1
|
Dong YL, Li XM, Wang YR, Meng LH, Wang BG. Antibacterial and Cytotoxic Methylthioether-Containing Cytochalasins from Chaetomium globosum AS-506, an Endozoic Fungus Associated with Deep-Sea Sponge of Magellan Seamounts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1319-1330. [PMID: 39745281 DOI: 10.1021/acs.jafc.4c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ten cytochalasin derivatives, including six new methylthioether-containing chaetoglobosins (thiochaetoglobosins A-F, 1-6), a new related congener (18-nor-prochaetoglobosin II, 7), and three known unsulfured counterparts (8-10), were isolated and identified from Chaetomium globosum AS-506, an endozoic fungus isolated from a deep-sea sponge, which was collected from Magellan Seamounts in the Western Pacific Ocean. Their structures were determined by extensive interpretation of the spectroscopic and X-ray crystallographic data, as well as by ECD calculations. Structurally, thiochaetoglobosins A-F (1-6) represent the first examples of chaetoglobosin derivatives containing a methylthioether group in the molecules, while 18-nor-prochaetoglobosin II (7) is the first 18-nor-chaetoglobosin derivative. Precursor incubation experiments with [13C-CH3]-l-methionine confirmed that the thio-linked methyl was derived from methionine, and a new isotope-labeled thiochaetoglobosin (11) was also isolated and identified. Compound 7 exhibited activity against the aquatic pathogenic bacterium Vibrio alginolyticus (MIC = 0.5 μg/mL), comparable to that of the positive control chloramphenicol. The cell morphology of V. alginolyticus was studied by using growth curves and scanning electron microscopy (SEM) data. The results showed that compound 7 could affect the integrity of the membrane to induce bacteriolysis and death of V. alginolyticus. Additionally, compounds 1, 4, 5, 7, and 9 showed cytotoxic activities against several tumor cell lines with IC50 values ranging from 0.72 to 17.66 μM.
Collapse
Affiliation(s)
- Yu-Liang Dong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Yi-Ran Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| |
Collapse
|
2
|
Wang Q, Zhang S, Ding J, Zhang Z, Li X, Chen Y, Zhu Y, Zeng D, Dong J, Liu Y. Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110058. [PMID: 39442783 DOI: 10.1016/j.cbpc.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (tgf-β1) and interleukin-10 (il-10) simultaneously, significantly reducing the expression levels of interleukin-10 (il-6), interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α) and inductible nitric oxide synthase (inos). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating bcl-2 while downregulating the mRNA expression levels of bax, fas, caspase8 and caspase9. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Shasha Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiahao Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxuan Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yangye Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Danping Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yi Liu
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China.
| |
Collapse
|
3
|
Zhang W, Huang C, Chen Z, Song D, Zhang Y, Yang S, Wang N, Jian J, Pang H. Vibrio alginolyticus Reprograms CIK Cell Metabolism via T3SS Effector VopS to Promote Host Cell Ferroptosis. Animals (Basel) 2024; 14:3250. [PMID: 39595303 PMCID: PMC11591379 DOI: 10.3390/ani14223250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vibrio alginolyticus is a Gram-negative pathogen of both marine animals and humans, resulting in significant losses for the aquaculture industry. Emerging evidence indicates that V. alginolyticus manipulates cell death for its pathogenicity, but the underlying molecular mechanisms remain unclear. Here, a gene designated vopS in V. alginolyticus HY9901 was identified, which was predicted to encode the T3SS effector protein. To determine whether VopS contributes to the pathogenesis of V. alginolyticus, the ΔvopS mutant strain was constructed and phenotypically characterized. The deletion of VopS not only reduced the ability to secrete extracellular proteases and virulence but also affected the expression of the T3SS genes. Furthermore, VopS was cytotoxic and induced apoptosis, as confirmed by elevated LDH and the activation of caspase-3. Metabolomic analysis revealed considerable metabolomic disruptions upon V. alginolyticus infection. The VopS effector induced host cell ferroptosis by promoting the synthesis of adrenic acid, depleting cellular glutathione, and subsequently increasing the accumulation of ferrous (Fe2+). Taken together, our findings provide that the VopS effector is an essential virulence factor of V. alginolyticus, which can lead to ferroptosis.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Chao Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Zhihang Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Dawei Song
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Yujia Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Shuai Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China;
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| |
Collapse
|
4
|
Wang S, Jiang Y, Zhang W, Wei Y, Xiao X, Wei Z, Wen X, Dong Y, Jian J, Wang N, Pang H. The Effect of the Lysine Acetylation Modification of ClpP on the Virulence of Vibrio alginolyticus. Molecules 2024; 29:4278. [PMID: 39275125 PMCID: PMC11396845 DOI: 10.3390/molecules29174278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/16/2024] Open
Abstract
Acetylation modification has become one of the most popular topics in protein post-translational modification (PTM) research and plays an important role in bacterial virulence. A previous study indicated that the virulence-associated caseinolytic protease proteolytic subunit (ClpP) is acetylated at the K165 site in Vibrio alginolyticus strain HY9901, but its regulation regarding the virulence of V. alginolyticus is still unknown. We further confirmed that ClpP undergoes lysine acetylation (Kace) modification by immunoprecipitation and Western blot analysis and constructed the complementation strain (C-clpP) and site-directed mutagenesis strains including K165Q and K165R. The K165R strain significantly increased biofilm formation at 36 h of incubation, and K165Q significantly decreased biofilm formation at 24 h of incubation. However, the acetylation modification of ClpP did not affect the extracellular protease (ECPase) activity. In addition, we found that the virulence of K165Q was significantly reduced in zebrafish by in vivo injection. To further study the effect of lysine acetylation on the pathogenicity of V. alginolyticus, GS cells were infected with four strains, namely HY9901, C-clpP, K165Q and K165R. This indicated that the effect of the K165Q strain on cytotoxicity was significantly reduced compared with the wild-type strain, while K165R showed similar levels to the wild-type strain. In summary, the results of this study indicate that the Kace of ClpP is involved in the regulation of the virulence of V. alginolyticus.
