1
|
Álvarez-Mínguez A, del Río N, Belén-Blázquez A, Casanova E, Orduña JM, Camarero P, Hurtado-Marcos C, del Águila C, Pérez-Pérez M, Martín-Acebes MA, Agudo R. Development of a luminescence-based method for measuring West Nile Virus MTase activity and its application to screen for antivirals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100282. [PMID: 39445035 PMCID: PMC11497361 DOI: 10.1016/j.crmicr.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
West Nile virus (WNV) is a flavivirus responsible for causing febrile illness and severe neurological diseases, with an increasing impact on human health around the world. However, there is still no adequate therapeutic treatment available to struggle WNV infections. Therefore, there is an urgent need to develop new techniques to accelerate the discovery of drugs against this pathogen. The main protein implicated in the replication of WNV is the non-structural protein 5 (NS5). This multifunctional protein contains methyltransferase (MTase) activity involved in the capping formation at the 5'-end of RNA and the methylation of internal viral RNA residues, both functions being essential for viral processes, such as RNA translation and escape from the innate immune response. We have developed a straightforward luminescence-based assay to monitor the MTase activity of the WNV NS5 protein with potential for high-throughput screening. We have validated this method as a sensitive and suitable assay for the identification of WNV MTase inhibitors assessing the inhibitory effect of the broad MTase inhibitor sinefungin, a natural nucleoside analog of the universal methyl donor S-adenosyl methionine (SAM). The screening of a small series of purine derivatives identified an adenosine derivative as a dose-dependent inhibitor of the MTase activity. The antiviral efficacy of this compound was further confirmed in WNV infections, displaying a measurable antiviral effect. This result supports the utility of this novel method for the screening of inhibitors against WNV MTase activity, which can be of special relevance to the discovery and development of therapeutics against WNV.
Collapse
Affiliation(s)
- Alejandra Álvarez-Mínguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Natalia del Río
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
- Escuela de Doctorado, Universidad Autónoma de Madrid, Spain
| | - Ana Belén-Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Elena Casanova
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - José-María Orduña
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Patricia Camarero
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carolina Hurtado-Marcos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Carmen del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | | | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Rubén Agudo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| |
Collapse
|
2
|
Bird IM, Cavener V, Surendran Nair M, Nissly RH, Chothe SK, Jacob J, Kuchipudi SV. Distinct Replication Kinetics, Cytopathogenicity, and Immune Gene Regulation in Human Microglia Cells Infected with Asian and African Lineages of Zika Virus. Microorganisms 2024; 12:1840. [PMID: 39338514 PMCID: PMC11433722 DOI: 10.3390/microorganisms12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a significant global health concern due to its association with neurodevelopmental disorders such as congenital Zika syndrome (CZS). This study aimed to compare the replication kinetics, viral persistence, cytopathogenic effects, and immune gene expression in human microglia cells (CHME-3) infected with an Asian lineage ZIKV (PRVABC59, referred to as ZIKV-PRV) and an African lineage ZIKV (IBH30656, referred to as ZIKV-IBH). We found that ZIKV-PRV replicated more efficiently and persisted longer while inducing lower levels of cell death and inflammatory gene activation compared with ZIKV-IBH. These findings suggest that the enhanced replication and persistence of ZIKV-PRV, along with its ability to evade innate immune responses, may underlie its increased neuropathogenic potential, especially in the context of CZS. In contrast, ZIKV-IBH, with its stronger immune gene activation and higher cytopathogenicity, may lead to more acute infections with faster viral clearance, thereby reducing the likelihood of chronic central nervous system (CNS) infection. This study provides crucial insights into the molecular and cellular mechanisms driving the differential pathogenicity of ZIKV lineages and highlights the need for further research to pinpoint the viral factors responsible for these distinct clinical outcomes.
