1
|
Min Q, Lv Q, Jiang L, Chen Q, Peng J, Zhou H, Zhou J, Dai Q, Zhou J, Huang Q. The Effect of Cryopreservation on T-Cell Subsets by Flow Cytometry Automated Algorithmic Analysis and Conventional Analysis. J Clin Lab Anal 2025:e25146. [PMID: 39749863 DOI: 10.1002/jcla.25146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/14/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Low-temperature cryopreservation is a common method for scientific research and clinical sample preservation when utilizing flow cytometry. In flow cytometry data analysis, traditional manual "gating" is susceptible to past experience and faces the challenge of manual subjective bias, time-consuming, and multidimensional data analysis. With the development of algorithms, the advantages of dimensionality reduction and clustering in result analysis are gradually becoming more prominent. METHODS Flow cytometry was used to detect the effects of cryopreservation and freeze-thaw cycle on T-cell subsets, and to analyze the data using automated algorithmic analysis and conventional manual "gating" methods. RESULTS The results showed that the number and viability of cells decreased slightly after one freeze-thaw within 2 weeks of cryopreservation, and there was no significant change in the subpopulation proportions and spatial locations by both analysis methods. The changes were significant with the increase of cryopreservation time and freeze-thaw cycle, which may be due to changes in the molecular conformation of the maker as a result of cryopreservation. CONCLUSION The results indicate that both analysis methods have reached similar conclusions, but the repeatability and objectivity of automated algorithmic analysis have compensated for the uncertainty brought about by the subjective discretization of traditional manual "gating." In addition, the automated algorithmic analysis more intuitively highlights the spatial positional variations in the relationships between cell populations.
Collapse
Affiliation(s)
- Qian Min
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiao Lv
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ju Zhou
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Dai
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianyun Zhou
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qing Huang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Dietz S, Hebel J, Rühle J, Huff A, Eltzschig HK, Lajqi T, Poets CF, Gille C, Köstlin‐Gille N. Impact of the adenosine receptor A2BR expressed on myeloid cells on immune regulation during pregnancy. Eur J Immunol 2024; 54:e2451149. [PMID: 39460389 PMCID: PMC11628929 DOI: 10.1002/eji.202451149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
During pregnancy, the maternal immune system must carefully balance protection against pathogens with tolerance toward the semiallogeneic fetus. Dysfunctions of the immune system can lead to severe complications such as preeclampsia, fetal growth restriction, or pregnancy loss. Adenosine plays a role in physiological processes and plasma-level increase during pregnancy. The adenosine receptor A2B (A2BR), which is expressed on both, immune and nonimmune cells, is activated by high adenosine concentrations, achieved during pregnancy. We investigated the impact of A2BR expressed on myeloid cells on immune regulation during pregnancy using a mouse model with myeloid deficiency for A2BR. We demonstrate systemic changes in myeloid and lymphoid cell populations during pregnancy in A2BR-KO (Adora2B923f/f-LysMCre) mice with increased monocytes, neutrophils, and T cells but decreased B cells as well as altered T-cell subpopulations with decreased Th1 cells and Tregs and increased Th17 cells. Lack of A2BR on myeloid cells caused an increased systemic expression of IL-6 but decreased systemic accumulation and function of MDSC and reduced numbers of uterine natural killer cells. The pregnancy outcome was only marginally affected. Our results demonstrate that A2BR on myeloid cells plays a role in immune regulation during pregnancy, but the clinical impact on pregnancy remains unclear.
