1
|
Xia Z, Mi H, Ren M, Huang D, Aboseif AM, Liang H, Zhang L. Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:2871. [PMID: 39409820 PMCID: PMC11476275 DOI: 10.3390/ani14192871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
This experiment evaluated the function of chlorogenic acid (CGA) in the growth, health status, and inflammation of largemouth bass (Micropterus salmoides). Over eight weeks, CGA supplementation was designed at five levels: 0, 60, 120, 180, and 240 mg/kg. The 180 and 240 mg/kg CGA-supplemented groups showed significant improvements in the FBW, SGR, and WGR compared to the control group (0 mg/kg) (p < 0.05). All the CGA-supplemented groups exhibited a significant reduction in the FCR (p < 0.05), with the 180 mg/kg CGA group showing the lowest FCR. Nonetheless, there were no appreciable differences in the plasma concentrations of TP, ALT, or AST among the treatments (p > 0.05). Compared to the control group, the 180 mg/kg CGA group exhibited significantly lower TC and TG levels (p < 0.05). The ALP levels showed no significant differences from the control group (p > 0.05). In terms of antioxidant parameters, CGA supplementation considerably reduced the MDA content (p < 0.05) and increased the GSH levels, while decreasing the CAT, SOD, and GPx activity levels Meanwhile, CGA supplementation resulted in reduced mRNA levels of SOD, CAT, Nrf2, Keap1, and NF-κB compared to the control group. In contrast, the mRNA levels of GPx, IL-8, TLR2, and RelA were elevated in the liver. Our findings indicated that CGA supplementation improved the growth performance and antioxidant status and weakened the inflammatory response of largemouth bass. These findings suggest that CGA could be a valuable dietary supplement for enhancing the health and growth of this species.
Collapse
Affiliation(s)
- Zetian Xia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ahmed Mohamed Aboseif
- National Institute of Oceanography and Fisheries (NIOF), Academy of Scientific Research and Technology (ASRT), Cairo 11796, Egypt
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
2
|
Nagarajan D, Chen CW, Ponnusamy VK, Dong CD, Lee DJ, Chang JS. Sustainable aquaculture and seafood production using microalgal technology - A circular bioeconomy perspective. CHEMOSPHERE 2024; 366:143502. [PMID: 39384130 DOI: 10.1016/j.chemosphere.2024.143502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The aquaculture industry is under the framework of the food-water-energy nexus due to the extensive use of water and energy. Sustainable practices are required to support the tremendous growth of this sector. Currently, the aquaculture industry is challenged by its reliance on capture fisheries for feed, increased use of pharmaceuticals, infectious outbreaks, and solid/liquid waste management. This review posits microalgal technology as a comprehensive solution for the current predicaments in aquaculture in a sustainable way. Microalgae are microscopic, freshwater and marine photosynthetic organisms, capable of carbon mitigation and bioremediation. They are indispensable in aquaculture due to their key role in marine productivity and their position in the marine food chain. Microalgae are nutritious and are currently used as feed in specific sectors of aquaculture. Due to their bioremediation potential, direct application of microalgae in shellfish ponds and in recirculating systems have been adopted to improve water quality and aquatic animal health. The potential of microalgae for integration into various aspects of aquaculture processes, namely hatcheries, feed, and waste management has been critically analyzed. Seamless integration of microalgal technology in aquaculture is feasible, and this review will provide new insights into using microalgal technology for sustainable aquaculture.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan; Research Center for Smart and Sustainable Circular Economy, Tunghai University, Tainan, 407224, ROC, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407224, ROC, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
3
|
Fan LP, Tao Q, Wang XQ, Xu XH, Yang YJ, Li JY. Development of a Method for the Determination of Rifaximin and Rifampicin Residues in Foods of Animal Origin. Molecules 2024; 29:4599. [PMID: 39407529 PMCID: PMC11477573 DOI: 10.3390/molecules29194599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Rifaximin and rifampicin are good broad-spectrum antimicrobials. The irrational use of antimicrobial drugs in veterinary clinics could threaten public health and food safety. It is necessary to develop a reliable detection method of the residue for enhancing the rational supervision of the use of such drugs, reducing and slowing down the generation of bacterial resistance, and promoting animal food safety and human health. So, this study developed an LC-MS/MS method for the detection of rifaximin and rifampicin residues in animal-origin foods. The residual rifaximin and rifampicin of homogenized test materials were extracted with acetonitrile-dichloromethane solution or acetonitrile in the presence of anhydrous sodium sulfate and vitamin C, purified by dispersible solid phase extraction, determined by LC-MS/MS, and quantified by the internal standard method. The specificity, sensitivity, matrix effect, accuracy, and precision of the method were investigated in the edible tissues of cattle, swine, or chicken. In addition, the stability of the standard stock solution and the standard working solution was also investigated. The method was suitable for the muscle, liver, kidney, fat, milk, and eggs of cattle, swine, or chicken, as well as fish and shrimp. The specificity of the method was good, and the detection of the analytes was not affected by different matrices. Both the LOD and LOQ of the two analytes were 5 μg/kg and 10 μg/kg, respectively. The results of matrix effects in each tissue were in the range of 80-120%; there were no significant matrix effects. The average accuracy of rifaximin and rifampicin in different foodstuffs of animal origin was between 80% and 120%, and the method precision was below 20% (RSD). The proposed method showed good performance for determination, which could be employed for the extraction, purification, and detection of residual rifaximin and rifampicin in edible animal tissues. The pretreatment procedure of tissue samples was simple and feasible. The method was highly specific, stable, reliable, and with high sensitivity, accuracy, and precision, which met the requirements of quantitative detection of veterinary drug residues.
