1
|
Huang R, Cui J. Impact of Linggui Zhugan decoction on microwave ablation outcomes and recurrence in liver cancer. World J Gastrointest Oncol 2025; 17:101177. [PMID: 39958537 PMCID: PMC11756010 DOI: 10.4251/wjgo.v17.i2.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Liver cancer is one of the most common malignant tumors of the digestive system, and early detection and effective treatment are crucial for improving the prognosis. Microwave ablation (MWA) has shown promising results as a local therapeutic method for liver cancer; however, further improvement of its efficacy remains a key focus of current research. AIM To evaluate the clinical efficacy of Linggui Zhugan decoction combined with MWA for the treatment of primary liver cancer. METHODS Data were collected from 164 patients with primary liver cancer who underwent MWA at our hospital between March 2019 and April 2021. Among them, 79 patients (control group) received routine treatments and 85 patients (research group) received Linggui Zhugan decoction in addition to routine treatment. The clinical efficacy, incidence of adverse reactions, and levels of serum alpha-fetoprotein (AFP), des-γ-carboxy prothrombin (DCP), AFP-L3, total bilirubin (TBil), alanine aminotransferase (ALT), CD4 cell count, CD8 cell count, and CD4/CD8 ratio were compared between the two groups, before and after treatment. The three-year recurrence rates between the two groups were compared, and independent prognostic factors for recurrence were identified. RESULTS The study results revealed that the objective response rate (ORR) in the research group was significantly higher than that in the control group (P = 0.005). After treatment, the CD4 cell count and CD4/CD8 ratio significantly increased, whereas the CD8 cell count and TBil, ALT, AFP, DCP, and AFP-L3 Levels were significantly lower in the research group than in the control group (P < 0.001). The Cox regression analysis revealed that the treatment regimen (P = 0.003), presence of cirrhosis (P = 0.019), tumor diameter (P = 0.037), Child-Pugh score (P = 0.003), pretreatment AFP level (P = 0.006), and AFP-L3 Level (P = 0.002) were independent prognostic factors for disease-free survival. CONCLUSION The combination of Linggui Zhugan decoction with MWA significantly improved the clinical efficacy and long-term prognosis of patients with primary liver cancer.
Collapse
Affiliation(s)
- Rui Huang
- Department of Acupuncture and Moxibustion, Baoji Central Hospital, Baoji 721000, Shaanxi Province, China
| | - Jing Cui
- Department of Liver Disease, Xi’an Daxing Hospital, Xi’an 710016, Shaanxi Province, China
| |
Collapse
|
2
|
Li Y, Zhao J. Xiaohua Funing decoction ameliorates non-alcoholic fatty liver disease by modulating the gut microbiota and bile acids. Front Microbiol 2025; 16:1511885. [PMID: 40012777 PMCID: PMC11863611 DOI: 10.3389/fmicb.2025.1511885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction The gut microbiota and bile acids (BAs) have emerged as factors involved in the development of non-alcoholic fatty liver disease (NAFLD). Xiaohua Funing decoction (XFD) is a traditional Chinese medicine formula used for the treatment of NAFLD. Previous studies have indicated that XFD protects liver function, but the underlying mechanism remains unclear. Methods In this study, a Wistar rat model of NAFLD (Mod) was established via a high-fat diet. The effects of obeticholic acid (OCA) and XFD on Mod rats were subsequently evaluated. Wistar rats in the control (Con) group were fed a standard diet. There were eight rats in each group, and the treatment lasted for 12 weeks. Furthermore, metagenomic sequencing and BA metabolomic analyses were performed. Results Compared to the Con group, the Mod group presented significant differences in body and liver weights; serum total cholesterol (TC) and triglyceride (TG) levels; and liver TG, TC, and bile salt hydrolase levels (p < 0.05 or p < 0.01). Importantly, OCA and XFD administration normalized these indicators (p < 0.05 or p < 0.01). Pathology of the liver and white fat steatosis was observed in the Mod group, but steatosis was significantly alleviated in the OCA and XFD groups (p < 0.05 or p < 0.01). The abundances of Bacteroidales_bacterium, Prevotella_sp., bacterium_0.1xD8-71, and unclassified_g_Turicibacter in the Mod group were significantly different from those in the Con group (p < 0.05 or p < 0.01), whereas the abundance of Bacteroidales_bacterium was greater in the XFD group. A total of 17, 24, and 24 differentially abundant BAs were detected in the feces, liver, and serum samples from the Mod and Con groups, respectively (p < 0.05 or p < 0.01). In the feces, liver, and serum, XFD normalized the levels of 16, 23, and 14 BAs, respectively, including glycochenodeoxycholic acid, deoxycholic acid, murideoxycholic acid, lithocholic acid, 23-nordeoxycholic acid, and 3β-ursodeoxycholic acid. In addition, glycochenodeoxycholic acid was identified as a potential biomarker of NAFLD. Discussion In summary, our experiments revealed that XFD regulates the gut microbiota and BAs, providing beneficial effects on liver lipid accumulation in NAFLD.
