1
|
Chauhan N, Gaur KK, Asuru TR, Guchhait P. Dengue virus: pathogenesis and potential for small molecule inhibitors. Biosci Rep 2024; 44:BSR20240134. [PMID: 39051974 PMCID: PMC11327219 DOI: 10.1042/bsr20240134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Dengue, caused by dengue virus (DENV), is now endemic in nearly 100 countries and infection incidence is reported in another 30 countries. Yearly an estimated 400 million cases and 2200 deaths are reported. Effective vaccines against DENV are limited and there has been significant focus on the development of effective antiviral against the disease. The World Health Organization has initiated research programs to prioritize the development and optimization of antiviral agents against several viruses including Flaviviridae. A significant effort has been taken by the researchers to develop effective antivirals against DENV. Several potential small-molecule inhibitors like efavirenz, tipranavir and dasabuvir have been tested against envelope and non-structural proteins of DENV, and are in clinical trials around the world. We recently developed one small molecule, namely 7D, targeting the host PF4-CXCR3 axis. 7D inhibited all 4 serotypes of DENV in vitro and specifically DENV2 infection in two different mice models. Although the development of dengue vaccines remains a high priority, antibody cross reactivity among the serotypes and resulting antibody-dependent enhancement (ADE) of infection are major concerns that have limited the development of effective vaccine against DENV. Therefore, there has been a significant emphasis on the development of antiviral drugs against dengue. This review article describes the rescue effects of some of the small molecule inhibitors to viral/host factors associated with DENV pathogenesis.
Collapse
Affiliation(s)
- Navya Chauhan
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
2
|
Mia MM, Allaie IM, Zhang X, Li K, Khan SM, Kadotani S, Witola WH. Characterization of a unique catechol-O-methyltransferase as a molecular drug target in parasitic filarial nematodes. PLoS Negl Trop Dis 2024; 18:e0012473. [PMID: 39213433 PMCID: PMC11392244 DOI: 10.1371/journal.pntd.0012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Filarial nematodes cause severe illnesses in humans and canines including limb deformities and disfigurement, heart failure, blindness, and death, among others. There are no vaccines, and current drugs against filarial nematodes infections have only modest effects and are prone to complications. METHODOLOGY/PRINCIPAL FINDINGS We identified a gene (herein called DiMT) encoding an S-adenosyl-L-methionine (SAM)-dependent methyltransferase with orthologs in parasite filarial worms but not in mammals. By in silico analysis, DiMT possesses catalytic sites for binding SAM and catecholamines with high affinity. We expressed and purified recombinant DiMT protein and used it as an enzyme in a series of SAM-dependent methylation assays. DiMT acted specifically as a catechol-O-methyltransferase (COMT), catalyzing catabolic methylation of dopamine, and depicted Michaelis Menten kinetics on substrate and co-substrate. Among a set of SAM-dependent methyltransferase inhibitors, we identified compounds that bound with high affinity to DiMT's catalytic sites and inhibited its enzymatic activity. By testing the efficacy of DiMT inhibitors against microfilariae of Dirofilaria immitis in culture, we identified three inhibitors with concentration- and time-dependent effect of killing D. immitis microfilariae. Importantly, RNAi silencing of a DiMT ortholog in Caenorhabditis elegans has been shown to be lethal, likely as a result of excessive accumulation of active catecholamines that inhibit worm locomotion, pharyngeal pumping and fecundity. CONCLUSIONS/SIGNIFICANCE Together, we have unveiled DiMT as an essential COMT that is conserved in parasitic filarial nematodes, but is significantly different from mammalian COMTs and, therefore, is a viable target for development of novel drugs against filarial nematode infections.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Idrees Mehraj Allaie
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xuejin Zhang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kun Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Institute of Traditional Chinese Veterinary Medicine, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shahbaz M Khan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saki Kadotani
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Oudah KH, Najm MAA, Barghash RF, Kutkat O, GabAllah M, Albohy A, Abouzid KAM. Drug repurposing of pyrazolotriazine derivatives as potential anti-SARS-CoV-2 agents: in vitro and in silico studies. BMC Chem 2024; 18:132. [PMID: 39014447 PMCID: PMC11253567 DOI: 10.1186/s13065-024-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
The search for new molecules targeting SARS-CoV-2 has been a priority since 2020. The continuous evolution of new mutants increases the need for more research in the area. One way to find new leads is to repurpose existing drugs and molecules against the required target. Here, we present the in vitro and in silico screening of ten previously synthesized and reported compounds as anti-COVID 19 agents. The compounds were screened in vitro against VERO-E6 cells to find their Cytotoxic Concentration (CC50) and their Inhibitory Concentration (IC50). Compounds 1, 2, and 5 revealed a promising anti-SARS-CoV-2 of (IC50 = 2.4, 11.2 and 2.8 µM), respectively while compounds 3 and 7 showed moderate activity of (IC50 = 17.8 and 26.1 µM) compared to Chloroquine which showed an IC50 of 24.9 µM. Among tested compounds, 1 showed the highest selectivity (CC50/IC50) of 192.8. Docking, molecular dynamics and ADME studies were done to investigate potential interactions between compounds and SARS-CoV-2 targets as well as to study the possibility of using them as lead compounds.