Collapse
Affiliation(s)
- Li-Ping Fan
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Qi Tao
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Qiao Wang
- Key Laboratory of Pesticides and Veterinary Drugs Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Xiao-Hui Xu
- Key Laboratory of Pesticides and Veterinary Drugs Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
4
|
Liu Q, Wang X, Wang X, Chen H, Lyu S, Zhang Z, Tian F, Zhang L, Ma S. Dynamic impacts of short-term bath administration of enrofloxacin on juvenile black seabream Acanthopagrus schlegelii. CHEMOSPHERE 2024; 361:142573. [PMID: 38852630 DOI: 10.1016/j.chemosphere.2024.142573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Dynamic impacts of short-term enrofloxacin (ENR) exposure on juvenile marine fish are not well understood, and the underlying mechanisms remain unclear. We therefore investigated the accumulation and elimination of ENR in the liver of juvenile black seabream Acanthopagrus schlegelii. Meanwhile, the dynamic alterations of biochemical parameters and liver transcriptomes after short-term bath immersion and withdrawal treatment were explored. The results indicated that the contents of ENR in the liver were significantly increased after bath administration for 24 h, and then quickly declined to very low concentrations along with the decontamination time increasing. Judging from the changes in biochemical indicators and liver transcriptomic alterations, 0.5 and 1 mg/L ENR exposure for 24 h triggered oxidative stress, impairment of immune system, as well as aberrant lipid metabolism via differential molecular pathways. Interestingly, biochemical and transcriptome analysis as well as integrated biomarker response (IBR) values showed that more significant changes appeared in 1 mg/L ENR group at decontamination periods, which indicated that the impact of high dose ENR on juvenile A. schlegelii may persist even after depuration for 7 days. These results revealed that the risk of short-term bath of 1 mg/L ENR should not be overlooked even after depuration period. Therefore, attention should be paid to the dosage control when administering the drug to juvenile A. schlegelii, and the restoration of physiological disturbance may be an important factor in formulating a reasonable treatment plan.
Collapse
Affiliation(s)
- Qian Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China; College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuefeng Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Haigang Chen
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Shaoliang Lyu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Fei Tian
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China
| | - Linbao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China.
| | - Shengwei Ma
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China.
| |
Collapse
|
5
|
Singh A, Pratap SG, Raj A. Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47505-47529. [PMID: 39028459 DOI: 10.1007/s11356-024-34355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.
Collapse
Affiliation(s)
- Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Shalini G Pratap
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Díaz-Torres O, Los Cobos EOVD, Kreft JU, Loge FJ, Díaz-Vázquez D, Mahlknecht J, Gradilla-Hernández MS, Senés-Guerrero C. A metagenomic study of antibiotic resistance genes in a hypereutrophic subtropical lake contaminated by anthropogenic sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172216. [PMID: 38583614 DOI: 10.1016/j.scitotenv.2024.172216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.
Collapse
Affiliation(s)
- Osiris Díaz-Torres
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México.
| | - Eric Oswaldo Valencia-de Los Cobos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México
| | - Jan-Ulrich Kreft
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Sada 2501 Sur, Monterrey, N.L. 64849, Mexico
| | - Diego Díaz-Vázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Sada 2501 Sur, Monterrey, N.L. 64849, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México.