Collapse
Affiliation(s)
- Yan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
4
|
Jarmukhanov Z, Mukhanbetzhanov N, Vinogradova E, Kozhakhmetov S, Kushugulova A. Gut metagenomic features of frailty. Front Cell Infect Microbiol 2024; 14:1486579. [PMID: 39654975 PMCID: PMC11625779 DOI: 10.3389/fcimb.2024.1486579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
This study investigates the relationship between frailty severity and gut microbiome characteristics in adults in Kazakhstan. We analyzed 158 participants across four frailty severity (mild to very severe) using metagenomic sequencing of stool samples. Frailty was significantly correlated with age, weight, and functional measures like walking speed and grip strength. Microbial diversity decreased significantly with increasing frailty. Beta diversity analysis revealed distinct clustering patterns based at phylum level. Taxonomically, we observed a significant inverse correlation between Firmicutes abundance and frailty. Classes like Clostridia and Erysipelotrichia decreased with frailty, while Bacteroidia and Actinobacteria increased. At the family level, Oscillospiraceae showed a positive correlation with frailty. Functionally, we identified significant correlations between frailty measures and specific metabolic pathways. The frailty index negatively correlated with pathways involved in cobalamin, arginine and molybdenum cofactor biosynthesis and positively correlated with folate biosynthesis. Physical performance measures strongly correlated with pathways related to nucleotide biosynthesis, and one-carbon metabolism. We propose these identified features may constitute a "frailty-associated metabolic signature" in the gut microbiome. This signature suggests multiple interconnected mechanisms through which the microbiome may influence frailty development, including modulation of inflammation, alterations in energy metabolism, and potential impacts on muscle function through microbial metabolites.
Collapse
Affiliation(s)
| | | | | | | | - Almagul Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
Long J, Zhang J, Zeng X, Wang M, Wang N. Prevention and Treatment of Alzheimer's Disease Via the Regulation of the Gut Microbiota With Traditional Chinese Medicine. CNS Neurosci Ther 2024; 30:e70101. [PMID: 39508315 PMCID: PMC11541599 DOI: 10.1111/cns.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Alzheimer's disease (AD) is caused by a variety of factors, and one of the most important factors is gut microbiota dysbiosis. An imbalance in the gut mincrobiota have been shown to change the concentrations of lipopolysaccharide and short-chain fatty acids. These microorganisms synthesize substances that can influence the levels of a variety of metabolites and cause multiple diseases through the immune response, fatty acid metabolism, and amino acid metabolism pathways. Furthermore, these metabolic changes promote the formation of β-amyloid plaques and neurofibrillary tangles. Thus, the microbiota-gut-brain axis plays an important role in AD development. In addition to traditional therapeutic drugs such as donepezil and memantine, traditional Chinese medicines (TCMs) have also showed to significantly decrease the severity of AD symptoms and suppress the underlying related mechanisms. We searched for studies on the effects of different herbal monomers, single herbs, and polyherbal formulas on the gut microbiota of AD patients and identified the relevant pathways through which the gut microbiota affected AD. We conclude that improvements in the gut microbiota not only decrease the occurrence of inflammatory reactions but also reduce the deposition of central pathological products. Herbal monomers have a stronger effect on improving of central pathology. Polyherbal formulas have the most extensive effect on the gut microbiota in patients with AD. Among the effects of formulas, the anti-inflammatory effect is the most essential and is also the main concern regarding the use of TCMs in treating AD from the viewpoint of the gut microbiota. We hope that this review will be helpful for providing new ideas for the clinical application of TCMs in the treatment of AD.