Collapse
Affiliation(s)
- Khulood H Oudah
- Department of Pharmacy, Mazaya University Collage, Nasiriyah, Thi-Qar, Iraq
| | - Mazin A A Najm
- Department of Pharmacy, Mazaya University Collage, Nasiriyah, Thi-Qar, Iraq
| | - Reham F Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Giza, 12622, Egypt
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA University), Giza, Egypt
| | - Omnia Kutkat
- Center of Scientifc Excellence for Infuenza Viruses, National Research Centre, Dokki, Giza, 12622, Egypt
- Department of microbiology, Faculty of pharmacy, Ahram Canadian University, 6 th of October, Giza, 12566, Egypt
| | - Mohamed GabAllah
- Center of Scientifc Excellence for Infuenza Viruses, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Cairo, Egypt.
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Gao X, Xuan Y, Zhou Z, Chen C, Wen Wang D, Wen Z. Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65. Int Immunopharmacol 2024; 133:112073. [PMID: 38636372 DOI: 10.1016/j.intimp.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/β-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS Increased expression of importin β was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1β/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.
Collapse
Affiliation(s)
- Xu Gao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yunling Xuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China.
| |
Collapse
|
5
|
Betancur-Galvis L, Jimenez-Jarava OJ, Rivas F, Mendoza-Hernández WE, González-Cardenete MA. Synergistic In Vitro Antiviral Effect of Combinations of Ivermectin, Essential Oils, and 18-(Phthalimid-2-yl)ferruginol against Arboviruses and Herpesvirus. Pharmaceuticals (Basel) 2023; 16:1602. [PMID: 38004467 PMCID: PMC10674234 DOI: 10.3390/ph16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Combining antiviral drugs with different mechanisms of action can help prevent the development of resistance by attacking the infectious agent through multiple pathways. Additionally, by using faster and more economical screening methods, effective synergistic drug candidates can be rapidly identified, facilitating faster paths to clinical testing. In this work, a rapid method was standardized to identify possible synergisms from drug combinations. We analyzed the possible reduction in the antiviral effective concentration of drugs already approved by the FDA, such as ivermectin (IVM), ribavirin (RIBA), and acyclovir (ACV) against Zika virus (ZIKV), Chikungunya virus (CHIKV), and herpes virus type 2 (HHV-2). Essential oils (EOs) were also included in the study since they have been reported for more than a couple of decades to have broad-spectrum antiviral activity. We also continued studying the antiviral properties of one of our patented molecules with broad-spectrum antiviral activity, the ferruginol analog 18-(phthalimid-2-yl)ferruginol (phthFGL), which presented an IC99 of 25.6 μM for the three types of virus. In general, the combination of IVM, phthFGL, and oregano EO showed the greatest synergism potential against CHIKV, ZIKV, and HHV-2. For instance, this combination achieved reductions in the IC99 value of each component up to ~8-, ~27-, and ~12-fold for CHIKV, respectively. The ternary combination of RIBA, phthFGL, and oregano EO was slightly more efficient than the binary combination RIBA/phthFGL but much less efficient than IVM, phthFGL, and oregano EO, which indicates that IVM could contribute more to the differentiation of cell targets (for example via the inhibition of the host heterodimeric importin IMP α/β1 complex) than ribavirin. Statistical analysis showed significant differences among the combination groups tested, especially in the HHV-2 and CHIKV models, with p = 0.0098. Additionally, phthFGL showed a good pharmacokinetic profile that should encourage future optimization studies.