Collapse
Affiliation(s)
- Ian M. Bird
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Victoria Cavener
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30329, USA;
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| |
Collapse
|
3
|
Feng Y. Recent advances in the study of zika virus structure, drug targets, and inhibitors. Front Pharmacol 2024; 15:1418516. [PMID: 39011504 PMCID: PMC11246971 DOI: 10.3389/fphar.2024.1418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Zika Virus (ZIKV) is a positive-strand RNA virus that can lead to Guillain-Barré syndrome or encephalitis in some individuals and hence presents a serious public health risk. Since the first outbreak of ZIKV in Brazil in 2015, no effective clinical inhibitors have been developed, making the development of effective ZIKV drugs an urgent issue that needs to be addressed. ZIKV belongs to the Flaviviridae family, and its structure includes three structural proteins, namely, capsular (C), premembrane (prM), and envelope (E) proteins, as well as seven nonstructural proteins, namely, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. To provide a reference for the development of future ZIKV drugs, this paper reviews the structure of the ZIKV based on recent literature reports, analyzes the potential therapeutic targets of various proteins, and proposes feasible drug design strategies. Additionally, this paper reviews and classifies the latest research progress on several protease inhibitors, such as E protein inhibitors, NS2B-NS3 inhibitors, and NS5 inhibitors, so that researchers can quickly understand the current status of development and the interconnections among these inhibitors.
Collapse
Affiliation(s)
- Yingqi Feng
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
4
|
Tafesh-Edwards G, Kyza Karavioti M, Markollari K, Bunnell D, Chtarbanova S, Eleftherianos I. Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner. Front Microbiol 2024; 15:1380647. [PMID: 38903791 PMCID: PMC11188429 DOI: 10.3389/fmicb.2024.1380647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Margarita Kyza Karavioti
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Klea Markollari
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Dean Bunnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Stanislava Chtarbanova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Deng X, Lv C, Wang T, Guo J, Luo R, Qi J, Sima M, Yue D, Gao Y. Antiviral activity of theaflavins against Zika virus in vivo and in vitro. J Infect Chemother 2024; 30:571-578. [PMID: 38036028 DOI: 10.1016/j.jiac.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION The prevalence and infection of the Zika virus (ZIKV) have recently posed a major threat to global public health security. However, there is currently a lack of specific vaccines and effective antiviral drugs for ZIKV infection. METHODS Theaflavins TF1 and TF2 were selected by evaluating the anti-Zika virus activity of four kinds of theaflavins in vitro. Subsequently, in vivo, we investigated the effects of TF1 and TF2 on weight, survival, tissue viral load, and cytokines in ZIKV-infected mice. RESULTS We compared the anti-ZIKV activity of four theaflavins (TFs) in cells and found that TF1 and TF2b significantly inhibited the replication of ZIKV/Z16006 toxic strain in BHK and Vero cells by inhibiting the replication and release of ZIKV, while no similar effects were observed for TF2a and TF3. In vivo assay, we only found that TF2b improved the survival rate of infected mice. In tissues of ZIKV-infected mice, the viral load was higher in spleen and blood, followed by liver, epididymis, and testis, the lowest in muscle. Additionally, TF2b treatment significantly reduced the expression of cytokines (IL-6, IL-1β, TNF-α) and chemokines (CCL2, CCL5, CXCL10) induced by ZIKV infection. CONCLUSIONS These findings suggest that TF2b has a potent antiviral effect and can be used as a potential candidate for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Xiuwen Deng
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chaoxiang Lv
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jin Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jing Qi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Life Sciences, Northeast Normal University, Changchun, 130021, China
| | - Mingwei Sima
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Donghui Yue
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Yuwei Gao
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
7
|
Wang J, Ji J, Zhong Y, Meng W, Wan S, Ding X, Chen Z, Wu W, Jia K, Li S. Construction of recombinant fluorescent LSDV for high-throughput screening of antiviral drugs. Vet Res 2024; 55:33. [PMID: 38493160 PMCID: PMC10943802 DOI: 10.1186/s13567-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024] Open
Abstract
Lumpy skin disease virus (LSDV) infection is a major socio-economic issue that seriously threatens the global cattle-farming industry. Here, a recombinant virus LSDV-ΔTK/EGFP, expressing enhanced green fluorescent protein (EGFP), was constructed with a homologous recombination system and applied to the high-throughput screening of antiviral drugs. LSDV-ΔTK/EGFP replicates in various kidney cell lines, consistent with wild-type LSDV. The cytopathic effect, viral particle morphology, and growth performance of LSDV-ΔTK/EGFP are consistent with those of wild-type LSDV. High-throughput screening allowed to identify several molecules that inhibit LSDV-ΔTK/EGFP replication. The strong inhibitory effect of theaflavin on LSDV was identified when 100 antiviral drugs were screened in vitro. An infection time analysis showed that theaflavin plays a role in the entry of LSDV into cells and in subsequent viral replication stages. The development of this recombinant virus will contribute to the development of LSDV-directed antiviral drugs and the study of viral replication and mechanisms of action.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jinzhao Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Yongcheng Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaobin Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xiaoqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Weiyong Wu
- Agriculture and Rural Affairs Bureau of Luocheng Mulao Autonomous County, Guangxi, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China.
