanoma cell line B16F10 by means of a pro-apoptotic pathway at a concentration range in which no effects were found in normal mammalian cell lines. In conclusion, the two peptides could be considered as promising candidates in the fight against antibiotic resistance and tumour proliferative action, and also be used as innovative adjuvants, either to decrease chemotherapy side effects or to enhance anticancer drug activity.
Collapse
Affiliation(s)
- F Buonocore
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - P R Saraceni
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy; Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Division of Health Protection Technologies, 00123, Rome, Italy
| | - A R Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università Snc, 01100, Viterbo, Italy
| | - A Miccoli
- National Research Council, Inst. for Marine Biological Resources and Biotechnology, 60125, Ancona, Italy
| | - F Porcelli
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - S Borocci
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy; National Research Council, Inst. for Biological Systems (ISB-CNR) Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - M Gerdol
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - F Bugli
- Dept. of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, 00168, Italy; Dept. of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168, Rome, Italy
| | - M Sanguinetti
- Dept. of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, 00168, Italy; Dept. of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168, Rome, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy.
| |
Collapse
|
21
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial Efflux Pump Modulators Prevent Bacterial Growth in Macrophages and Under Broth Conditions that Mimic the Host Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558466. [PMID: 37786697 PMCID: PMC10541609 DOI: 10.1101/2023.09.20.558466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
New approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium) in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy (cryo-EM). Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and increase the potency of antibiotics. These data suggest that under macrophage-like conditions the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.
Collapse
Affiliation(s)
- Samual C Allgood
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amy L Crooks
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Christian T Meyer
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- Duet Biosystems, Nashville, TN, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, CO, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Meredith D Betterton
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Corrella S Detweiler
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
22
|
Hao Y, Teng D, Mao R, Yang N, Wang J. Site Mutation Improves the Expression and Antimicrobial Properties of Fungal Defense. Antibiotics (Basel) 2023; 12:1283. [PMID: 37627703 PMCID: PMC10451632 DOI: 10.3390/antibiotics12081283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Although antimicrobial peptides (AMPs) have highly desirable intrinsic characteristics in their commercial product development as new antimicrobials, the limitations of AMPs from experimental to scale development include the low oral bioavailability, and high production costs due to inadequate in vitro/in vivo gene expression- and low scale. Plectasin has good bactericidal activity against Staphylococcus and Streptococcus, and the selective bactericidal activity greatly reduces the damage to the micro-ecosystem when applied in vivo. However, its expression level was relatively low (748.63 mg/L). In view of these situations, this study will optimize and modify the structure of Plectasin, hoping to obtain candidates with high expression, no/low toxicity, and maintain desirable antibacterial activity. Through sequence alignment, Plectasin was used as a template to introduce the degenerate bases, and the screening library was constructed. After three different levels of screening, the candidate sequence PN7 was obtained, and its total protein yield in the supernatant was 5.53 g/L, with the highest value so far for the variants or constructs from the same ancestor source. PN7 had strong activity against several species of Gram-positive bacteria (MIC value range 1~16 μg/mL). It was relatively stable in various conditions in vitro; in addition, the peptide showed no toxicity to mice for 1 week after intraperitoneal injection. Meanwhile, PN7 kills Staphylococcus aureus ATCC 43300 with a mode of a quicker (>99% S. aureus was killed within 2 h, whereas vancomycin at 2× MIC was 8 h.) and longer PAE period. The findings indicate that PN7 may be a novel promising antimicrobial agent, and this study also provides a model or an example for the design, modification, or reconstruction of novel AMPs and their derivatives.
Collapse
Affiliation(s)
- Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
23
|
Herschede SR, Salam R, Gneid H, Busschaert N. Bacterial cytological profiling identifies transmembrane anion transport as the mechanism of action for a urea-based antibiotic. Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2178921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Sarah R. Herschede
- Department of Chemistry, Tulane University, New Orleans, Louisiana, United States
| | - Rayhanus Salam
- Department of Chemistry, Tulane University, New Orleans, Louisiana, United States
| | - Hassan Gneid
- Department of Chemistry, Tulane University, New Orleans, Louisiana, United States
| | - Nathalie Busschaert
- Department of Chemistry, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
24
|
Righetto GM, Lopes JLDS, Bispo PJM, André C, Souza JM, Andricopulo AD, Beltramini LM, Camargo ILBDC. Antimicrobial Activity of an Fmoc-Plantaricin 149 Derivative Peptide against Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12020391. [PMID: 36830301 PMCID: PMC9952790 DOI: 10.3390/antibiotics12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Antimicrobial resistance poses a major threat to public health. Given the paucity of novel antimicrobials to treat resistant infections, the emergence of multidrug-resistant bacteria renewed interest in antimicrobial peptides as potential therapeutics. This study designed a new analog of the antimicrobial peptide Plantaricin 149 (Pln149-PEP20) based on previous Fmoc-peptides. The minimal inhibitory concentrations of Pln149-PEP20 were determined for 60 bacteria of different species and resistance profiles, ranging from 1 mg/L to 128 mg/L for Gram-positive bacteria and 16 to 512 mg/L for Gram-negative. Furthermore, Pln149-PEP20 demonstrated excellent bactericidal activity within one hour. To determine the propensity to develop resistance to Pln149-PEP20, a directed-evolution in vitro experiment was performed. Whole-genome sequencing of selected mutants with increased MICs and wild-type isolates revealed that most mutations were concentrated in genes associated with membrane metabolism, indicating the most likely target of Pln149-PEP20. Synchrotron radiation circular dichroism showed how this molecule disturbs the membranes, suggesting a carpet mode of interaction. Membrane depolarization and transmission electron microscopy assays supported these two hypotheses, although a secondary intracellular mechanism of action is possible. The molecule studied in this research has the potential to be used as a novel antimicrobial therapy, although further modifications and optimization remain possible.
