1
|
Chen MA, Yang YH, Liu CK, Matsuo K, Hsu CC, Lin YC, Huang HL. Salivary Antimicrobial Peptide in Patients With Dementia Before and After Clinical Oral Rehabilitation Programme: A Randomised Controlled Trial. J Oral Rehabil 2024. [PMID: 39370532 DOI: 10.1111/joor.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Emerging evidence suggests a link between salivary metabolite changes and neurodegenerative dementia, with antimicrobial peptides (AMPs) implicated in its pathogenesis. OBJECTIVE We investigated the effects of a clinical oral rehabilitation programme tailored for dementia patients on salivary flow rate, AMP levels and oral health-related quality of life (OHRQoL). METHODS Eligible patients were randomly assigned to either the experimental group (EG; n = 28) or the control group (CG; n = 27). Both groups received a leaflet on oral health. In addition, the EG received an oral care intervention that included individual lessons on oral muscle exercises and oral self-care practices. Saliva samples and OHRQoL data were collected at baseline and follow-up visits. Generalised estimating equation models were used to analyse the changes over time. RESULTS At the 3-month follow-up, EG showed significantly lower histatin 5 (HTN-5) levels (β = -0.08; effect size [ES] = 0.72) than CG. At 6 months, EG exhibited improved salivary flow rate (β = 0.89; ES = 0.89) and OHRQoL (β = 6.99; ES = 1.31) compared to CG. Changes in salivary flow rate (β = 4.03), HTN-5 level (β = -0.78) and beta-defensin 2 level (BD-2) (β = -0.91) at 3 months predicted improved OHRQoL at 6 months (all p < 0.05). CONCLUSIONS Our clinical oral rehabilitation programme reduced the level of salivary HTN-5, increased salivary flow rate and enhanced OHRQoL in dementia patients. Furthermore, changes in salivary flow rate, HTN-5 level and BD-2 level were associated with improvements in patients' OHRQoL.
Collapse
Affiliation(s)
- Ming-An Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Oral Hygiene, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Koichiro Matsuo
- Department of Oral Health Sciences for Community Welfare, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin County, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Ling Huang
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
3
|
Naumova OY, Dobrynin PV, Khafizova GV, Grigorenko EL. The Association of the Oral Microbiota with Cognitive Functioning in Adolescence. Genes (Basel) 2024; 15:1263. [PMID: 39457387 PMCID: PMC11507344 DOI: 10.3390/genes15101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: A growing body of research supports the role of the microbial communities residing in the digestive system in the host's cognitive functioning. Most of these studies have been focused on the gut microbiome and its association with clinical phenotypes in middle-aged and older adults. There is an insufficiency of population-based research exploring the association of normative cognitive functioning with the microbiome particularly with the oral microbiota. Methods: In this study, using metagenomics and metabolomics, we characterized the salivary microbiome diversity in a sample of 51 males of Hispanic and African American origin aged 12-18 years and explored the associations between the microbiome and the youths' cognitive performance captured with the Kaufman Assessment Battery for Children II (KABC-II). Results: Several bacterial species of the oral microbiota and related metabolic pathways were associated with cognitive function. In particular, we found negative associations between indicators of general intelligence and the relative abundance of Bacteroidetes and Lachnospiraceae and positive associations with Bifidobacteriaceae and Prevotella histicola sp. Among metabolic pathways, the super pathways related to bacterial cell division and GABA metabolism were linked to cognitive function. Conclusions: The results of our work are consistent with the literature reporting on the association between microbiota and cognitive function and support further population work to elucidate the potential for a healthy oral microbiome to improve cognitive health.
Collapse
Affiliation(s)
- Oxana Y. Naumova
- Department of Psychology, University of Houston, Houston, TX 77204, USA; (O.Y.N.); (P.V.D.); (G.V.K.)
- Vavilov Institute of General Genetics RAS, Moscow 119991, Russia
| | - Pavel V. Dobrynin
- Department of Psychology, University of Houston, Houston, TX 77204, USA; (O.Y.N.); (P.V.D.); (G.V.K.)
| | - Galina V. Khafizova
- Department of Psychology, University of Houston, Houston, TX 77204, USA; (O.Y.N.); (P.V.D.); (G.V.K.)
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, TX 77204, USA; (O.Y.N.); (P.V.D.); (G.V.K.)