Collapse
Affiliation(s)
- Shi Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Yingying Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Yingzhu Wei
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Zhiqing Wei
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Xiaoxin Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Yuhang Dong
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China;
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (S.W.); (Y.J.); (W.Z.); (Y.W.); (X.X.); (Z.W.); (X.W.); (Y.D.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524025, China
| |
Collapse
|
5
|
Li Q, Ping K, Xiang Y, Sun Y, Hu Z, Liu S, Guan X, Fu M. Ferulic acid alleviates avermectin induced renal injury in carp by inhibiting inflammation, oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109575. [PMID: 38663463 DOI: 10.1016/j.fsi.2024.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 μg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-β1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1β. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.
Collapse
Affiliation(s)
- Qiulu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujuan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinying Guan
- Science and Technology Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Zhou M, Cao Y, Xie S, Xiang Y, Li M, Yang H, Dong Z. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways. Int Immunopharmacol 2024; 131:111872. [PMID: 38503011 DOI: 10.1016/j.intimp.2024.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 μM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Cao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaocheng Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Ji X, Guo J, Ma Y, Zhang S, Yang Z, Li Y, Ping K, Xin Y, Dong Z. Quercetin alleviates the toxicity of difenoconazole to the respiratory system of carp by reducing ROS accumulation and maintaining mitochondrial dynamic balance. Toxicol Appl Pharmacol 2024; 484:116860. [PMID: 38342444 DOI: 10.1016/j.taap.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Difenoconazole (DFZ) is a fungicidal pesticide extensively employed for the management of fungal diseases in fruits, vegetables, and cereal crops. However, its potential environmental impact cannot be ignored, as DFZ accumulation is able to lead to aquatic environment pollution and harm to non-target organisms. Quercetin (QUE), a flavonoid abundant in fruits and vegetables, possesses antioxidant and anti-inflammatory properties. In this article, carp were exposed to 400 mg/kg QUE and/or 0.3906 mg/L DFZ for 30 d to investigate the effect of QUE on DFZ-induced respiratory toxicity in carp. Research shows that DFZ exposure increases reactive oxygen species (ROS) production in the carp's respiratory system, leading to oxidative stress, inflammation, and damage to gill tissue and tight junction proteins. Further research demonstrates that DFZ induces mitochondrial dynamic imbalance and gill cell apoptosis. Notably, QUE treatment significantly reduces ROS levels, alleviates oxidative stress and inflammation, and mitigates mitochondrial dynamics imbalance and mitochondrial apoptosis. This study emphasizes the profound mechanism of DFZ toxicity to the respiratory system of common carp and the beneficial role of QUE in mitigating DFZ toxicity. These findings contribute to a better understanding of pesticide risk assessment in aquatic systems and provide new insights into strategies to reduce their toxicity.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajia Guo
- Lianyungang Higher Vocational College of Traditional Chinese Medicine, Lianyungang 222000, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zuwang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
8
|
Xu B, Yang R, Qiang J, Xu X, Zhou M, Ji X, Lu Y, Dong Z. Gypenoside XLIX attenuates sepsis-induced splenic injury through inhibiting inflammation and oxidative stress. Int Immunopharmacol 2024; 127:111420. [PMID: 38142642 DOI: 10.1016/j.intimp.2023.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND To investigate the effect of Gypenoside XLIX (Gyp-XLIX) on acute splenic injury (ASI) induced by cecal ligation and puncture (CLP) in septic mice, a study was conducted. METHODS Sixty healthy mice were randomly divided into six groups: the NC group, the Sham group, the Sham + Gyp-XLIX group, the CLP group, the CLP + Gyp-XLIX group, and the CLP + Dexamethasone (DEX) group. The NC group did not undergo any operation, while the rest of the groups underwent CLP to establish the sepsis model. The Sham group only underwent open-abdominal suture surgery without cecum puncture. After the operation, the groups were immediately administered the drug for a total of 5 days. Various methods such as hematoxylin and eosin (HE) staining, biochemical kits, qRT-PCR, and reactive oxygen species (ROS) were used for analysis. RESULTS The results demonstrated that Gyp-XLIX effectively mitigated the splenic histopathological damage, while reducing the malondialdehyde (MDA) lipid peroxidation index and enhancing the antioxidant activities of catalase (CAT), glutathione (GSH) and total antioxidant capacity (T-AOC). The utilization of Dihydroethidium (DHE) fluorescent probe revealed that Gyp-XLIX inhibited the acute splenic accumulation of ROS induced by CLP in septic mice. Further investigations revealed that Gyp-XLIX exhibited a down-regulatory effect on the protein levels of inflammatory mediators iNOS and COX-2, consequently leading to the suppression of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. Additionally, it up-regulated the expression of anti-inflammatory factor IL-10. CONCLUSION In conclusion, Gyp-XLIX was significantly effective in attenuating CLP-induced acute splenic inflammation and oxidative stress in septic mice.