Collapse
Affiliation(s)
- Stefanie Dietz
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Janine Hebel
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Jessica Rühle
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Alisha Huff
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | | | - Trim Lajqi
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Christian F. Poets
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Christian Gille
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Natascha Köstlin‐Gille
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| |
Collapse
|
3
|
Chupp DP, Rivera CE, Zhou Y, Xu Y, Ramsey PS, Xu Z, Zan H, Casali P. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat Immunol 2024; 25:1489-1506. [PMID: 38918608 PMCID: PMC11291283 DOI: 10.1038/s41590-024-01880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Humanized mice are limited in terms of modeling human immunity, particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated, genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells, followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system, including marginal zone B cells, germinal center B cells, follicular helper T cells and neutrophils, and develop well-formed lymph nodes and intestinal lymphoid tissue, including Peyer's patches, and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses, entailing somatic hypermutation, class-switch recombination, and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination, THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain, with blood incretion of human cytokines, including APRIL, BAFF, TGF-β, IL-4 and IFN-γ, all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses, THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel P Chupp
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Invivyd, Waltham, MA, USA
| | - Carlos E Rivera
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yulai Zhou
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yijiang Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Patrick S Ramsey
- Department of Obstetrics & Gynecology, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Zhenming Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Hong Zan
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Prellis Biologics, Berkeley, CA, USA
| | - Paolo Casali
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Long School of Medicine, San Antonio, TX, USA.
| |
Collapse
|
4
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
5
|
Morel D, Robert C, Paragios N, Grégoire V, Deutsch E. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin Cancer Res 2024; 30:2317-2332. [PMID: 38477824 PMCID: PMC11145173 DOI: 10.1158/1078-0432.ccr-23-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Ionizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment. An emerging concept is arising from this awareness and consists of reconsidering the way of designing radiation treatment planning, notably by taking into account the individualized risks of deleterious radio-induced immune alteration that can be deciphered from the planned beam trajectory through lymphocyte-rich organs. In this review, we critically appraise key aspects to consider while planning immunologically fitted radiotherapy, including the challenges linked to the identification of new dose constraints to immune-rich structures. We also discuss how pharmacologic immunomodulation could be advantageously used in combination with radiotherapy to compensate for the radio-induced loss, for example, with (i) agonists of interleukin (IL)2, IL4, IL7, IL9, IL15, or IL21, similarly to G-CSF being used for the prophylaxis of severe chemo-induced neutropenia, or with (ii) myeloid-derived suppressive cell blockers.
Collapse
Affiliation(s)
- Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| | - Nikos Paragios
- Therapanacea, Paris, France
- CentraleSupélec, Gif-sur-Yvette, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
6
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Zhang X, Heo GS, Li A, Lahad D, Detering L, Tao J, Gao X, Zhang X, Luehmann H, Sultan D, Lou L, Venkatesan R, Li R, Zheng J, Amrute J, Lin CY, Kopecky BJ, Gropler RJ, Bredemeyer A, Lavine K, Liu Y. Development of a CD163-Targeted PET Radiotracer That Images Resident Macrophages in Atherosclerosis. J Nucl Med 2024; 65:775-780. [PMID: 38548349 PMCID: PMC11064833 DOI: 10.2967/jnumed.123.266910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Indexed: 05/03/2024] Open
Abstract
Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.
Collapse
Affiliation(s)
- Xiuli Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Joan Tao
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Xuefeng Gao
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Rajiu Venkatesan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Ran Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Junedh Amrute
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin J Kopecky
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
8
|
Patel SK, Billingsley MM, Mukalel AJ, Thatte AS, Hamilton AG, Gong N, El-Mayta R, Safford HC, Merolle M, Mitchell MJ. Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery. Theranostics 2024; 14:1-16. [PMID: 38164140 PMCID: PMC10750194 DOI: 10.7150/thno.89913] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as a viable, clinically-validated platform for the delivery of mRNA therapeutics. LNPs have been utilized as mRNA delivery systems for applications including vaccines, gene therapy, and cancer immunotherapy. However, LNPs, which are typically composed of ionizable lipids, cholesterol, helper lipids, and lipid-anchored polyethylene glycol, often traffic to the liver which limits the therapeutic potential of the platform. Several approaches have been proposed to resolve this tropism such as post-synthesis surface modification or the addition of synthetic cationic lipids. Methods: Here, we present a strategy for achieving extrahepatic delivery of mRNA involving the incorporation of bile acids, a naturally-occurring class of cholesterol analogs, during LNP synthesis. We synthesized a series of bile acid-containing C14-4 LNPs by replacing cholesterol with bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, or lithocholic acid) at various ratios. Results: Bile acid-containing LNPs (BA-LNPs) were able to reduce delivery to liver cells in vitro and improve delivery in a variety of other cell types, including T cells, B cells, and epithelial cells. Our subsequent in vivo screening of selected LNP candidates injected intraperitoneally or intravenously identified a highly spleen tropic BA-LNP: CA-100, a four-component LNP containing cholic acid and no cholesterol. These screens also identified BA-LNP candidates demonstrating promise for other mRNA therapeutic applications such as for gastrointestinal or immune cell delivery. We further found that the substitution of cholic acid for cholesterol in an LNP formulation utilizing a different ionizable lipid, C12-200, also shifted mRNA delivery from the liver to the spleen, suggesting that this cholic acid replacement strategy may be generalizable. Conclusion: These results demonstrate the potential of a four-component BA-LNP formulation, CA-100, for extrahepatic mRNA delivery that could potentially be utilized for a range of therapeutic and vaccine applications.