Collapse
Affiliation(s)
- Gabriela Marinho Righetto
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - José Luiz de Souza Lopes
- Laboratory of Applied Biophysics, Department of Applied Physics, Institute of Physics, University of São Paulo, São Paulo 05315-970, Brazil
| | - Paulo José Martins Bispo
- Department of Ophthalmology, Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Camille André
- Department of Ophthalmology, Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Medeiros Souza
- Laboratory of Medicinal and Computational Chemistry, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Leila Maria Beltramini
- Group of Biophysics and Structural Biology “Sérgio Mascarenhas”, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Ilana Lopes Baratella da Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
- Correspondence: ; Tel.: +55-(16)-3373-8654
| |
Collapse
|
25
|
Structural Analysis and Antimicrobial Mechanism of a Protein GBSPI-A from Ginkgo Biloba Seed. J Food Biochem 2023. [DOI: 10.1155/2023/3979546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ginkgo biloba seed has antimicrobial activity. In this study, ginkgo biloba seed protein was prepared, identified, and named GBSPI-A, finding its construction was similar to 11-S globulin. Then, the influence of GBSPI-A on the cell membrane and physiological metabolism of K. pneumoniae and S. aureus were investigated. The results showed that GBSPI-A (20 mg/mL) destroyed the cell membrane, causing leakage of intracellular material and inhibited bacterial growth with an inhibition rate of approximately 80%. In addition, the GBSPI-A (10 mg/mL) caused the decreasing activity of ATPase and respiratory rate, and the respiratory depression rate was 7.24%. Furthermore, the decreasing ATP synthesis and intracellular β-galactosidase activity led to an insufficient supply of physiological metabolic energy. Therefore, the results showed that GBSPI-A could be used as a natural bacteriostatic agent to replace related drugs and also provide a new insight into the application of GBSPI-A in food safety.
Collapse
|
26
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
27
|
Zhang F, Yang P, Mao W, Zhong C, Zhang J, Chang L, Wu X, Liu H, Zhang Y, Gou S, Ni J. Short, mirror-symmetric antimicrobial peptides centered on "RRR" have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater 2022; 154:145-167. [PMID: 36241015 DOI: 10.1016/j.actbio.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The increasingly severe bacterial resistance worldwide pushes people to discover and design potential antibacterial drugs unavoidably. In this work, a series of short, mirror-symmetric peptides were designed and successfully synthesized, centered on "RRR" and labeled with hydrophobic amino acids at both ends. Based on the structure-activity relationship analysis, LWWR (LWWRRRWWL-NH2) was screened as a desirable mirror-symmetric peptide for further study. As expected, LWWR displayed broad-spectrum antibacterial activity against the standard bacteria and antibiotic-resistant strains. Undoubtedly, the high stability of LWWR in a complex physiological environment was an essential guarantee to maximizing its antibacterial activity. Indeed, LWWR also exhibited a rapid bactericidal speed and a low tendency to develop bacterial resistance, based on the multiple actions of non-receptor-mediated membrane actions and intra-cellular mechanisms. Surprisingly, although LWWR showed similar in vivo antibacterial activity compared with Polymyxin B and Melittin, the in vivo safety of LWWR was far higher than that of them, so LWWR had better therapeutic potential. In summary, the desirable mirror-symmetric peptide LWWR was promised as a potential antibacterial agent to confront the antibiotics resistance crisis. STATEMENT OF SIGNIFICANCE: Witnessing the growing problem of antibiotic resistance, a series of short, mirror-symmetric peptides based on the symmetric center "RRR" and hydrophobic terminals were designed and synthesized in this study. Among, LWWR (LWWRRRWWL-NH2) presented broad-spectrum antibacterial activity both in vitro and in vivo due to its multiple mechanisms and good stability. Meanwhile, the low drug resistance and toxicity of LWWR also suggested its potential for clinical application. The findings of this study will provide some inspiration for the design and development of potential antibacterial agents, and contribute to the elimination of bacterial infections worldwide as soon as possible.