| |
Collapse
|
8
|
Samrat SK, Bashir Q, Huang Y, Trieshmann CW, Tharappel AM, Zhang R, Chen K, Geoge Zheng Y, Li Z, Li H. Broad-Spectrum Small-Molecule Inhibitors Targeting the SAM-Binding Site of Flavivirus NS5 Methyltransferase. ACS Infect Dis 2023; 9:1319-1333. [PMID: 37348028 PMCID: PMC10436986 DOI: 10.1021/acsinfecdis.2c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors. The NS5 protein is regarded as one of the most promising flavivirus drug targets because it is conserved across flaviviruses. In this study, we used FL-NAH, a fluorescent analog of the methyl donor S-adenosyl methionine (SAM), to develop a fluorescence polarization (FP)-based high throughput screening (HTS) assay to specifically target methyltransferase (MTase), a vital enzyme for flaviviruses that methylates the N7 and 2'-O positions of the viral 5'-RNA cap. Pilot screening identified two candidate MTase inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the DENV3 MTase with low micromolar IC50. Functional assays verified the inhibitory potency of these molecules for the flavivirus MTase activity. Binding studies indicated that these molecules are bound directly to the DENV3 MTase with similar low micromolar affinity. Furthermore, we showed that these compounds greatly reduced ZIKV replication in cell-based experiments at dosages that did not cause cytotoxicity. Finally, docking studies revealed that these molecules bind to the SAM-binding region on the DENV3 MTase, and further mutagenesis studies verified residues important for the binding of these compounds. Overall, these compounds are innovative and attractive candidates for the development of broad-spectrum inhibitors for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Carl William Trieshmann
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Y. Geoge Zheng
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson AZ, 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
10
|
Shukla R, Chandra A, Kumar A, Kandpal P, Avashthi H, Goel VK, Qamar I, Singh N, Kelvin DJ, Singh TR. Repurposing of drugs against methyltransferase as potential Zika virus therapies. Sci Rep 2023; 13:7870. [PMID: 37188743 PMCID: PMC10184974 DOI: 10.1038/s41598-023-33341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
In recent years, the outbreak of infectious disease caused by Zika Virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Several possible druggable targets involved in virus replication have been identified. In search of additional potential inhibitors, we screened 2895 FDA-approved compounds using Non-Structural Protein 5 (NS5) as a target utilizing virtual screening of in-silco methods. The top 28 compounds with the threshold of binding energy -7.2 kcal/mol value were selected and were cross-docked on the three-dimensional structure of NS5 using AutoDock Tools. Of the 2895 compounds screened, five compounds (Ceforanide, Squanavir, Amcinonide, Cefpiramide, and Olmesartan_Medoxomil) ranked highest based on filtering of having the least negative interactions with the NS5 and were selected for Molecular Dynamic Simulations (MDS) studies. Various parameters such as RMSD, RMSF, Rg, SASA, PCA and binding free energy were calculated to validate the binding of compounds to the target, ZIKV-NS5. The binding free energy was found to be -114.53, -182.01, -168.19, -91.16, -122.56, and -150.65 kJ mol-1 for NS5-SFG, NS5-Ceforanide, NS5-Squanavir, NS5-Amcinonide, NS5-Cefpiramide, and NS5-Ol_Me complexes respectively. The binding energy calculations suggested Cefpiramide and Olmesartan_Medoxomil (Ol_Me) as the most stable compounds for binding to NS5, indicating a strong rationale for their use as lead compounds for development of ZIKV inhibitors. As these drugs have been evaluated on pharmacokinetics and pharmacodynamics parameters only, in vitro and in vivo testing and their impact on Zika viral cell culture may suggest their clinical trials on ZIKV patients.
Collapse
Affiliation(s)
- Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India
- Centre for Excellence in Healthcare Technologies and Informatics (CEHTI), Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201312, India
- School of Physical Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anuj Kumar
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
- Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
- European Virus Bioinformatics Center, Leutragraben 1, Jena, Germany
| | | | - Himanshu Avashthi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201312, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201312, India.
| | - David J Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, China.