Collapse
Affiliation(s)
- Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongrong Yang
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang 222000, China
| | - Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yingzhi Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
9
|
Wang Y, Hou Y, Liu X, Lin N, Dong Y, Liu F, Xia W, Zhao Y, Xing W, Chen J, Chen C. Rapid visual nucleic acid detection of Vibrio alginolyticus by recombinase polymerase amplification combined with CRISPR/Cas13a. World J Microbiol Biotechnol 2023; 40:51. [PMID: 38146036 DOI: 10.1007/s11274-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Hou
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Xinping Liu
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Na Lin
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Youyou Dong
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Fei Liu
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Wenrong Xia
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Weiwei Xing
- Bei Jing Institute of Basic Medical Sciences, Beijing, China.
| | - Jin Chen
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China.
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Changguo Chen
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
10
|
Zhou M, Qiang J, Gan J, Xu X, Li X, Zhang S, Xu B, Dong Z. Quercetin attenuates environmental Avermectin-induced ROS accumulation and alleviates gill damage in carp through activation of the Nrf2 pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109744. [PMID: 37704162 DOI: 10.1016/j.cbpc.2023.109744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Avermectin (AVM) is one of the most often used insecticides which is toxic to aquatic organisms, and cause oxidative-induced damages to the fish respiratory organ, the "gills". To better understand the mechanism by which an antioxidant reduces AVM-induced gill damage, we investigated the effects of Quercetin (Que) on AVM induction of oxidative stress to inhibit damages to the gills using common carp as a model organism. The Que is a fruit and vegetable rich flavonoid with antioxidant activity. In this study, four groups were created: the Control group, the Que group (400 mg/kg), the AVM group (2.404 μg/L), and the Que plus AVM group. The analytical methods were pathological structure examination, qPCR, Reactive Oxygen Species (ROS) and Western blot. The results showed that Que alleviated AVM-induced oxidative stress, inflammatory damage and apoptosis in the carp gills by activating the Nrf2 pathway. The mechanism was that Que alleviated the accumulation of ROS, reduced the balance between oxidation and antioxidant disrupted by AVM exposure, lowered the content of lipid peroxidation produced malondialdehyde (MDA), and increased the content of antioxidant enzymes including glutathione (GSH) and catalase (CAT). Nrf2 pathway was activated. Meanwhile, Que inhibited gill apoptosis in carp by decreasing the levels of Bax, Cytochrome C, Caspase9, Cleaved-Caspase3 and reduced Bcl2. This has important implications for future studies on Que and AVM. New suggestions are provided to reduce the threat of aquatic environmental pollution.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajie Gan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
11
|
Xu B, Yin J, Qiang J, Gan J, Xu X, Li X, Hu Z, Dong Z. Quercetin attenuates avermectin-induced cardiac injury in carp through inflammation, oxidative stress, apoptosis and autophagy. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109054. [PMID: 37661034 DOI: 10.1016/j.fsi.2023.109054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
As an important antibiotic, avermectin (AVM) has been widely used in China, but its unreasonable application has caused serious harm to the water environment. In view of the various pharmacological effects of quercetin (QUE), such as anti-inflammatory and antioxidant, the scientific hypothesis that "QUE may cause carp poisoning by inhibiting AVM" was proposed in this study. However, its protective effect in AVM -induced heart damage has not been reported. QUE reduced the symptoms of AVM toxicity and decreased the levels of creatine kinase, lactate dehydrogenase, and creatine kinase in the serum of carp. By histological observation, QUE was found to significantly reduce cardiac fiber swelling in carp. A DHE fluorescence probe study showed that QUE was able to inhibit AVM -induced accumulation of reactive oxygen species (ROS) in carp myocardium. We found that QUE significantly increased the intracellular antioxidant enzymes CAT, T-AOC and GSH enzyme activity and reduced intracellular MDA content. In addition, QUE significantly increased il-10 and tgf-β1 expression, and significantly down-regulated tnf-α, il-6, il-1β and inos expression. Tunel assay showed that QUE attenuated AVM -induced apoptosis, significantly decreased the transcript levels of pro-apoptosis-related genes, and increased the expression of anti-apoptosis-related genes. We also detected the protein expression of LC3 in the AVM group and QUE + AVM group, and found that the expression of LC3 was significantly increased in both groups compared with the Control group, but after adding QUE, the expression of LC3 was significantly decreased compared with the AVM group. In addition, the transcript levels of p62 and atg5 were also detected by qPCR. QUE significantly increased the expression of p62 and decreased the expression of atg5, suggesting that QUE could attenuate AVM -induced cardiac autophagy in carp. This study will provide preliminary evidence of the principle of QUE attenuating AVM -induced myocardial injury in carp from four aspects, including oxidative stress, inflammatory response, apoptosis and autophagy, and provide a theoretical basis for its prevention and treatment.