Collapse
Affiliation(s)
- Liliana Betancur-Galvis
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Orlando José Jimenez-Jarava
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, LA 70803, USA;
| | - William E. Mendoza-Hernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| | - Miguel A. González-Cardenete
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| |
Collapse
|
6
|
Strictinin, a Major Ingredient in Yunnan Kucha Tea Possessing Inhibitory Activity on the Infection of Mouse Hepatitis Virus to Mouse L Cells. Molecules 2023; 28:molecules28031080. [PMID: 36770747 PMCID: PMC9921699 DOI: 10.3390/molecules28031080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Theacrine and strictinin of Yunnan Kucha tea prepared from a mutant variety of wild Pu'er tea plants were two major ingredients responsible for the anti-influenza activity. As the COVID-19 outbreak is still lurking, developing safe and cost-effective therapeutics is an urgent need. This study aimed to evaluate the effects of these tea compounds on the infection of mouse hepatitis virus (MHV), a β-coronavirus serving as a surrogate for SARS-CoV. Treatment with strictinin (100 μM), but not theacrine, completely eliminated MHV infection, as indicated by a pronounced reduction in plaque formation, nucleocapsid protein expression, and progeny production of MHV. Subsequently, a time-of-drug addition protocol, including pre-, co-, or post-treatment, was exploited to further evaluate the possible mechanism of antiviral activity mediated by strictinin, and remdesivir, a potential drug for the treatment of SARS-CoV-2, was used as a positive control against MHV infection. The results showed that all three treatments of remdesivir (20 μM) completely blocked MHV infection. In contrast, no significant effect on MHV infection was observed when cells were pre-treated with strictinin (100 μM) prior to infection, while significant inhibition of MHV infection was observed when strictinin was introduced upon viral adsorption (co-treatment) and after viral entry (post-treatment). Of note, as compared with the co-treatment group, the inhibitory effect of strictinin was more striking in the post-treatment group. These results indicate that strictinin suppresses MHV infection by multiple mechanisms; it possibly interferes with viral entry and also critical step(s) of viral infection. Evidently, strictinin significantly inhibited MHV infection and might be a suitable ingredient for protection against coronavirus infection.
Collapse
|
7
|
Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. PRECISION CLINICAL MEDICINE 2022; 5:pbac024. [PMID: 36268466 PMCID: PMC9579963 DOI: 10.1093/pcmedi/pbac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic poses a fundamental challenge to global health. Since the outbreak of SARS-CoV-2, great efforts have been made to identify antiviral strategies and develop therapeutic drugs to combat the disease. There are different strategies for developing small molecular anti-SARS-CoV-2 drugs, including targeting coronavirus structural proteins (e.g. spike protein), non-structural proteins (nsp) (e.g. RdRp, Mpro, PLpro, helicase, nsp14, and nsp16), host proteases (e.g. TMPRSS2, cathepsin, and furin) and the pivotal proteins mediating endocytosis (e.g. PIKfyve), as well as developing endosome acidification agents and immune response modulators. Favipiravir and chloroquine are the anti-SARS-CoV-2 agents that were identified earlier in this epidemic and repurposed for COVID-19 clinical therapy based on these strategies. However, their efficacies are controversial. Currently, three small molecular anti-SARS-CoV-2 agents, remdesivir, molnupiravir, and Paxlovid (PF-07321332 plus ritonavir), have been granted emergency use authorization or approved for COVID-19 therapy in many countries due to their significant curative effects in phase III trials. Meanwhile, a large number of promising anti-SARS-CoV-2 drug candidates have entered clinical evaluation. The development of these drugs brings hope for us to finally conquer COVID-19. In this account, we conducted a comprehensive review of the recent advances in small molecule anti-SARS-CoV-2 agents according to the target classification. Here we present all the approved drugs and most of the important drug candidates for each target, and discuss the challenges and perspectives for the future research and development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
| | | | - Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Sellitto C, Corbi G, Bertini N, Ascione T, Costantino M, Scarpati G, Piazza O, Filippelli A, Conti V, Pagliano P. Effect of remdesivir on mortality rate and clinical status of COVID-19 patients: a systematic review with meta-analysis. J Chemother 2022:1-14. [PMID: 36102273 DOI: 10.1080/1120009x.2022.2121091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Remdesivir (RDV) is a broad-spectrum antiviral drug, now approved by Regulatory Agencies for COVID-19 treatment. RDV is associated with improvements in clinical outcomes, but no conclusive studies have shown an effect in reducing mortality. This study aimed to carry out a systematic review with meta-analysis to investigate whether RDV can significantly modify the outcome of COVID-19 patients evaluating its effects on mortality, length of stay, time to clinical improvement and need for oxygen supplementation. No significant improvement in terms of survival in patients treated with standard therapy (ST)+RDV as compared to ST alone (P = 0.24) was found. The duration of oxygen support was significantly lower in patients treated with ST + RDV compared with ST alone (P = 0.03). Further investigations should be planned to assess the real impact of RDV in the management of COVID-19 patients.