- Department of Microbiology and Immunology, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada.
- Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada.
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India.
- Centre for Excellence in Healthcare Technologies and Informatics (CEHTI), Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh, 173234, India.
| |
Collapse
|
11
|
Delgado-Maldonado T, Moreno-Herrera A, Pujadas G, Vázquez-Jiménez LK, González-González A, Rivera G. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika. Eur J Med Chem 2023; 252:115290. [PMID: 36958266 DOI: 10.1016/j.ejmech.2023.115290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007, Tarragona, Catalonia, Spain
| | - Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico.
| |
Collapse
|
12
|
Abstract
Flaviviruses are vector-borne pathogens capable of causing devastating human diseases. The re-emergence of Zika in 2016 notoriously led to a widescale epidemic in the Americas. New daunting evidence suggests that a single mutation in Zika virus genome may increase transmission and pathogenesis, further highlighting the need to be prepared for flavivirus outbreaks. Dengue, in particular infects about 400 million people each year, leading to reoccurring local outbreaks. Public health efforts to mitigate flavivirus transmission is largely dependent on vector control strategies, as only a limited number of flavivirus vaccines have been developed thus far. There are currently no commercially available antivirals for flaviviruses, leaving supportive care as the primary treatment option. In this review, we will briefly paint a broad picture of the flavivirus landscape in terms of therapeutics, with particular focus on viral targets, promising novel compounds entering the drug discovery pipeline, as well as model systems for evaluating drug efficacy.
Collapse
|
13
|
Bobileva O, Bobrovs R, Sirma EE, Kanepe I, Bula AL, Patetko L, Ramata-Stunda A, Grinberga S, Jirgensons A, Jaudzems K. 3-(Adenosylthio)benzoic Acid Derivatives as SARS-CoV-2 Nsp14 Methyltransferase Inhibitors. Molecules 2023; 28:molecules28020768. [PMID: 36677825 PMCID: PMC9862586 DOI: 10.3390/molecules28020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.
Collapse
Affiliation(s)
- Olga Bobileva
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
- Correspondence:
| | - Raitis Bobrovs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | | | - Iveta Kanepe
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Anna L. Bula
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Liene Patetko
- Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia
| | | | | | | | | |
Collapse
|
14
|
Chen T, Yang H, Liu P, Hamiti M, Zhang X, Xu Y, Quan W, Zhang Y, Yu W, Jiao L, Du T, Xi J, Yin B, Zhou W, Lu S, Peng X. Splicing factor SF3B3, a NS5-binding protein, restricts ZIKV infection by targeting GCH1. Virol Sin 2022; 38:222-232. [PMID: 36572150 PMCID: PMC10176263 DOI: 10.1016/j.virs.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Zika virus (ZIKV), a positive-sense single-stranded RNA virus, causes congenital ZIKV syndrome in children and Guillain-Barré Syndrome (GBS) in adults. ZIKV expresses nonstructural protein 5 (NS5), a large protein that is essential for viral replication. ZIKV NS5 confers the ability to evade interferon (IFN) signalling; however, the exact mechanism remains unclear. In this study, we employed affinity pull-down and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and found that splicing factor 3b subunit 3 (SF3B3) is associated with the NS5-Flag pull-down complex through interaction with NS5. Functional assays showed that SF3B3 overexpression inhibited ZIKV replication by promoting IFN-stimulated gene (ISG) expression whereas silencing of SF3B3 inhibited expression of ISGs to promote ZIKV replication. GTP cyclohydrolase I (GCH1) is the first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis. NS5 upregulates the expression of GCH1 during ZIKV infection. And GCH1 marginally promoted ZIKV replication via the IFN pathway. Additionally, GCH1 expression is related to the regulation of SF3B3. Overexpression of the SF3B3 protein effectively reduced GCH1 protein levels, whereas SF3B3 knockdown increased its levels. These findings indicated that ZIKV NS5 binding protein SF3B3 contributed to the host immune response against ZIKV replication by modulating the expression of GCH1.
Collapse
Affiliation(s)
- Tanxiu Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China; Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Penghui Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Moliduer Hamiti
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xintian Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Yi Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Wenqi Quan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Yong Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhou
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China.
