1
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
2
|
Santamarina AB, Nehmi Filho V, Freitas JAD, Franco LAM, Fonseca JV, Martins RC, Turri JAO, Silva BFRBD, Gusmão AF, Olivieri EHR, Otoch JP, Pessoa AFM. Nutraceutical Capsules LL1 and Silymarin Supplementation Act on Mood and Sleep Quality Perception by Microbiota-Gut-Brain Axis: A Pilot Clinical Study. Nutrients 2024; 16:3049. [PMID: 39339649 PMCID: PMC11435014 DOI: 10.3390/nu16183049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Stress, unhealthy lifestyle, and sleep disturbance worsen cognitive function in mood disorders, prompting a rise in the development of integrative health approaches. The recent investigations in the gut-brain axis field highlight the strong interplay among microbiota, inflammation, and mental health. Thus, this study aimed to investigate a new nutraceutical formulation comprising prebiotics, minerals, and silymarin's impact on microbiota, inflammation, mood, and sleep quality. The study evaluated the LL1 + silymarin capsule supplementation over 180 days in overweight adults. We analyzed the fecal gut microbiota using partial 16S rRNA sequences, measured cytokine expression via CBA, collected anthropometric data, quality of life, and sleep questionnaire responses, and obtained plasma samples for metabolic and hormonal analysis at baseline (T0) and 180 days (T180) post-supplementation. Our findings revealed significant reshaping in gut microbiota composition at the phylum, genus, and species levels, especially in the butyrate-producer bacteria post-supplementation. These changes in gut microbiota were linked to enhancements in sleep quality, mood perception, cytokine expression, and anthropometric measures which microbiota-derived short-chain fatty acids might enhance. The supplementation tested in this study seems to be able to improve microbiota composition, reflecting anthropometrics and inflammation, as well as sleep quality and mood improvement.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo 03317-000, SP, Brazil
| | - Victor Nehmi Filho
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo 03317-000, SP, Brazil
| | - Jéssica Alves de Freitas
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo 03317-000, SP, Brazil
| | - Lucas Augusto Moysés Franco
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Joyce Vanessa Fonseca
- Laboratório de Investigação Médica em Protozoologia, Bacteriologia e Resistência Antimicrobiana (LIM-49), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Roberta Cristina Martins
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - José Antônio Orellana Turri
- Grupo de Pesquisa em Economia da Saúde, Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Bruna Fernanda Rio Branco da Silva
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratório Interdisciplinar em Fisiologia e Exercício, Universidade Federal de São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Arianne Fagotti Gusmão
- International Research Center, A.C. Camargo Cancer Center, São Paulo 01508-010, SP, Brazil
| | | | - José Pinhata Otoch
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Hospital Universitário da Universidade de São Paulo, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina de São Paulo, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
3
|
Gao X, Zhang P. Exercise perspective: Benefits and mechanisms of gut microbiota on the body. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:508-515. [PMID: 39019779 PMCID: PMC11255194 DOI: 10.11817/j.issn.1672-7347.2024.230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 07/19/2024]
Abstract
Gut microbiota refers to the vast and diverse community of microorganisms residing in the intestines. Factors such as genetics, environmental influences (e.g., exercise, diet), and early life experiences (e.g., infant feeding methods) can all affect the ecological balance of gut microbiota within the body. Dysbiosis of the gut microbiota is associated with extra-intestinal diseases such as Parkinson's syndrome, osteoporosis, and autoimmune diseases, suggesting that disturbances in gut microbiota may be one of the causes of these diseases. Exercise benefits various diseases, with gut microbiota playing a role in regulating the nervous, musculoskeletal, and immune systems. Gut microbiota can impact the body's health status through the gut-brain axis, gut-muscle axis, and immune pathways. Moderate-intensity aerobic exercise can increase the quantity of gut microbiota and change microbial abundance, although short-term exercise does not significantly affect the alpha diversity of the microbiota. Resistance exercise also does not have a significant regulatory effect on gut microbiota.
Collapse
Affiliation(s)
- Xin Gao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
4
|
Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, Park SD, Shim JJ, Lee J, Chung BG. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. NANO CONVERGENCE 2024; 11:7. [PMID: 38340254 DOI: 10.1186/s40580-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
A new perspective suggests that a dynamic bidirectional communication system, often referred to as the microbiome-gut-brain axis, exists among the gut, its microbiome, and the central nervous system (CNS). This system may influence brain health and various brain-related diseases, especially in the realms of neurodevelopmental and neurodegenerative conditions. However, the exact mechanism is not yet understood. Metabolites or extracellular vesicles derived from microbes in the gut have the capacity to traverse the intestinal epithelial barrier or blood-brain barrier, gaining access to the systemic circulation. This phenomenon can initiate the physiological responses that directly or indirectly impact the CNS and its function. However, reliable and controllable tools are required to demonstrate the causal effects of gut microbial-derived substances on neurogenesis and neurodegenerative diseases. The integration of microfluidics enhances scientific research by providing advanced in vitro engineering models. In this study, we investigated the impact of microbe-derived metabolites and exosomes on neurodevelopment and neurodegenerative disorders using human induced pluripotent stem cells (iPSCs)-derived neurons in a gut-brain axis chip. While strain-specific, our findings indicate that both microbial-derived metabolites and exosomes exert the significant effects on neural growth, maturation, and synaptic plasticity. Therefore, our results suggest that metabolites and exosomes derived from microbes hold promise as potential candidates and strategies for addressing neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Ho Yeon Lee
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Biomedical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea.
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Smart Biosensor, Sogang University, Seoul, Korea.
| |
Collapse
|
5
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
6
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
7
|
Murthy PM, Ca J, Kandi V, Reddy MK, Harikrishna GV, Reddy K, Jp R, Reddy AN, Narang J. Connecting the Dots: The Interplay Between Stroke and the Gut-Brain Axis. Cureus 2023; 15:e37324. [PMID: 37182027 PMCID: PMC10168015 DOI: 10.7759/cureus.37324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
This article discusses the interplay between the gut-brain axis and stroke, a multifaceted neurological disorder that affects millions of people worldwide. The gut-brain axis is a bidirectional communication network linking the central nervous system (CNS) to the gastrointestinal tract (GIT), including the enteric nervous system (ENS), vagus nerve, and gut microbiota. Dysbiosis in the gut microbiota, alterations in the ENS and vagus nerve, and gut motility changes have been linked to increased inflammation and oxidative stress, which are contributing factors in the development and progression of stroke. Research on animals has shown that modifying the gut microbiota can impact the results of a stroke. Germ-free mice displayed improved neurological function and decreased infarct volumes, indicating a positive effect. Furthermore, studies in stroke patients have shown alterations in the gut microbiota composition, indicating that targeting dysbiosis could be a potential therapeutic strategy for stroke. The review suggests that targeting the gut-brain axis may represent a potential therapeutic approach to reduce the morbidity and mortality associated with stroke.
Collapse
Affiliation(s)
- Pooja M Murthy
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Mithun K Reddy
- Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Kavitha Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ramya Jp
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Ankush N Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jigya Narang
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
8
|
The Study of a Novel Paeoniflorin-Converting Enzyme from Cunninghamella blakesleeana. Molecules 2023; 28:molecules28031289. [PMID: 36770956 PMCID: PMC9921665 DOI: 10.3390/molecules28031289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.
Collapse
|