Collapse
Affiliation(s)
- Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jilei Yin
- Department of Traditional Chinese Medicine, Jiangsu Union Technical Institute Lianyungang Branch Institute of Traditional Chinese Medicine, China
| | - Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiajie Gan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
12
|
Tang Y, Yu P, Chen L. Identification of Antibacterial Components and Modes in the Methanol-Phase Extract from a Herbal Plant Potentilla kleiniana Wight et Arn. Foods 2023; 12:foods12081640. [PMID: 37107435 PMCID: PMC10137656 DOI: 10.3390/foods12081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The increase in bacterial resistance and the decline in the effectiveness of antimicrobial agents are challenging issues for the control of infectious diseases. Traditional Chinese herbal plants are potential sources of new or alternative medicine. Here, we identified antimicrobial components and action modes of the methanol-phase extract from an edible herb Potentilla kleiniana Wight et Arn, which had a 68.18% inhibition rate against 22 species of common pathogenic bacteria. The extract was purified using preparative high-performance liquid chromatography (Prep-HPLC), and three separated fragments (Fragments 1-3) were obtained. Fragment 1 significantly elevated cell surface hydrophobicity and membrane permeability but reduced membrane fluidity, disrupting the cell integrity of the Gram-negative and Gram-positive pathogens tested (p < 0.05). Sixty-six compounds in Fragment 1 were identified using Ultra-HPLC and mass spectrometry (UHPLC-MS). The identified oxymorphone (6.29%) and rutin (6.29%) were predominant in Fragment 1. Multiple cellular metabolic pathways were altered by Fragment 1, such as the repressed ABC transporters, protein translation, and energy supply in two representative Gram-negative and Gram-positive strains (p < 0.05). Overall, this study demonstrates that Fragment 1 from P. kleiniana Wight et Arn is a promising candidate for antibacterial medicine and food preservatives.
Collapse
Affiliation(s)
- Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Wu X, Xu B, Chen H, Qiang J, Feng H, Li X, Chu M, Pan E, Dong J. Crosstalk of oxidative stress, inflammation, apoptosis, and autophagy under reactive oxygen stress involved in difenoconazole-induced kidney damage in carp. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108508. [PMID: 36581253 DOI: 10.1016/j.fsi.2022.108508] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Difenoconazole is a commonly used triazole fungicide in agricultural production. Because of its slow degradation and easy accumulation in the environment, it seriously endangers both animal health and the ecological environment. Therefore, it is hoped that the effects on carp kidneys can be studied by simulating difenoconazole residues in the environment. The experiment was designed with two doses (0.488 mg/L, 1.953 mg/L) as exposure concentrations of difenoconazole for 4 d. Histopathological results showed that difenoconazole could cause severe damage to the kidney structure and extensive inflammatory cell infiltration in carp. Elevated levels of Creatinine, and BUN suggested the development of kidney damage. The DHE fluorescence probe's result suggested that difenoconazole might cause reactive oxygen species (ROS) to accumulate in the kidney of carp. Difenoconazole was found to increase MDA levels while decreasing the activities of CAT, SOD, and GSH-PX, according to biochemical indicators. In addition, difenoconazole could up-regulate the transcription levels of inflammatory factors tnf-α, il-6, il-1β, and inos. At the same time, it inhibited the transcription level of il-10 and tgf-β1. The TUNEL test clearly showed that difenoconazole induced apoptosis in the kidney and vastly raised the transcript levels of apoptosis-related genes p53, caspase9, caspase3, and bax while inhibiting the expression of Bcl-2, fas, capsase8. Additionally, TEM imaging showed that clearly autophagic lysosomes and autophagosomes were formed. Elevated levels of LC3II protein expression, increased transcript levels of the autophagy-related gene atg5 as well as decreased transcript levels of p62 represented the generation of autophagy. In conclusion, the study illustrated that oxidative stress, inflammation, apoptosis, and autophagy all played roles in difenoconazole-induced kidney injury in carp, which was closely linked to ROS production. This work provides a valuable reference for studying the toxicity of difenoconazole to aquatic organisms.
Collapse
Affiliation(s)
- Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingyi Chu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
14
|
Xiao X, Li W, Pan Y, Wang J, Wei Z, Wang S, Wang N, Jian J, Pang H. Holistic analysis of lysine acetylation in aquaculture pathogenic bacteria Vibrio alginolyticus under bile salt stress. Front Vet Sci 2023; 10:1099255. [PMID: 37180076 PMCID: PMC10172577 DOI: 10.3389/fvets.2023.1099255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Lysine acetylation modification is a dynamic and reversible post-translational modification, which plays an important role in the metabolism and pathogenicity of pathogenic bacteria. Vibrio alginolyticus is a common pathogenic bacterium in aquaculture, and bile salt can trigger the expression of bacterial virulence. However, little is known about the function of lysine acetylation in V. alginolyticus under bile salt stress. In this study, 1,315 acetylated peptides on 689 proteins were identified in V. alginolyticus under bile salt stress by acetyl-lysine antibody enrichment and high-resolution mass spectrometry. Bioinformatics analysis found that the peptides motif ****A*Kac**** and *******Kac****A* were highly conserved, and protein lysine acetylation was involved in regulating various cellular biological processes and maintaining the normal life activities of bacteria, such as ribosome, aminoacyl-tRNA biosynthesis, fatty acid metabolism, two-component system, and bacterial secretion system. Further, 22 acetylated proteins were also found to be related to the virulence of V. alginolyticus under bile salt stress through secretion system, chemotaxis and motility, and adherence. Finally, comparing un-treated and treated with bile salt stress lysine acetylated proteins, it was found that there were 240 overlapping proteins, and found amino sugar and nucleotide sugar metabolism, beta-Lactam resistance, fatty acid degradation, carbon metabolism, and microbial metabolism in diverse environments pathways were significantly enriched in bile salt stress alone. In conclusion, this study is a holistic analysis of lysine acetylation in V. alginolyticus under bile salt stress, especially many virulence factors have also acetylated.