Collapse
Affiliation(s)
- Carmine Sellitto
- Unit of Pharmacology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Nicola Bertini
- Unit of Pharmacology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Maria Costantino
- Unit of Pharmacology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Association Non-Profit F.I.R.S.Thermae (Interdisciplinary Training, Researches and Spa Sciences), Naples, Italy
| | - Giuliana Scarpati
- Unit of Anesthesiology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Unit of Anesthesiology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Unit of Pharmacology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Unit of Pharmacology, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Pasquale Pagliano
- Unit of Infectious Diseases, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| |
Collapse
|
9
|
Wyman KA, Girgis AS, Surapaneni PS, Moore JM, Abo Shama NM, Mahmoud SH, Mostafa A, Barghash RF, Juan Z, Dobaria RD, Almalki AJ, Ibrahim TS, Panda SS. Synthesis of Potential Antiviral Agents for SARS-CoV-2 Using Molecular Hybridization Approach. Molecules 2022; 27:molecules27185923. [PMID: 36144662 PMCID: PMC9501548 DOI: 10.3390/molecules27185923] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We synthesized a set of small molecules using a molecular hybridization approach with good yields. The antiviral properties of the synthesized conjugates against the SAR-CoV-2 virus were investigated and their cytotoxicity was also determined. Among all the synthesized conjugates, compound 9f showed potential against SARS-CoV-2 and low cytotoxicity. The conjugates’ selectivity indexes (SIs) were determined to correlate the antiviral properties and cytotoxicity. The observed biological data were further validated using computational studies.
Collapse
Affiliation(s)
- Kailey A. Wyman
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Pragnakiran S. Surapaneni
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A5C1.1, Canada
| | - Jade M. Moore
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Zou Juan
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Radha D. Dobaria
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
10
|
Castillejos-López M, Torres-Espíndola LM, Huerta-Cruz JC, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Higuera-Iglesias A, Camarena Á, Torres-Soria AK, Salinas-Lara C, Fernández-Plata R, Alvarado-Vásquez N, Solís-Chagoyán H, Ruiz V, Aquino-Gálvez A. Ivermectin: A Controversial Focal Point during the COVID-19 Pandemic. Life (Basel) 2022; 12:1384. [PMID: 36143420 PMCID: PMC9502658 DOI: 10.3390/life12091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Anjarath Higuera-Iglesias
- Departamento de Investigación en Epidemiología Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Rosario Fernández-Plata
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
11
|
Ortiz-López T, Borges-Argáez R, Ayora-Talavera G, Canto-Ramírez E, Cetina-Montejo L, May-May Á, Escalante-Erosa F, Cáceres-Farfán M. Bioassay-Guided Fractionation of Erythrostemon yucatanensis (Greenm.) Gagnon & GP Lewis Components with Anti-hemagglutinin Binding Activity against Influenza A/H1N1 Virus. Molecules 2022; 27:5494. [PMID: 36080262 PMCID: PMC9458041 DOI: 10.3390/molecules27175494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Erythrostemon yucatanensis (Greenm.) Gagnon & GP Lewis is a legume tree native to and widely distributed in southeast Mexico, where its branches are used in traditional medicine. An in vitro evaluation of the antiviral activity of extracts and fractions from the leaves, stem bark and roots against two strains of the AH1N1 influenza virus was performed, leading to the identification of bioactive compounds in this medicinal plant. In a cytopathic effect reduction assay, the fractions from the leaves and stem bark were the active elements at the co-treatment level. These were further fractionated based on their hemagglutination inhibition activity. The analysis of spectroscopy data identified a combination of phytosterols (β-sitosterol, stigmasterol and campesterol) in the stem bark active fraction as the main anti-hemagglutinin binding components, while 5-hydroxy-2(2-hydroxy-3,4,5-trimethoxyphenyl)-7-metoxi-4H(chromen-4-ona), which was isolated from the leaf extracts, showed a weak inhibition of viral hemagglutinin. Time of addition experiments demonstrated that the mixture of sterols had a direct effect on viral particle infectivity at the co-treatment level (IC50 = 3.125 µg/mL). This effect was also observed in the virus plaque formation inhibition assay, where the mixture showed 90% inhibition in the first 20 min of co-treatment at the same concentration. Additionally, it was found using qRT-PCR that the NP copy number was reduced by 92.85% after 60 min of co-treatment. These results are the first report of components with anti-hemagglutinin binding activity in the genus Erythrostemon sp.