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China; The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
15
|
Discovery of dehydroandrographolide derivatives with C19 hindered ether as potent anti-ZIKV agents with inhibitory activities to MTase of ZIKV NS5. Eur J Med Chem 2022; 243:114710. [DOI: 10.1016/j.ejmech.2022.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
16
|
Ferrero DS, Albentosa-González L, Mas A, Verdaguer N. Structure and function of the NS5 methyltransferase domain from Usutu virus. Antiviral Res 2022; 208:105460. [DOI: 10.1016/j.antiviral.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
17
|
Ezeh M, Okonkwo OE, Okpoli IN, Orji CE, Modozie BU, Onyema AC, Ezebuo FC. Chemoinformatic Design and Profiling of Derivatives of Dasabuvir, Efavirenz, and Tipranavir as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase and Methyltransferase. ACS OMEGA 2022; 7:33330-33348. [PMID: 36157724 PMCID: PMC9494688 DOI: 10.1021/acsomega.2c03945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
Zika virus (ZIKV) infection is one of the mosquito-borne flaviviruses of human importance with more than 2 million suspected cases and more than 1 million people infected in about 30 countries. There are reported inhibitors of the zika virus replication machinery, but no approved effective antiviral therapy including vaccines directed against the virus for treatment or prevention is currently available. The study investigated the chemoinformatic design and profiling of derivatives of dasabuvir, efavirenz, and tipranavir as potential inhibitors of the zika virus RNA-dependent RNA polymerase (RdRP) and/or methyltransferase (MTase). The three-dimensional (3D) coordinates of dasabuvir, efavirenz, and tipranavir were obtained from the PubChem database, and their respective derivatives were designed with DataWarrior-5.2.1 using an evolutionary algorithm. Derivatives that were not mutagenic, tumorigenic, or irritant were selected; docked into RdRP and MTase; and further subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation with Swiss-ADME and pkCSM web tools. Some of the designed compounds are Lipinski's rule-of-five compliant, with good synthetic accessibilities. Compounds 20d, 21d, 22d, and 1e are nontoxic with the only limitation of CYP1A2, CYP2C19, and/or CYP2C9 inhibition. Replacements of -CH3 and -NH- in the methanesulfonamide moiety of dasabuvir with -OH and -CH2- or -CH2CH2-, respectively, improved the safety/toxicity profile. Hepatotoxicity in 5d, 4d, and 18d is likely due to -NH- in their methanesulfonamide/sulfamic acid moieties. These compounds are potent inhibitors of N-7 and 2'-methylation activities of ZIKV methyltransferase and/or RNA synthesis through interactions with amino acid residues in the priming loop/"N-pocket" in the virus RdRP. Synthesis of these compounds and wet laboratory validation against ZIKV are recommended.
Collapse
Affiliation(s)
- Madeleine
I. Ezeh
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
| | - Onyinyechi E. Okonkwo
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
| | - Innocent N. Okpoli
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
- Drug
Design and Informatics Group, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra State, Nigeria
| | - Chima E. Orji
- Department
of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra State, Nigeria
| | - Benjamin U. Modozie
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
| | - Augustine C. Onyema
- Department
of Biochemistry, Graduate Center, City University
of New York (CUNY), New York, New York 10016, United States
| | - Fortunatus C. Ezebuo
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
- Drug
Design and Informatics Group, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra State, Nigeria
| |
Collapse
|
18
|
Hooda P, Chaudhary M, Parvez MK, Sinha N, Sehgal D. Inhibition of Hepatitis E Virus Replication by Novel Inhibitor Targeting Methyltransferase. Viruses 2022; 14:v14081778. [PMID: 36016400 PMCID: PMC9415367 DOI: 10.3390/v14081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis E Virus (HEV) is a quasi-enveloped virus having a single-stranded, positive-sense RNA genome (~7.2 kb), flanked with a 5′ methylated cap and a 3′ polyadenylated tail. The HEV open reading frame 1 (ORF1) encodes a 186-kDa polyprotein speculated to get processed and produce Methyltransferase (MTase), one of the four essential replication enzymes. In this study, we report the identification of the MTase inhibitor, which may potentially deplete its enzymatic activity, thus causing the cessation of viral replication. Using in silico screening through docking, we identified ten putative compounds, which were tested for their anti-MTase activity. This resulted in the identification of 3-(4-Hydroxyphenyl)propionic acid (HPPA), with an IC50 value of 0.932 ± 0.15 μM, which could be perceived as an effective HEV inhibitor. Furthermore, the compound was tested for inhibition of HEV replication in the HEV culture system. The viral RNA copies were markedly decreased from ~3.2 × 106 in untreated cells to ~4.3 × 102.8 copies in 800 μM HPPA treated cells. Therefore, we propose HPPA as a potential drug-like inhibitor against HEV-MTase, which would need further validation through in vivo analysis using animal models and the administration of Pharmacokinetic and Pharmacodynamic (PK/PD) studies.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Gautam Budh Nagar, Greater Noida 201314, India
| | - Meenakshi Chaudhary
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Gautam Budh Nagar, Greater Noida 201314, India
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.P.); (D.S.)