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramon Corona 2514, Nuevo México, Zapopan, CP, 45138 Jalisco, México.
| |
Collapse
|
7
|
Dessì F, Varoni MV, Baralla E, Nieddu M, Pasciu V, Piras G, Lorenzoni G, Demontis MP. Contaminants of Emerging Concern: Antibiotics Research in Mussels from the Coasts of the Tyrrhenian Sea (Sardinia, Italy). Animals (Basel) 2024; 14:1205. [PMID: 38672353 PMCID: PMC11047641 DOI: 10.3390/ani14081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Contaminants of emerging concern (CECs) are compounds found in several environmental compartments whose ubiquitous presence can cause toxicity for the entire ecosystem. Several personal care products, including antibiotics, have entered this group of compounds, constituting a major global threat. It is essential to develop simple and reliable methods by which to quantify these contaminants in several matrices. In this work, mussels were chosen as sentinel organisms to assess environmental pollution and the safety of bivalve mollusk consumption according to the "One Health perspective". A liquid chromatographic tandem mass spectrometry method (LC-MS/MS) was developed for the quantification of two macrolides, erythromycin (ERY) and azithromycin (AZI), in mussels. This new method was validated according to international guidelines, showing high selectivity, good recoveries (>60% for both of them), sensitivity, and precision. The method was successfully applied for ERY and AZI research in mussels farmed along the Sardinian coasts (Italy), demonstrating itself to be useful for routine analysis by competent authorities. The tested macrolides were not determined in the analyzed sites at concentrations above the limits of detection (LODs). These results demonstrate the food safety of mussels (as concerns the studied antibiotics) and a negligible amount of pollution derived from these drugs in the studied area.
Collapse
Affiliation(s)
- Filomena Dessì
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Maria Nieddu
- Department of Medicine Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Gabriella Piras
- Veterinary Public Health Institute of Sardinia, 07100 Sassari, Italy; (G.P.); (G.L.)
| | - Giuseppa Lorenzoni
- Veterinary Public Health Institute of Sardinia, 07100 Sassari, Italy; (G.P.); (G.L.)
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| |
Collapse
|
8
|
Shen HT, Pan XD, Han JL. Distribution and Probabilistic Risk Assessment of Antibiotics, Illegal Drugs, and Toxic Elements in Gastropods from Southeast China. Foods 2024; 13:1166. [PMID: 38672840 PMCID: PMC11049630 DOI: 10.3390/foods13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
We investigated fourteen antibiotics, three illegal drugs, and two toxic elements in commercially available gastropods from southeast China. The data revealed high detection frequencies (DFs) for florfenicol (61.32%), florfenicol amine (47.33%), and thiamphenicol (39.88%), with maximum concentrations of 1110, 2222, and 136 μg/kg wet weight (ww), respectively. The DFs of illegal drugs were 3.54% for leucomalachite green and 0.3% for chloramphenicol. The average levels of Cd and As were 1.17 and 6.12 mg/kg ww, respectively. All chemicals presented diverse DFs in different sampling months. The highest DFs of florfenicol, florfenicol amine, and thiamphenicol were in July. The health risk assessment showed that targeted hazard quotients (THQs) of antibiotics, Cd, and As for children, teens, and adults were all less than one. Notably, the toxic elements (Cd and As) were identified as the primary health risk in gastropods, contributing to over 90% of the total THQs.
Collapse
Affiliation(s)
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | | |
Collapse
|
9
|
Shao GJ, Pan XD, Han JL. Antibiotic residues in commercial freshwater fish from southeast China: distribution and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23780-23789. [PMID: 38430444 DOI: 10.1007/s11356-024-32708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
We investigated 14 antibiotic residues in 8 marketed freshwater fish species from southeast China and estimated the associated health risks to local consumers. The antibiotic residues were determined by UPLC-MS/MS. Our findings revealed widespread distribution of quinolones (QNs), tetracyclines (TCs), and chloramphenicols (CAPs) in the freshwater fish. Notably, the average concentrations of enrofloxacin and ciprofloxacin reached levels as high as 62.5 μg/kg wet weight (ww) and 11.7 μg/kg ww, respectively, and detection frequencies were 68.7% for enrofloxacin and 31.6% for ciprofloxacin. Additionally, we detected chloramphenicol, a prohibited antibiotic, in samples with a detection frequency of 0.76%. Among the fish species, the mean concentration of total antibiotic residues was highest in bluntnose black bream (263.3 μg/kg), followed by English perch (52.4 μg/kg), crucian carp (46.3 μg/kg), black carp (28.6 μg/kg), yellowcheek carp (21.0 μg/kg), grass carp (15.3 μg/kg), bighead carp (3.78 μg/kg), and mandarin fish (3.69 μg/kg). We estimated the daily intake values of these antibiotic residues which were lower than the acceptable daily intake values and hazard indexes were much less than 1. It indicates that there is very low direct health risk to consumers. Despite that, investigation on the chronic impact, such as antibiotic-resistant bacteria, gut microbiota disruption, and allergic reactions, is urgently needed.