Collapse
Affiliation(s)
- Tania Ortiz-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Mérida 97225, Mexico
| | | | | | - Ángel May-May
- Independent Researchers, Mérida, Yucatán 97000, Mexico
| | - Fabiola Escalante-Erosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Mirbella Cáceres-Farfán
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| |
Collapse
|
12
|
Schreiber A, Ambrosy B, Planz O, Schloer S, Rescher U, Ludwig S. The MEK1/2 Inhibitor ATR-002 (Zapnometinib) Synergistically Potentiates the Antiviral Effect of Direct-Acting Anti-SARS-CoV-2 Drugs. Pharmaceutics 2022; 14:pharmaceutics14091776. [PMID: 36145524 PMCID: PMC9506552 DOI: 10.3390/pharmaceutics14091776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global public health burden. In addition to vaccination, safe and efficient antiviral treatment strategies to restrict the viral spread within the patient are urgently needed. An alternative approach to a single-drug therapy is the combinatory use of virus- and host-targeted antivirals, leading to a synergistic boost of the drugs’ impact. In this study, we investigated the property of the MEK1/2 inhibitor ATR-002’s (zapnometinib) ability to potentiate the effect of direct-acting antivirals (DAA) against SARS-CoV-2 on viral replication. Treatment combinations of ATR-002 with nucleoside inhibitors Molnupiravir and Remdesivir or 3C-like protease inhibitors Nirmatrelvir and Ritonavir, the ingredients of the drug Paxlovid, were examined in Calu-3 cells to evaluate the advantage of their combinatory use against a SARS-CoV-2 infection. Synergistic effects could be observed for all tested combinations of ATR-002 with DAAs, as calculated by four different reference models in a concentration range that was very well-tolerated by the cells. Our results show that ATR-002 has the potential to act synergistically in combination with direct-acting antivirals, allowing for a reduction in the effective concentrations of the individual drugs and reducing side effects.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Benjamin Ambrosy
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tuebingen, Germany and Atriva Therapeutics GmbH, 72072 Tuebingen, Germany
| | - Sebastian Schloer
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
- Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Centre of Clinical Research (IZKF), Medical Faculty, University of Muenster, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Centre of Clinical Research (IZKF), Medical Faculty, University of Muenster, 48149 Muenster, Germany
- Correspondence:
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Although COVID-19 was originally characterized as a respiratory disease, recent findings have shown lingering side effects in those who have recovered, and much is still unknown about the long-term consequences of the illness. Thus, the potential of unearthing multi-system dysfunction is high, with current data revealing significant impacts on musculoskeletal health. RECENT FINDINGS Multiple animal models of COVID-19 infection have revealed significant post-infection bone loss at several different skeletal sites. While how this loss occurred is unknown, this current review discusses the primary bone loss studies, and examines the possible mechanisms of action including: direct infection of bone marrow macrophages or hematopoietic progenitors, a proinflammatory response as a result of the COVID-19 induced cytokine storm, and/or a result of hypoxia and oxidative stress. This review will further examine how therapeutics used to treat COVID-19 affect the skeletal system. Finally, this review will examine the possible consequence that delayed care and limited healthcare accessibility has on musculoskeletal-related patient outcomes. It is important to investigate the potential impact COVID-19 infection has on musculoskeletal health.