Collapse
Affiliation(s)
- Jinyao Long
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jiani Zhang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xin Zeng
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Min Wang
- Dongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Ningqun Wang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Li B, Qian Q, Niu L, Wang X. Multi-omics reveals protective effects of Ling Gui Zhu Gan Decoction on hyperlipidaemia in hamster. Heliyon 2024; 10:e35426. [PMID: 39253150 PMCID: PMC11382051 DOI: 10.1016/j.heliyon.2024.e35426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
Ling Gui Zhu Gan decoction (LGZGD) is a traditional Chinese medicine (TCM) prescription that is widely used in cardiovascular disease clinical prevention and treatment with high efficacy. Recent studies have shown that LGZGD can also be used in hyperlipidemia (HL) intervention, but its pharmacodynamic material basis and its mechanisms remains unclear. This study aimed to reveal the protective effects of LGZGD on HL, elucidate the pharmacodynamic material basis. The hamster HL model was established by high-fat diet. Thereafter, non-targeted metabolomics and quantitative lipidomics were established for screening differential metabolites and pathways. Finally, the mechanisms were elucidated based on network pharmacology to screen for shared targets, which were computational selected by molecular docking. After four weeks of LGZGD administration, the TC, TG, and liver index levels decreased notably and hepatocyte injury was obviously reduced. The Multi-omics identified 62 differential metabolites and 144 differential lipids, respectively. The network pharmacology study predicted 343, 85, and 974 relevant targets from LGZGD components, HL, differential metabolites and lipids, respectively. Eventually, seven core targets were selected by molecular docking. Six key components in LGZGD, including genistein and naringenin, could play a therapeutic role in HL by regulating seven pathways, including HMGCR and PPARA. This comprehensive strategy provides a promising example and approach for further research on TCM for the treatment of lipid metabolic diseases.
Collapse
Affiliation(s)
- Baolin Li
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| | - Qi Qian
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| | - Liying Niu
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| | - Xinguo Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| |
Collapse
|
7
|
Xu R, Wu J, Pan J, Zhang S, Yang Y, Zhang L, Zhou W, Wu N, Hu D, Ji G, Dang Y. Gan-jiang-ling-zhu decoction improves steatohepatitis by regulating gut microbiota-mediated 12-tridecenoic acid inhibition. Front Pharmacol 2024; 15:1444561. [PMID: 39246653 PMCID: PMC11377346 DOI: 10.3389/fphar.2024.1444561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Gan-jiang-ling-zhu (GJLZ) decoction is a classical traditional Chinese medicine prescription. Through invigorating yang, activating qi and dissipating dampness, GJLZ decoction is widely applied for the treatment of chronic digestive disease, including nonalcoholic fatty liver disease. However, efficacy and mechanism of GJLZ decoction behind nonalcoholic steatohepatitis (NASH) treatment remains unelucidated. Methods: NASH was induced in mice, followed by treatment with GJLZ decoction. Various methods including hematoxylin-eosin, oil red O staining, and triglyceride analysis were employed to evaluate the treatment effects of GJLZ decoction on NASH. Gut microbiota, metabolomics, cell viability assays, immunofluorescence and Western blotting were performed to unveil the mechanism behind GJLZ decoction. Results: GJLZ decoction treatment significantly improved hepatic steatosis in mice with NASH. It led to remodeling of gut flora and metabolite structures, including the 12-tridecenoic acid level. 12-Tridecenoic acid aggravated hepatic steatosis by promoting acetyl-coenzyme A carboxylase alpha (ACC) expression and inhibiting carnitine palmitoyltransferase 1A (CPT1A) expression. GJLZ decoction treatment reduced the 12-tridecenoic acid level, inhibited ACC activity and promoted CPT1A expression. Conclusion: Our results demonstrated that 12-tridecenoic acid aggravated hepatic steatosis by affecting the ACC-CPT1A axis and GJLZ decoction treatment effectively reduced the 12-tridecenoic acid level and improved steatosis.