| | - Neha Sinha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Gautam Budh Nagar, Greater Noida 201314, India
- Correspondence: (M.K.P.); (D.S.)
| |
Collapse
|
19
|
Discovery of Bispecific Lead Compounds from Azadirachta indica against ZIKA NS2B-NS3 Protease and NS5 RNA Dependent RNA Polymerase Using Molecular Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082562. [PMID: 35458761 PMCID: PMC9025849 DOI: 10.3390/molecules27082562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) has been characterized as one of many potential pathogens and placed under future epidemic outbreaks by the WHO. However, a lack of potential therapeutics can result in an uncontrolled pandemic as with other human pandemic viruses. Therefore, prioritized effective therapeutics development has been recommended against ZIKV. In this context, the present study adopted a strategy to explore the lead compounds from Azadirachta indica against ZIKV via concurrent inhibition of the NS2B-NS3 protease (ZIKVpro) and NS5 RNA dependent RNA polymerase (ZIKVRdRp) proteins using molecular simulations. Initially, structure-based virtual screening of 44 bioflavonoids reported in Azadirachta indica against the crystal structures of targeted ZIKV proteins resulted in the identification of the top four common bioflavonoids, viz. Rutin, Nicotiflorin, Isoquercitrin, and Hyperoside. These compounds showed substantial docking energy (−7.9 to −11.01 kcal/mol) and intermolecular interactions with essential residues of ZIKVpro (B:His51, B:Asp75, and B:Ser135) and ZIKVRdRp (Asp540, Ile799, and Asp665) by comparison to the reference compounds, O7N inhibitor (ZIKVpro) and Sofosbuvir inhibitor (ZIKVRdRp). Besides, long interval molecular dynamics simulation (500 ns) on the selected docked poses reveals stability of the respective docked poses contributed by intermolecular hydrogen bonds and hydrophobic interactions. The predicted complex stability was further supported by calculated end-point binding free energy using molecular mechanics generalized born surface area (MM/GBSA) method. Consequently, the identified common bioflavonoids are recommended as promising therapeutic inhibitors of ZIKVpro and ZIKVRdRp against ZIKV for further experimental assessment.
Collapse
|
20
|
Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res 2022; 50:4216-4245. [PMID: 35412633 PMCID: PMC9071492 DOI: 10.1093/nar/gkac224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
RNA methyltransferases (MTases) are ubiquitous enzymes whose hitherto low profile in medicinal chemistry, contrasts with the surging interest in RNA methylation, the arguably most important aspect of the new field of epitranscriptomics. As MTases become validated as drug targets in all major fields of biomedicine, the development of small molecule compounds as tools and inhibitors is picking up considerable momentum, in academia as well as in biotech. Here we discuss the development of small molecules for two related aspects of chemical biology. Firstly, derivates of the ubiquitous cofactor S-adenosyl-l-methionine (SAM) are being developed as bioconjugation tools for targeted transfer of functional groups and labels to increasingly visible targets. Secondly, SAM-derived compounds are being investigated for their ability to act as inhibitors of RNA MTases. Drug development is moving from derivatives of cosubstrates towards higher generation compounds that may address allosteric sites in addition to the catalytic centre. Progress in assay development and screening techniques from medicinal chemistry have led to recent breakthroughs, e.g. in addressing human enzymes targeted for their role in cancer. Spurred by the current pandemic, new inhibitors against coronaviral MTases have emerged at a spectacular rate, including a repurposed drug which is now in clinical trial.
Collapse
Affiliation(s)
- Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Marlies Weber
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128Mainz, Germany
| |
Collapse
|