Collapse
Affiliation(s)
- Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Drive, MS 549, Indianapolis, IN, 46202, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Drive, MS 549, Indianapolis, IN, 46202, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Drive, MS 549, Indianapolis, IN, 46202, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Ogunsakin RE, Ebenezer O, Jordaan MA, Shapi M, Ginindza TG. Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148845. [PMID: 35886696 PMCID: PMC9318242 DOI: 10.3390/ijerph19148845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023]
Abstract
In response to global efforts to control and exterminate infectious diseases, this study aims to provide insight into the productivity of remdesivir research and highlight future directions. To achieve this, there is a need to summarize and curate evidence from the literature. As a result, this study carried out comprehensive scientific research to detect trends in published articles related to remdesivir using a bibliometric analysis. Keywords associated with remdesivir were used to access pertinent published articles using the Scopus database. A total of 5321 research documents were retrieved, primarily as novel research articles (n = 2440; 46%). The number of publications increased exponentially from 2020 up to the present. The papers published by the top 12 institutions focusing on remdesivir accounted for 25.69% of the overall number of articles. The USA ranked as the most productive country, with 906 documents (37.1%), equivalent to one-third of the global publications in this field. The most productive institution was Icahn School of Medicine, Mount Sinai, in the USA (103 publications). The New England Journal of Medicine was the most cited, with an h-index of 13. The publication of research on remdesivir has gained momentum in the past year. The importance of remdesivir suggests that it needs continued research to help global health organizations detect areas requiring instant action to implement suitable measures. Furthermore, this study offers evolving hotspots and valuable insights into the scientific advances in this field and provides scaling-up analysis and evidence diffusion on remdesivir.
Collapse
Affiliation(s)
- Ropo E. Ogunsakin
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Correspondence:
| | - Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Maryam A. Jordaan
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.A.J.); (M.S.)
| | - Themba G. Ginindza
- Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
15
|
Saha T, Quiñones-Mateu ME, Das SC. Inhaled therapy for COVID-19: Considerations of drugs, formulations and devices. Int J Pharm 2022; 624:122042. [PMID: 35868481 PMCID: PMC9296254 DOI: 10.1016/j.ijpharm.2022.122042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for the COVID-19 pandemic, has outspread at full tilt across the world. Although several effective vaccines continue to be deployed, reliable antiviral treatments have yet to be developed against this disease. Currently, available therapeutics for COVID-19 include repurposed, and a few novel drugs. Many drugs have been promising in preclinical studies, but a majority of these drugs have shown little or no efficacy in clinical studies. One of the major reasons is the insufficient drug concentration in the lung, the primary target site of infection for SARS-CoV-2, from the administration of drugs through oral or intravenous routes. Higher effective doses administered through these routes could also lead to adverse side effects. For this reason, inhaled treatments are being tested as an efficient approach for COVID-19, allowing lower doses of drugs ensuring higher concentrations of the drug(s) in the lung. The inhaled treatment combining two or more antiviral drugs will increase potency and reduce the possibility of selecting for SARS-CoV-2 variants with reduced drug susceptibility. Finally, the appropriate drug combination needs to be delivered using a suitable system. Here, we review the current treatment for COVID-19 and their limitations, discussing the advantages of mono and combinational inhaled therapy with a brief outline of the recently reformulated anti-SARS-CoV-2 agents as inhaled formulations. The selection of appropriate delivery devices for inhalation and associated key considerations including the formulation challenges are also discussed.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Yip AJW, Low ZY, Chow VTK, Lal SK. Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses 2022; 14:v14061345. [PMID: 35746815 PMCID: PMC9228778 DOI: 10.3390/v14061345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molnupiravir is a β-d-N4-hydroxycytidine-5'-isopropyl ester (NHC) compound that exerts antiviral activity against various RNA viruses such as influenza, SARS, and Ebola viruses. Thus, the repurposing of Molnupiravir has gained significant attention for combatting infection with SARS-CoV-2, the etiological agent of COVID-19. Recently, Molnupiravir was granted authorization for the treatment of mild-to-moderate COVID-19 in adults. Findings from in vitro experiments, in vivo studies and clinical trials reveal that Molnupiravir is effective against SARS-CoV-2 by inducing viral RNA mutagenesis, thereby giving rise to mutated complementary RNA strands that generate non-functional viruses. To date, the data collectively suggest that Molnupiravir possesses promising antiviral activity as well as favorable prophylactic efficacy, attributed to its effective mutagenic property of disrupting viral replication. This review discusses the mechanisms of action of Molnupiravir and highlights its clinical utility by disabling SARS-CoV-2 replication, thereby ameliorating COVID-19 severity. Despite relatively few short-term adverse effects thus far, further detailed clinical studies and long-term pharmacovigilance are needed in view of its mutagenic effects.