Collapse
Affiliation(s)
- Ruohui Xu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaxuan Wu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jiashu Pan
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yunuo Yang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Na Wu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
8
|
He S, Zhuo Y, Cui L, Zhang S, Tu Z, Wang M, Lv X, Ge L, Lin J, Yang L, Wang X. Naringin dihydrochalcone alleviates sepsis-induced acute lung injury via improving gut microbial homeostasis and activating GPR18 receptor. Int Immunopharmacol 2024; 137:112418. [PMID: 38901244 DOI: 10.1016/j.intimp.2024.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1β and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.
Collapse
Affiliation(s)
- Siqi He
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Mukuo Wang
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xinyue Lv
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lixiu Ge
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin 300270, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Medical University Third Center Clinical College, Tianjin 300170, China.
| |
Collapse
|
9
|
Wang S, Chen B, Du R, Zhong M, Zhang C, Jin X, Cui X, Zhou Y, Kang Q, Xu H, Li Y, Wu Q, Tong G, Luo L. An herbal formulation "Shugan Xiaozhi decoction" ameliorates methionine/choline deficiency-induced nonalcoholic steatohepatitis through regulating inflammation and apoptosis-related pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118127. [PMID: 38583728 DOI: 10.1016/j.jep.2024.118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1β, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1β were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Bohao Chen
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Ruili Du
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Mei Zhong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Chunmei Zhang
- School of Basic Medical Science of Luoyang Polytechnic, No. 6 Keji Avenue, Yibin District, Henan, 471099, China
| | - Xiaoming Jin
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Xiang Cui
- Ankang Traditional Chinese Medicine Hospital, Ankang, 725000, Shaanxi, China
| | - Yuhang Zhou
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Qinyang Kang
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Hang Xu
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Yuting Li
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| | - Guangdong Tong
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China.
| | - Lidan Luo
- Department of Hepatology, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China; Shenzhen Key Laboratory of Liver Diseases of Traditional Chinese Medicine, No.15, Yingchun Road, Luohu District, Guangdong, 518033, China.
| |
Collapse
|
10
|
Sun Y, Zhou W, Zhu M. Serum Metabolomics Uncovers the Mechanisms of Inulin in Preventing Non-Alcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2024; 17:895. [PMID: 39065745 PMCID: PMC11279973 DOI: 10.3390/ph17070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inulin may be a promising therapeutic molecule for treating non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its therapeutic activity remain unclear. To address this issue, a high-fat-diet-induced NAFLD mouse model was developed and treated with inulin. The NAFLD phenotype was evaluated via histopathological analysis and biochemical parameters, including serum levels of alanine aminotransferase, aspartate aminotransferase, liver triglycerides, etc. A serum metabolomics study was conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The results revealed that inulin mitigated NAFLD symptoms such as histopathological changes and liver cholesterol levels. Through the serum metabolomics study, 347 differential metabolites were identified between the model and control groups, and 139 differential metabolites were identified between the inulin and model groups. Additionally, 48 differential metabolites (such as phosphatidylserine, dihomo-γ-linolenic acid, L-carnitine, and 13-HODE) were identified as candidate targets of inulin and subjected to pathway enrichment analysis. The results revealed that these 48 differential metabolites were enriched in several metabolic pathways such as fatty acid biosynthesis and cardiolipin biosynthesis. Taken together, our results suggest that inulin might attenuate NAFLD partially by modulating 48 differential metabolites and their correlated metabolic pathways, constituting information that might help us find novel therapies for NAFLD.