Collapse
Affiliation(s)
- Xing Xiao
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Wanxin Li
- School of Public Health, Fujian Medical University, Fujian, China
| | - Yanfang Pan
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Zhiqing Wei
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shi Wang
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Huanying Pang
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
- *Correspondence: Huanying Pang
| |
Collapse
|
15
|
Wang Y, Wu Z, Chen H, Liu R, Zhang W, Chen X. Astragalus polysaccharides protect against inactivated Vibrio alginolyticus-induced inflammatory injury in macrophages of large yellow croaker. FISH & SHELLFISH IMMUNOLOGY 2022; 131:95-104. [PMID: 36206995 DOI: 10.1016/j.fsi.2022.09.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
As an effective immunostimulant, Astragalus polysaccharides (APS) have been widely used in fish aquaculture, however, their action mechanisms remain poorly understood. In the present paper, the inflammatory macrophage model of large yellow croaker (Larimichthys crocea) was constructed by using formalin-inactivated Vibrio alginolyticus. Inactivated V. alginolyticus could cause cellular damage of primary head kidney macrophages (PKM) by decreasing cell activity and inducing reactive oxygen species (ROS) production and cell apoptosis. When PKM were pretreated with APS, the depressed cell activity induced by inactivated V. alginolyticus was significantly improved, and ROS overproduction and cell apoptosis were inhibited. Then the protection mechanism of APS was investigated by transcriptome analysis. After treated with inactivated V. alginolyticus, the expression of immune-related genes (TLR5s, TLR13, Clec4e, IKK, IκB, BCL-3, NF-κB2, REL, IL-1β, and IL-6) and pyroptosis-related genes (caspase-1, NLRP3, and NLRC3) in PKM were significantly up-regulated. However, APS pretreatment reversed the up-regulation of most of the above-mentioned genes, where TLR5s, BCL-3, REL, caspase-1, NLRP12, IL-1β, and IL-6 were significantly down-regulated compared with inactivated V. alginolyticus-treated group. These results suggested that APS could protect large yellow croaker PKM against inactivated V. alginolyticus-induced inflammatory injury, and may exert their protection effects by activating NF-κB and pyroptosis signaling pathways. These findings therefore advance our understanding of the immune regulation mechanism of APS in fish, and facilitate the application of APS in prevention and control of fish bacteriosis.
Collapse
Affiliation(s)
- Yongyang Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ziliang Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hui Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ruoyu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
16
|
Yu Y, Li H, Wang Y, Zhang Z, Liao M, Rong X, Li B, Wang C, Ge J, Zhang X. Antibiotic resistance, virulence and genetic characteristics of Vibrio alginolyticus isolates from aquatic environment in costal mariculture areas in China. MARINE POLLUTION BULLETIN 2022; 185:114219. [PMID: 36335689 DOI: 10.1016/j.marpolbul.2022.114219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Vibrio alginolyticus has been the second most common Vibrio species in the world and mainly grows in the ocean or estuary environment, which can induce epidemics outbreaks under marine organisms, and causing serious economic losses in aquaculture industry. In this study, the genetic populations and evolutionary relationship analysis of V. alginolyticus isolated from different geographical locations in China with typical interannual differences were exhibited originally genetic diversity. Then the virulence genes prevalence, antibiotic resistance phenotype, and antimicrobial resistance genes risk diversity of V. alginolyticus were analyzed by phenotypic and molecular typing methods. And they were complex correlations among antibiotic phenotypes, resistance and virulence genes under different genotype of V. alginolyticus. The results provide a theoretical foundation for further understanding the genetic and metabolic diversity among V. alginolyticus in China, and lay a theoretical foundation for the transmission risk assessment and regional diagnosis of Vibrio in aquatic animals.
Collapse
Affiliation(s)
- Yongxiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Hao Li
- Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, PR China.
| | - Yingeng Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Meijie Liao
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Xiaojun Rong
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Chunyuan Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Jianlong Ge
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Xiaosong Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| |
Collapse
|
17
|
Yang Q, Zhang J, Liu F, Chen H, Zhang W, Yang H, He N, Dong J, Zhao P. A. caviae infection triggers IL-1β secretion through activating NLRP3 inflammasome mediated by NF-κB signaling pathway partly in a TLR2 dependent manner. Virulence 2022; 13:1486-1501. [PMID: 36040120 PMCID: PMC9450903 DOI: 10.1080/21505594.2022.2116169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aeromonas caviae, an important food-borne pathogen, induces serious invasive infections and inflammation. The pro-inflammatory IL-1β functions against pathogenic infections and is elevated in various Aeromonas infection cases. However, the molecular mechanism of A. caviae-mediated IL-1β secretion remains unknown. In this study, mouse macrophages (PMs) were used to establish A. caviae infection model and multiple strategies were utilized to explore the mechanism of IL-1β secretion. IL-1β was elevated in A. caviae infected murine serum, PMs lysates or supernatants. This process triggered NLRP3 levels upregulation, ASC oligomerization, as well as dot gathering of NLRP3 and speck-like signals of ASC in the cytoplasm. MCC950 blocked A. caviae mediated IL-1β release. Meanwhile, NLRP3 inflammasome mediated the release of IL-1β in dose- and time-dependent manners, and the release of IL-1β was dependent on active caspase-1, as well as NLRP3 inflammasome was activated by potassium efflux and cathepsin B release ways. A. caviae also enhanced TLR2 levels, and deletion of TLR2 obviously decreased IL-1β secretion. What’s more, A. caviae resulted in NF-κB p65 nuclear translocation partly in a TLR2-dependent manner. Blocking NF-κB using BAY 11-7082 almost completely inhibited NLRP3 inflammasome first signal pro-IL-1β expression. Blocking TLR2, NF-κB, NLRP3 inflammasome significantly downregulated IL-1β release and TNF-α and IL-6 levels. These data illustrate that A. caviae caused IL-1β secretion in PMs is controlled by NLRP3 inflammasome, of which is mediated by NF-κB pathway and is partially dependent on TLR2, providing basis for drugs against A. caviae.