Collapse
Affiliation(s)
- Fangyan Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
28
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Sharma A, Cipriano M, Ferrins L, Hajduk SL, Mensa-Wilmot K. Hypothesis-generating proteome perturbation to identify NEU-4438 and acoziborole modes of action in the African Trypanosome. iScience 2022; 25:105302. [PMID: 36304107 PMCID: PMC9593816 DOI: 10.1016/j.isci.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
NEU-4438 is a lead for the development of drugs against Trypanosoma brucei, which causes human African trypanosomiasis. Optimized with phenotypic screening, targets of NEU-4438 are unknown. Herein, we present a cell perturbome workflow that compares NEU-4438's molecular modes of action to those of SCYX-7158 (acoziborole). Following a 6 h perturbation of trypanosomes, NEU-4438 and acoziborole reduced steady-state amounts of 68 and 92 unique proteins, respectively. After analysis of proteomes, hypotheses formulated for modes of action were tested: Acoziborole and NEU-4438 have different modes of action. Whereas NEU-4438 prevented DNA biosynthesis and basal body maturation, acoziborole destabilized CPSF3 and other proteins, inhibited polypeptide translation, and reduced endocytosis of haptoglobin-hemoglobin. These data point to CPSF3-independent modes of action for acoziborole. In case of polypharmacology, the cell-perturbome workflow elucidates modes of action because it is target-agnostic. Finally, the workflow can be used in any cell that is amenable to proteomic and molecular biology experiments.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Michael Cipriano
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Stephen L. Hajduk
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA,Corresponding author
| |
Collapse
|
30
|
Synthetic Peptides against Plant Pathogenic Bacteria. Microorganisms 2022; 10:microorganisms10091784. [PMID: 36144386 PMCID: PMC9504393 DOI: 10.3390/microorganisms10091784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The control of plant diseases caused by bacteria that seriously compromise crop productivity around the world is still one of the most important challenges in food security. Integrated approaches for disease control generally lack plant protection products with high efficacy and low environmental and health adverse effects. Functional peptides, either from natural sources or synthetic, are considered as novel candidates to develop biopesticides. Synthetic peptides can be obtained based on the structure of natural compounds or de novo designed, considering the features of antimicrobial peptides. The advantage of this approach is that analogues can be conveniently prepared, enabling the identification of sequences with improved biological properties. Several peptide libraries have been designed and synthetized, and the best sequences showed strong bactericidal activity against important plant pathogenic bacteria, with a good profile of biodegradability and low toxicity. Among these sequences, there are bacteriolytic or antibiofilm peptides that work against the target bacteria, plant defense elicitor peptides, and multifunctional peptides that display several of these properties. Here, we report the research performed by our groups during the last twenty years, as well as our ongoing work. We also highlight those peptides that can be used as candidates to develop novel biopesticides, and the main challenges and prospects.
Collapse
|
31
|
Maleki Dizaj S, Salatin S, Khezri K, Lee JY, Lotfipour F. Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Front Microbiol 2022; 13:831655. [PMID: 35432230 PMCID: PMC9009044 DOI: 10.3389/fmicb.2022.831655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023] Open
Abstract
As a category of small peptides frequently found in nature, antimicrobial peptides (AMPs) constitute a major part of the innate immune system of various organisms. Antimicrobial peptides feature various inhibitory effects against fungi, bacteria, viruses, and parasites. Due to the increasing concerns of antibiotic resistance among microorganisms, development of antimicrobial peptides is an emerging tool as a favorable applicability prospect in food, medicine, aquaculture, animal husbandry, and agriculture. This review presents the latest research progress made in the field of antimicrobial peptides, such as their mechanism of action, classification, application status, design techniques, and a review on decoration of nanoparticles and polymers with AMPs that are used in treating multidrug resistance. Lastly, we will highlight recent progress in antiviral peptides to treat emerging viral diseases (e.g., anti-coronavirus peptides) and discuss the outlook of AMP applications.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Farzaneh Lotfipour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Food and Drug Safety Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
33
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
34
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
35
|
Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV. Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2? Int J Mol Sci 2020; 21:E9552. [PMID: 33333996 PMCID: PMC7765370 DOI: 10.3390/ijms21249552] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Sergei Yu. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
| | - Saikat D. Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (S.Y.G.); (A.K.S.); (A.V.P.); (M.V.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|