Collapse
Affiliation(s)
- Ashley Jia Wen Yip
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (A.J.W.Y.); (Z.Y.L.)
| | - Zheng Yao Low
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (A.J.W.Y.); (Z.Y.L.)
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (A.J.W.Y.); (Z.Y.L.)
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
- Correspondence:
| |
Collapse
|
17
|
Baracaldo-Santamaría D, Pabón-Londoño S, Rojas-Rodriguez LC. Drug safety of frequently used drugs and substances for self-medication in COVID-19. Ther Adv Drug Saf 2022; 13:20420986221094141. [PMID: 35493401 PMCID: PMC9039440 DOI: 10.1177/20420986221094141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
During the COVID-19 pandemic, the behavior of self-medication has increased. The dissemination of misleading information regarding the efficacy of certain drugs or substances for the prevention and treatment of COVID-19 has been the major contributing factor for this phenomenon. Alongside with the increase in self-medication behavior, the inherent risks to this act such as drug-drug interactions, adverse events, drug toxicity, and masking of symptoms have also increased. Self-medication in the context of COVID-19 has led to drug misuse leading in some cases to the development of fatal adverse drug reactions. It is important that during this ongoing pandemic drugs with potential clinical efficacy against COVID-19 are adequately analyzed regarding their efficacy, safety, and monitoring. The aim of this review is to describe the available evidence regarding the efficacy, safety, and monitoring of the drugs and substances that have been shown to be frequently used for self-medication in patients with COVID-19 (hydroxychloroquine, non-steroidal anti-inflammatory drugs, ivermectin, azithromycin, vitamins, aspirin, and chlorine dioxide) to adequately characterize their risks, safe use, monitoring strategies, and to reinforce the concept that these substances should not be used for self-medication and require a medical prescription. Plain Language Summary Drug safety of frequently used drugs and substances for self-medication in COVID-19 Dissemination of information about potential COVID-19 treatments has led individuals to self-medicate and expose themselves to risks such as drug-drug interactions, side effects, antibiotic resistance, and misdiagnosis. There is a need to review the medical literature to evaluate the safety and efficacy of the drugs and substances commonly used by the population for the treatment and prevention of SARS CoV-2 infection. In this review, we included drugs that are frequently used for self-medication and commonly advertised such as ivermectin, hydroxychloroquine, chlorine dioxide, azithromycin, and non-steroidal anti-inflammatory drugs, among others. A brief introduction of the drug and its mechanism of action, followed by a summary of the efficacy in COVID-19 and safety, will be described for each drug in order to promote their responsible use.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Luis Carlos Rojas-Rodriguez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, 111221, Colombia
| |
Collapse
|
18
|
Delandre O, Gendrot M, Jardot P, Le Bideau M, Boxberger M, Boschi C, Fonta I, Mosnier J, Hutter S, Levasseur A, La Scola B, Pradines B. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel) 2022; 15:445. [PMID: 35455442 PMCID: PMC9024598 DOI: 10.3390/ph15040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Priscilla Jardot
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Céline Boschi
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Sébastien Hutter
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Anthony Levasseur
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|
19
|
The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23. Int J Mol Sci 2022; 23:ijms23020883. [PMID: 35055066 PMCID: PMC8779559 DOI: 10.3390/ijms23020883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.
Collapse
|