Collapse
Affiliation(s)
- Yunhong Sun
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| |
Collapse
|
11
|
Lu TJ, Chiou WC, Huang HC, Pan HC, Sun CY, Way TD, Huang C. Modulation of gut microbiota by crude gac aril polysaccharides ameliorates diet-induced obesity and metabolic disorders. Int J Biol Macromol 2024; 273:133164. [PMID: 38878919 DOI: 10.1016/j.ijbiomac.2024.133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Obesity is a global health challenge that causes metabolic dysregulation and increases the risk of various chronic diseases. The gut microbiome is crucial in modulating host energy metabolism, immunity, and inflammation and is influenced by dietary factors. Gac fruit (Momordica cochinchinensis), widely consumed in Southeast Asia, has been proven to have various biological activities. However, the composition and effect of crude gac aril polysaccharides (GAP) on obesity and gut microbiota disturbed by high-fat diet (HFD) remain to be elucidated. Compositional analysis showed that GAP contains high oligosaccharides, with an average of 7-8 saccharide units. To mimic clinical obesity, mice were first made obese by feeding HFD for eight weeks. GAP intervention was performed from week 9 to week 20 in HFD-fed mice. Our results showed that GAP inhibited body weight gain, eWAT adipocyte hypertrophy, adipokine derangement, and hyperlipidemia in HFD-induced obese mice. GAP improved insulin sensitivity, impaired glucose tolerance, and hepatic steatosis. GAP modulated the gut microbiota composition and reversed the HFD-induced dysbiosis of at least 20 genera. Taken together, GAP improves metabolic health and modulates the gut microbiome to relieve obesity risk factors, demonstrating the potential of dietary GAP for treating obesity-associated disorders.
Collapse
Affiliation(s)
- Tai-Jung Lu
- Department of Ph.D. Program for Biotechnology Industry, China Medical University, Taichung City 406040, Taiwan
| | - Wei-Chung Chiou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Hsiu-Chen Huang
- Center for Teacher Education, National Tsing Hua University, Hsinchu City 300044, Taiwan; Department of Applied Science, Nanda Campus, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung City 204201, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung City 204201, Taiwan
| | - Tzong-Der Way
- Department of Ph.D. Program for Biotechnology Industry, China Medical University, Taichung City 406040, Taiwan.
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan.
| |
Collapse
|
12
|
Chen LP, Zhang LF, Liu S, Hua H, Zhang L, Liu BC, Wang RR. Ling-Gui-Zhu-Gan decoction ameliorates nonalcoholic fatty liver disease via modulating the gut microbiota. Microbiol Spectr 2024; 12:e0197923. [PMID: 38647315 PMCID: PMC11237417 DOI: 10.1128/spectrum.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Numerous studies have supported that nonalcoholic fatty liver disease (NAFLD) is highly associated with gut microbiota dysbiosis. Ling-Gui-Zhu-Gan decoction (LG) has been clinically used to treat NAFLD, but the underlying mechanism remains unknown. This study investigated the therapeutic effect and mechanisms of LG in mice with NAFLD induced by a high-fat diet (HD). An HD-induced NAFLD mice model was established to evaluate the efficacy of LG followed by biochemical and histopathological analysis. Metagenomics, metabolomics, and transcriptomics were used to explore the structure and metabolism of the gut microbiota. LG significantly improved hepatic function and decreased lipid droplet accumulation in HD-induced NAFLD mice. LG reversed the structure of the gut microbiota that is damaged by HD and improved intestinal barrier function. Meanwhile, the LG group showed a lower total blood bile acids (BAs) concentration, a shifted BAs composition, and a higher fecal short-chain fatty acids (SCFAs) concentration. Furthermore, LG could regulate the hepatic expression of genes associated with the primary BAs biosynthesis pathway and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Our study suggested that LG could ameliorate NAFLD by altering the structure and metabolism of gut microbiota, while BAs and SCFAs are considered possible mediating substances. IMPORTANCE Until now, there has still been no study on the gut microbiota and metabolomics of Ling-Gui-Zhu-Gan decoction (LG) in nonalcoholic fatty liver disease (NAFLD) mouse models. Our study is the first to report on the reshaping of the structure and metabolism of the gut microbiota by LG, as well as explore the potential mechanism underlying the improvement of NAFLD. Specifically, our study demonstrates the potential of gut microbial-derived short-chain fatty acids (SCFAs) and blood bile acids (BAs) as mediators of LG therapy for NAFLD in animal models. Based on the results of transcriptomics, we further verified that LG attenuates NAFLD by restoring the metabolic disorder of BAs via the up-regulation of Fgf15/FXR in the ileum and down-regulation of CYP7A1/FXR in the liver. LG also reduces lipogenesis in NAFLD mice by mediating the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which then contributes to reducing hepatic inflammation and improving intestinal barrier function to treat NAFLD.