Collapse
Affiliation(s)
- Savan K. Patel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alvin J. Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakan El-Mayta
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Merolle
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
10
|
Lee DY, Amirthalingam S, Lee C, Rajendran AK, Ahn YH, Hwang NS. Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles. NANOSCALE ADVANCES 2023; 5:3834-3856. [PMID: 37496613 PMCID: PMC10368001 DOI: 10.1039/d3na00198a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Gene therapy is a promising approach for the treatment of many diseases. However, the effective delivery of the cargo without degradation in vivo is one of the major hurdles. With the advent of lipid nanoparticles (LNPs) and cell-derived nanovesicles (CDNs), gene delivery holds a very promising future. The targeting of these nanosystems is a prerequisite for effective transfection with minimal side-effects. In this review, we highlight the emerging strategies utilized for the effective targeting of LNPs and CDNs, and we summarize the preparation methodologies for LNPs and CDNs. We have also highlighted the non-ligand targeting of LNPs toward certain organs based on their composition. It is highly expected that continuing the developments in the targeting approaches of LNPs and CDNs for the delivery system will further promote them in clinical translation.
Collapse
Affiliation(s)
- Dong-Yup Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Young-Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
11
|
Rasmussen M, Alvik K, Kannen V, Olafsen NE, Erlingsson LAM, Grimaldi G, Takaoka A, Grant DM, Matthews J. Loss of PARP7 Increases Type I Interferon Signaling in EO771 Breast Cancer Cells and Prevents Mammary Tumor Growth by Increasing Antitumor Immunity. Cancers (Basel) 2023; 15:3689. [PMID: 37509350 PMCID: PMC10377955 DOI: 10.3390/cancers15143689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PARP7 is a member of the ADP-ribosyltransferase diphtheria toxin-like (ARTD) family and acts as a repressor of type I interferon (IFN) signaling. PARP7 inhibition causes tumor regression by enhancing antitumor immunity, which is dependent on the stimulator of interferon genes (STING) pathway, TANK-binding kinase 1 (TBK1) activity, and cytotoxic CD8+ T cells. To better understand PARP7's role in cancer, we generated and characterized PARP7 knockout (Parp7KO) EO771 mouse mammary cancer cells in vitro and in a preclinical syngeneic tumor model using catalytic mutant Parp7H532A mice. Loss of PARP7 expression or inhibition of its activity increased type I IFN signaling, as well as the levels of interferon-stimulated gene factor 3 (ISGF3) and specifically unphosphorylated-ISGF3 regulated target genes. This was partly because PARP7's modification of the RelA subunit of nuclear factor κ-B (NF-κB). PARP7 loss had no effect on tumor growth in immunodeficient mice. In contrast, injection of wildtype cells into Parp7H532A mice resulted in smaller tumors compared with cells injected into Parp7+/+ mice. Parp7H532A mice injected with Parp7KO cells failed to develop tumors and those that developed regressed. Our data highlight the importance of PARP7 in the immune cells and further support targeting PARP7 for anticancer therapy.
Collapse
Affiliation(s)
- Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Vinicius Kannen
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ninni E Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Linnea A M Erlingsson
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Giulia Grimaldi
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, 7 Chome Kita 15 Jonishi, Sapporo 060-8628, Japan
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|