Collapse
Affiliation(s)
- Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jianguo Zhang
- Department of Radiation, The Second People's Hospital of Lianyungang (Lianyungang Tumor Hospital), Lianyungang, Jiangsu 222000, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
18
|
Wang J, Gao X, Liu F, Dong J, Zhao P. Difenoconazole causes cardiotoxicity in common carp (Cyprinus carpio): Involvement of oxidative stress, inflammation, apoptosis and autophagy. CHEMOSPHERE 2022; 306:135562. [PMID: 35792209 DOI: 10.1016/j.chemosphere.2022.135562] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Difenoconazole, a commonly used broad-spectrum triazole fungicide, is widely applied to fish culture in paddy fields. Due to its high chemical stability, low biodegradability, and easy transfer, difenoconazole persists in aquatic systems, raising public awareness of environmental threats. Difenoconazole causes cardiotoxicity in carp, however, the potential mechanisms of difenoconazole-induced cardiotoxicity remain unclear. Here, common carp were exposed to difenoconazole, and cardiotoxicity was evaluated by measuring the creatine kinase (CK) and the lactate dehydrogenase (LDH) in the serum. Cardiac pathological injury was determined by HE staining. The content and expression of oxidative stress indicators were detected using biochemical kits and qPCR analysis. Changes in inflammation-related cytokines were examined by qPCR. Apoptosis levels were assessed by TUNEL assay and qPCR. The occurrence of autophagy was measured by western blotting detection of autophagy flux LC3II/LC3I, and autophagy regulatory pathways were detected using qPCR. The results showed that difenoconazole exposure induced cardiotoxicity accompanied by obviously elevated LDH and CK levels and caused myocardial fibers to swell and inflammatory cells to increase. Elevated peroxide MDA and reduced transcriptional and activity levels of the antioxidant enzymes CAT, SOD and GSH-Px were dependent on the Nrf2/Keap-1 pathway. Moreover, the proinflammatory cytokines IL-1β, IL-6, and TNF-α were upregulated, iNOS activity was enhanced, whereas the anti-inflammatory cytokines TGF-β1 and IL-10 were downregulated after exposure to difenoconazole. Moreover, apoptosis was observed in the TUNEL assay and mediated through the p53/Bcl-2/Bax-Caspase-9 mitochondrial pathway. Furthermore, difenoconazole increased the autophagy markers LC3II, ATG5 and p62 and regulated them through the PI3K/AKT/mTOR pathway. Altogether, this study demonstrated that difenoconazole exposure caused common carp cardiotoxicity, which is regulated by oxidative stress, inflammation, apoptosis and autophagy, providing central data for toxicological risk assessment of difenoconazole in the ecological environment.
Collapse
Affiliation(s)
- Jinxin Wang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feixue Liu
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
19
|
Wu X, Zeng Z, Tian H, Peng L, Xu D, Wang Y, Ye C, Peng Y, Fang R. The important role of NLRP6 inflammasome in Pasteurella multocida infection. Vet Res 2022; 53:81. [PMID: 36224650 PMCID: PMC9558406 DOI: 10.1186/s13567-022-01095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Pasteurella multocida (P. multocida) can cause severe respiratory disease in cattle, resulting in high mortality and morbidity. Inflammasomes are multiprotein complexes in the cytoplasm that recognize pathogens and play an important role in the host defense against microbial infection. In this study, the mechanism of P. multocida-induced NLRP6 inflammasome activation was investigated in vitro and in vivo. Firstly, P. multocida induced severe inflammation with a large number of inflammatory cells infiltrating the lungs of WT and Nlrp6−/− mice. Nlrp6−/− mice were more susceptible to P. multocida infection and they had more bacterial burden in the lungs. Then, the recruitment of macrophages and neutrophils in the lungs was investigated and the results show that the number of immune cells was significantly decreased in Nlrp6−/− mice. Subsequently, NLRP6 was shown to regulate P. multocida-induced inflammatory cytokine secretion including IL-1β and IL-6 both in vivo and in vitro while TNF-α secretion was not altered. Moreover, NLRP6 was found to mediate caspase-1 activation and ASC oligomerization, resulting in IL-1β secretion. Furthermore, NLRP6 inflammasome mediated the gene expression of chemokines including CXCL1, CXCL2 and CXCR2 which drive the activation of NLRP3 inflammasomes. Finally, NLRP3 protein expression was detected to be abrogated in P. multocida-infected Nlrp6−/− macrophages, indicating the synergic effect of NLRP6 and NLRP3. Our study demonstrates that NLRP6 inflammasome plays an important role in the host against P. multocida infection and contributes to the development of immune therapeutics against P. multocida.