Collapse
Affiliation(s)
- Lu-ping Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-fang Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, Jiangsu, China
| | - Shuang Liu
- Shanxi Institute for Function Food, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Hua Hua
- Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Sichuan Academy of Chinese Medical Sciences, Chengdu, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bao-cheng Liu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-rui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Chen D, Wang Y, Yang J, Ou W, Lin G, Zeng Z, Lu X, Chen Z, Zou L, Tian Y, Wu A, Keating SE, Yang Q, Lin C, Liang Y. Shenling Baizhu San ameliorates non-alcoholic fatty liver disease in mice by modulating gut microbiota and metabolites. Front Pharmacol 2024; 15:1343755. [PMID: 38720776 PMCID: PMC11076757 DOI: 10.3389/fphar.2024.1343755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.
Collapse
Affiliation(s)
- Dongliang Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuanfei Wang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Jianmei Yang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Wanyi Ou
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Guiru Lin
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze Zeng
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaomin Lu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Zumin Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Lili Zou
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Yaling Tian
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Aiping Wu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Shelley E. Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qinhe Yang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Chenli Lin
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Yinji Liang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Wang M, Li H, Liu C, Zhang Y, Wu Q, Yang Y. Lingguizhugan Decoction Improved Obesity by Modulating the Gut Microbiota and its Metabolites in Mice. Curr Drug Metab 2024; 25:276-287. [PMID: 38982915 DOI: 10.2174/0113892002289388240705113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The global obese population is rapidly increasing, urgently requiring the development of effective and safe weight-loss medications. The classic Chinese medicine formulation Lingguizhugan Decoction has exerted a significant anti-obesity effect. However, the underlying mechanism is still unclear. OBJECTIVE This study aimed to explore the mechanism of LGZGD in the treatment of obesity based on the gut microbiota and its metabolites. METHODS Three different dosages of LGZGD were gavaged to ob/ob mice for 8 weeks. Body mass and visceral fat mass were evaluated. Additionally, the changes in gut microbiota, fecal and plasma metabolites in mice after LGZGD treatment were analyzed by metagenomics and non-targeted metabolomics. RESULTS The results demonstrated a significant anti-obesity effect of LGZGD treatment in ob/ob mice. Furthermore, the metagenomic analysis revealed that LGZGD reduced the ratio of Firmicutes / Bacteroidetes (F to B) in the gut, restored gut microbiota diversity, and identified 3 enriched KEGG pathways, including energy metabolism, lipid metabolism, and energy production and conversion pathways. Based on non-targeted metabolomics analysis, 20 key metabolites in the feces and 30 key metabolites in the plasma responding to LGZGD treatment were identified, and the levels of Eicosapentaenoic acid (EPA) and Myristoleic acid (MA) might be the metabolites related to gut microbiota after LGZGD treatment. Their biological functions were mainly related to the metabolism pathway. CONCLUSIONS These findings suggested that LGZGD had therapeutic potential for obesity. The mechanism of LGZGD alleviating obesity was associated with improving dysbiosis of the gut microbiota. LDZGD affected gut microbiota-derived metabolites of EPA and MA and may act on energy metabolism pathways.