Collapse
Affiliation(s)
- Guo-Jian Shao
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Jian-Long Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
10
|
Bedi M, Sapozhnikova Y, Ng C. Evaluating contamination of seafood purchased from U.S. retail stores by persistent environmental pollutants, pesticides and veterinary drugs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:325-338. [PMID: 38315767 DOI: 10.1080/19440049.2024.2310128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Studies have reported health risks associated with seafood contamination, but few data exist on levels in commercially available seafood in the US. To better understand, the magnitude of foodborne exposure and identify vulnerable populations in the US, we measured concentrations of veterinary drugs, persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons [PAHs], polybrominated diphenyl ethers [PBDEs] and polychlorinated biphenyls [PCBs]), and legacy and current-use pesticides in 46 seafood samples purchased from retail outlets. Measured levels were used to estimate risk based on available maximum residue limits (MRLs) and toxic equivalence (TEQ) factors for analytes. Only seventeen of the 445 analytes were detected, at low substance frequencies. However, half of the samples tested positive for one or more analyte, with total concentrations ranging from below the limit of detection (LOD) to as high as 156 µg/kg wet weight. Based on the risk assessment for individual pesticides and veterinary drugs, the hazard quotients (HQ) were all <1, indicating no risk. However, for the sum of PCB126 and PCB167, two dioxin-like PCBs detected in our samples, the TEQ was nearly two orders of magnitude higher than the WHO limits in one catfish sample. Moreover, vulnerable groups with higher rates of consumption of specific fish types may face higher risks.
Collapse
Affiliation(s)
- Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Liu C, Pan K, Xu H, Song Y, Qi X, Lu Y, Jiang X, Liu H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). CHEMOSPHERE 2024; 348:140751. [PMID: 37992902 DOI: 10.1016/j.chemosphere.2023.140751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
13
|
Sun Z, Liu Y, Hou A, Han A, Yan C, Sun J. Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115467. [PMID: 37716071 DOI: 10.1016/j.ecoenv.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Aoran Hou
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Anqi Han
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
14
|
Xu N, Sun W, Gong L, Dong J, Zhou S, Liu Y, Yang Y, Yang Q, Ding Y, Ai X. An improved withdrawal interval calculation and risk assessment of doxycycline in crayfish (Procambarus clarkii) in the natural cultured environment. Food Res Int 2023; 166:112604. [PMID: 36914350 DOI: 10.1016/j.foodres.2023.112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Doxycycline is an important medicine in aquaculture for treating fish diseases. However, its excess use causes residue exceeding to threaten human health. So, this study aimed to estimate a reliable withdrawal time (WT) of doxycycline (DC) in crayfish (Procambarus clarkii) based on statistical approaches and conduct a risk assessment for human health in the natural environment. Samples were collected at predetermined time points and determined by high-performance liquid chromatography. A novel statistical method was used to process the data of residue concentration. The homogeneity and linearity of the regressed line of data were evaluated by Bartlett's, Cochran's, and F tests. Outliers were excluded by establishing the standardized residual versus their cumulative frequency distribution on a normal probability scale. The calculated WT was 43 days in muscle of crayfish based on China and European stipulations. After 43 days, estimated daily intakes of DC were ranged from 0.022 to 0.052 µg/kg/d. Hazard Quotients were ranged from 0.007 to 0.014, which were far less than 1. These results indicated that established WT could avoid health risks for humans resulting from DC's residue in crayfish.
Collapse
Affiliation(s)
- Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China.
| | - Weiyu Sun
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lve Gong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, China.
| |
Collapse
|