Collapse
Affiliation(s)
- Xingping Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zheng Zeng
- Chongqing Centers for Disease Control and Prevention, Chongqing, 401120, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yu Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China. .,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China. .,Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
20
|
Yin X, Zhuang X, Luo W, Liao M, Huang L, Cui Q, Huang J, Yan C, Jiang Z, Liu Y, Wang W. Andrographolide promote the growth and immunity of Litopenaeus vannamei, and protects shrimps against Vibrio alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. Front Immunol 2022; 13:990297. [PMID: 36159825 PMCID: PMC9505992 DOI: 10.3389/fimmu.2022.990297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio alginolyticus (V. alginolyticus) is one of the major pathogens causing mass mortality of shrimps worldwide, affecting energy metabolism, immune response and development of shrimps. In the context of the prohibition of antibiotics, it is necessary to develop a drug that can protect shrimp from V. alginolyticus. Andrographolide (hereinafter called Andr), a traditional drug used in Chinese medicine, which possesses diverse biological effects including anti-bacteria, antioxidant, immune regulation. In this study, we investigated the effect of Andr on growth, immunity, and resistance to V. alginolyticus infection of Litopenaeus vannamei (L. vannamei) and elucidate the underlying molecular mechanisms. Four diets were formulated by adding Andr at the dosage of 0 g/kg (Control), 0.5 g/kg, 1 g/kg, and 2 g/kg in the basal diet, respectively. Each diet was randomly fed to one group with three replicates of shrimps in a 4-week feeding trial. The results showed that dietary Andr improved the growth performance and non-specific immune function of shrimps. L. vannamei fed with Andr diets showed lower mortality after being challenged by V. alginolyticus. After 6 h of V. alginolyticus infection, reactive oxygen species (ROS) production, tissue injury, apoptosis, expression of inflammatory factors (IL-1 β and TNFα) and apoptosis-related genes (Bax, caspase3 and p53) were increased in hemocytes and hepatopancreas, while feeding diet with 0.5 g/kg Andr could inhibit the increase. Considering that JNK are important mediators of apoptosis, we examined the influence of Andr on JNK activity during V. alginolyticus infection. We found that Andr inhibited JNK activation induced by V. alginolyticus infection on L. vannamei. The ROS scavenger N-acetyl-l-cysteine (NAC) suppressed V. alginolyticus-induced inflammation and apoptosis, suggesting that ROS play an important role in V. alginolyticus-induced inflammation and apoptosis. Treated cells with JNK specific activator anisomycin, the inflammation and apoptosis inhibited by Andr were counteracted. Collectively, Andr promote the growth and immunity of L. vannamei, and protects shrimps against V. alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. These results improve the understanding of the pathogenesis of V. alginolyticus infection and provide clues to the development of effective drugs against V. alginolyticus.
Collapse
|
21
|
Transcriptome profiles of genes related to growth and virulence potential in Vibrio alginolyticus treated with modified clay. Microbiol Res 2022; 262:127095. [PMID: 35728394 DOI: 10.1016/j.micres.2022.127095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/18/2023]
Abstract
Vibrio alginolyticus is a globally distributed opportunistic pathogen that causes different degrees of disease in various marine organisms, such as fish, shrimp and shellfish. At present, vibriosis caused by V. alginolyticus has a wide epidemic range and causes frequent outbreaks, resulting in substantial losses in aquaculture. According to previous studies, modified clay (MC) could effectively flocculate and reduce the density of Vibrio in water, but it is still unknown whether MC inhibits growth and how it affects virulence in bottom flocs. Here, we studied the response mechanism of V. alginolyticus in flocs treated with MC at the transcriptome level and verified the transcriptomic data combined with relevant physiological experiments and reverse transcription quantitative real-time PCR (RT-qPCR) for the first time. It was found that the morphology of Vibrio in the MC flocs changed, the membrane function was damaged, the antioxidant system was activated, and the material and energy metabolism also changed. In addition, MC could inhibit the expression of virulence factors of V. alginolyticus; for example, flagella, pilus, siderophores, quorum sensing, and other related genes were significantly downregulated. In general, MC effectively inhibited the growth of Vibrio and reduced its virulence potential in flocs, which could provide theoretical support for a new model of healthy aquaculture.
Collapse
|
22
|
Li X, Guo X, Chang Y, Zhang N, Sun Y. Analysis of alterations of serum inflammatory cytokines and fibrosis makers in patients with essential hypertension and left ventricular hypertrophy and the risk factors. Am J Transl Res 2022; 14:4097-4103. [PMID: 35836904 PMCID: PMC9274558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study mainly analyzed the alterations of serum inflammatory cytokines (ICs) and fibrosis makers in patients with essential hypertension (EH) and the risk factors (RFs). METHODS In this retrospective study, a total of 145 patients with EH admitted from January 2013 to January 2018 were selected as the research subjects, among which 89 patients without left ventricular hypertrophy (LVH) were included in the EH group and 56 patients with LVH were set as the LVH group. In addition, another 50 healthy subjects who underwent physical examination during the same period were selected as the healthy control (HC) group. The alterations of serum ICs such as interleukin (IL)-6, IL-10 and IL-18, and fibrosis makers like type III procollagen (PCIII), fibronectin (LN) and hyaluronic acid (HA) of the three groups were analyzed, and the RFs of LVH in EH patients were analyzed using the multivariate logistic model. RESULTS Statistically higher levels of IL-6, IL-18, PCIII, LN and HA with lower IL-10 levels were determined in the LVH group compared with the EH group. In comparison with the HC group, IL-6, IL-18, PCIII, LN and HA in the EH group were significantly higher, while IL-10 was significantly lower. On the other hand, BMI, LVMI, IL-6, IL-18, PCIII, LN, and HA were identified by multivariate logistic analysis to be the RFs affecting LVH in EH patients, while IL-10 was its protective factor. CONCLUSIONS The above results suggest that serum ICs (except IL-10) and fibrosis markers are up-regulated abnormally in EH patients with LVH, and BMI, LVMI, IL-6, IL-10, IL-18, PCIII, LN, and HA are all independent predictors of LVH in EH patients.