Collapse
Affiliation(s)
- Meiling Wang
- Traditional Chinese Medicine Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Hairong Li
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Chunmei Liu
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Yuanyuan Zhang
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Qian Wu
- Guangdong Pharmaceutical University, Xiaoguwei Street, Panyu District, Guangzhou, China
| | - Yubin Yang
- Traditional Chinese Medicine Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| |
Collapse
|
16
|
Wang Y, Zheng Y, Kuang L, Yang K, Xie J, Liu X, Shen S, Li X, Wu S, Yang Y, Shi J, Wu J, Wang Y. Effects of probiotics in patients with morbid obesity undergoing bariatric surgery: a systematic review and meta-analysis. Int J Obes (Lond) 2023; 47:1029-1042. [PMID: 37674033 PMCID: PMC10600003 DOI: 10.1038/s41366-023-01375-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Probiotics are commonly used after bariatric surgery. However, uncertainty remains regarding their effects. The purpose of this systematic review was to assess the effect of probiotics in patients with morbid obesity undergoing bariatric surgery. METHODS PubMed, Cochrane Library, Embase, Science Direct, and Web of Science were searched from inception to April 4, 2023. No language restrictions were applied. Relevant randomized controlled trials and controlled clinical trials were included. We used the aggregated data extracted from the trials and assessed the heterogeneity. When severe heterogeneity was detected, a random effect model was used. All stages of the review were done by independent authors. RESULTS We screened 2024 references and included 11 randomized controlled trials and controlled clinical trials. Compared with the protocol groups, probiotics showed significant effects on regulating aspartate amino transferase level (MD = -4.32 U/L; 95% CI [-7.10, -1.53], p = 0.002), triglycerides (MD = -20.16 mg/dL; 95% CI [-34.51, -5.82], p = 0.006), weight (MD = -1.99 kg; 95% CI [-3.97, -0.01], p = 0.05), vitamin B12 (MD = 2.24 pg/dL; 95% CI [-0.02, 4.51], p = 0.05), dietary energy (MD = -151.03 kcal; 95% CI [-215.68, -86.37], p < 0.00001), dietary protein (MD = -4.48 g/day, 95% CI [-8.76, -0.20], p = 0.04), dietary carbohydrate (MD = -34.25 g/day, 95% CI [-44.87, -23.62], p < 0.00001), and dietary fiber (MD = -2.17 g/day, 95% CI [-3.21, -1.14], p < 0.0001). There were no severe side effects related to probiotics. CONCLUSIONS Our meta-analysis suggested that probiotics may delay the progression of liver function injury, improve lipid metabolism, reduce weight, and reduce food intake, although the effects on other indicators were insignificant. Probiotics may be helpful for patients undergoing bariatric surgery. The review was registered on PROSPERO (International prospective register of systematic reviews): CRD42023407970. No primary source of funding.
Collapse
Affiliation(s)
- Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jiaji Xie
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xinchao Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yuyi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jiafei Shi
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
17
|
Lin Z, Li Y, Wang M, Li H, Wang Y, Li X, Zhang Y, Gong D, Fu L, Wang S, Long D. Protective effects of yeast extract against alcohol-induced liver injury in rats. Front Microbiol 2023; 14:1217449. [PMID: 37547679 PMCID: PMC10399763 DOI: 10.3389/fmicb.2023.1217449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Oxidative stress, inflammatory response, and gut-liver axis dysbiosis have been suggested as the primarily involved in the pathogenesis of alcoholic liver injury. Previous research established that yeast extract (YE) has antioxidant, immune-boosting or microbiota-regulating properties. However, there is currently lack of information regarding the efficacy of YE on alcoholic liver injury. This study seeks to obtain data that will help to address this research gap using a Wistar male rat experimental model. Histologic and biochemical analysis results showed that the groups treated with both low-dose yeast extract (YEL) and high-dose yeast extract (YEH) had lower degrees of alcohol-induced liver injury. The abundance of Peptococcus and Ruminococcus reduced in the low-dose yeast extract (YEL) group, while that of Peptococcus, Romboutsia, Parasutterella, and Faecalibaculum reduced in the high-dose (YEH) group. Furthermore, Spearman analysis showed that the gut microbes were significantly associated with several liver-related indicators. For the analysis of differential metabolites and enriched pathways in the YEL group, the abundance of lysophosphatidylcholine (16:0/0:0) significantly increased, and then the levels of histamine, adenosine and 5' -adenine nucleotide were remarkedly elevated in the YEH group. These findings suggest that both high and low doses of YE can have different protective effects on liver injury in alcoholic liver disease (ALD) rats, in addition to improving gut microbiota disorder. Besides, high-dose YE has been found to be more effective than low-dose YE in metabolic regulation, as well as in dealing with oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Zihan Lin
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yihong Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|