Collapse
Affiliation(s)
- Xia Li
- Cardiovascular Medicine Department, First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xiaofan Guo
- Cardiovascular Medicine Department, First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Ye Chang
- Cardiovascular Medicine Department, First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Naijin Zhang
- Cardiovascular Medicine Department, First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Yingxian Sun
- Cardiovascular Medicine Department, First Affiliated Hospital of China Medical University Shenyang 110001, Liaoning, China
| |
Collapse
|
23
|
Bai S, Bai H, Li D, Zhong Q, Xie J, Chen JJ. Gut Microbiota-Related Inflammation Factors as a Potential Biomarker for Diagnosing Major Depressive Disorder. Front Cell Infect Microbiol 2022; 12:831186. [PMID: 35372107 PMCID: PMC8965553 DOI: 10.3389/fcimb.2022.831186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Although many works have been done, the objectively measured diagnostic biomarkers are not available. Thus, we conducted this study to identify potential biomarkers for objectively diagnosing depression and explore the role of gut microbiota in the onset of depression. Methods Major depressive disorder (MDD) patients (n=56) and demographic data-matched healthy controls (HCs) (n=56) were included in this study. The gut microbiota in fecal samples and inflammation-related factors in serum were measured. Both univariate and multivariate statistical analyses were performed to identify the differential gut microbiota and inflammation-related factors. Results Finally, 46 differential operational taxonomic units (OTUs) (60.9% OTUs belonging to Firmicutes) and ten differential inflammation-related factors were identified. Correlation analysis showed that there were significant correlations between 14 differential OTUs (9 OTUs belonging to Firmicutes and 5 OTUs belonging to family Lachnospiraceae under Firmicutes) and seven differential inflammation-related factors. Meanwhile, 14 differential OTUs (9 OTUs belonging to Firmicutes and 5 OTUs belonging to family Lachnospiraceae under Firmicutes) and five differential inflammation-related factors (adiponectin, apolipoprotein A1, alpha 1-antitrypsin, neutrophilicgranulocyte count/white blood cell count and basophil count) were significantly correlated to depression severity. A panel consisting of these five differential inflammation-related factors could effectively diagnose MDD patients from HCs. Conclusions Our results suggested that Firmicutes, especially family Lachnospiraceae, might play a role in the onset of depression via affecting the inflammation levels of host, and these five differential inflammation-related factors could be potential biomarkers for objectively diagnosing MDD.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Detao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jing Xie
- Chongqing Emergency Medical Center, Department of Endocrinology, The Fourth People’s Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing, China
| | - Jian-jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Pan J, Zhao L, Liu J, Wang G. Inhibition of circular RNA circ_0138959 alleviates pyroptosis of human gingival fibroblasts via the microRNA-527/caspase-5 axis. Bioengineered 2022; 13:1908-1920. [PMID: 35030963 PMCID: PMC8805901 DOI: 10.1080/21655979.2021.2020396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) plays a regulatory role in periodontitis. This study explored whether circ_0138959 affected lipopolysaccharide (LPS)-induced pyroptosis in human gingival fibroblasts (HGFs). The periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. HGFs treated with LPS were considered to mimic periodontitis in vitro. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate the mRNA expression levels of circRNAs, miR-527, and caspase-5 (CASP5), and Western blotting assay was used to measure protein expression levels of caspase-1, caspase-4, and cleaved N-terminal gasdermin D (GSDMD-N). Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 and the pyroptosis rate were determined to evaluate pyroptosis. The interaction between miR-527 and circ_0138959 or CASP5 was verified by dual-luciferase reporter and RNA pull-down assays. Circ_0138959 expression was higher in the PDL tissues of patients with periodontitis than in the healthy group; likewise, circ_0138959 was also upregulated in LPS-treated HGFs. Suppressed circ_0138959 increased cell viability and decreased pyroptosis of HGFs induced by LPS. miR-527 was a target of circ_0138959, and inhibition of miR-527 contributed to the dysfunction of LPS-treated HGFs and reversed the protective effects of downregulated circ_0138959. Additionally, miR-527 targeted CASP5. Increased CASP5 abrogated the effects of overexpressed miR-527 on cell viability and pyroptosis of LPS-treated HGFs. Inhibition of circ_0138959 promoted cell viability and suppressed pyroptosis of HGFs via the miR-527/CASP5 axis. Therefore, knockdown of circ_0138959 may be a promising therapy for periodontitis.
Collapse
Affiliation(s)
- Jiaxin Pan
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| | - Lu Zhao
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| | - Jue Liu
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| | - Guoyun Wang
- Department of Stomatology, The First People's Hospital of Changzhou, Changzhou City, China
| |
Collapse
|