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
5
|
Leonov G, Salikhova D, Starodubova A, Vasilyev A, Makhnach O, Fatkhudinov T, Goldshtein D. Oral Microbiome Dysbiosis as a Risk Factor for Stroke: A Comprehensive Review. Microorganisms 2024; 12:1732. [PMID: 39203574 PMCID: PMC11357103 DOI: 10.3390/microorganisms12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Stroke represents a significant global health burden, with a substantial impact on mortality, morbidity, and long-term disability. The examination of stroke biomarkers, particularly the oral microbiome, offers a promising avenue for advancing our understanding of the factors that contribute to stroke risk and for developing strategies to mitigate that risk. This review highlights the significant correlations between oral diseases, such as periodontitis and caries, and the onset of stroke. Periodontal pathogens within the oral microbiome have been identified as a contributing factor in the exacerbation of risk factors for stroke, including obesity, dyslipidemia, atherosclerosis, hypertension, and endothelial dysfunction. The alteration of the oral microbiome may contribute to these conditions, emphasizing the vital role of oral health in the prevention of cardiovascular disease. The integration of dental and medical health practices represents a promising avenue for enhancing stroke prevention efforts and improving patient outcomes.
Collapse
Affiliation(s)
- Georgy Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
| | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Antonina Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Andrey Vasilyev
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
- E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Oleg Makhnach
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| | - Timur Fatkhudinov
- Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia; (D.S.); (A.V.); (T.F.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.M.); (D.G.)
| |
Collapse
|
6
|
Minelli M, Anaclerio F, Calisi D, Onofrj M, Antonucci I, Gatta V, Stuppia L. Application of Metagenomics Sequencing in a Patient with Dementia: A New Case Report. Genes (Basel) 2024; 15:1089. [PMID: 39202448 PMCID: PMC11353925 DOI: 10.3390/genes15081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
(1) Background: The study of the microbiome is crucial for its role in major systemic diseases, in particular the oral and gut microbiota. In recent years, the study of microorganisms correlated, for example, with neurodegenerative disease has increased the prospect of a possible link between gut microbiota and the brain. Here, we report a new case concerning a patient who was initially evaluated genetically for dementia and late-onset dyskinesia, and later tested with 16S metagenomics sequencing. (2) Methods: Starting from a buccal swab, we extracted bacterial DNA and then we performed NGS metagenomics sequencing based on the amplification of the hypervariable regions of the 16S rRNA gene in bacteria. (3) Results: The sequencing revealed the presence of the Spirochaetes phylum, a pathogenic bacterium generally known to be capable of migrating to the Central Nervous System. (4) Conclusions: Oral infections, as our results suggest, could be possible contributing factors to various neurodegenerative conditions.
Collapse
Affiliation(s)
- Maria Minelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (D.C.); (I.A.); (V.G.); (L.S.)
- Department of Medical Genetics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (D.C.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Dario Calisi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (D.C.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (D.C.); (I.A.); (V.G.); (L.S.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (D.C.); (I.A.); (V.G.); (L.S.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (D.C.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
7
|
Wang F, Yao Z, Jin T, Mao B, Shao S, Shao C. Research progress on Helicobacter pylori infection related neurological diseases. Ageing Res Rev 2024; 99:102399. [PMID: 38955263 DOI: 10.1016/j.arr.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Helicobacter pylori, a type of gram-negative bacterium, infects roughly half of the global population. It is strongly associated with gastrointestinal disorders like gastric cancer, peptic ulcers, and chronic gastritis. Moreover, numerous studies have linked this bacterium to various extra-gastric conditions, including hematologic, cardiovascular, and neurological issues. Specifically, research has shown that Helicobacter pylori interacts with the brain through the microbiota-gut-brain axis, thereby increasing the risk of neurological disorders. The inflammatory mediators released by Helicobacter pylori-induced chronic gastritis may disrupt the function of the blood-brain barrier by interfering with the transmission or direct action of neurotransmitters. This article examines the correlation between Helicobacter pylori and a range of conditions, such as hyperhomocysteinemia, schizophrenia, Alzheimer's disease, Parkinson's disease, ischemic stroke, multiple sclerosis, migraine, and Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Fan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Zhendong Yao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Tao Jin
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Boneng Mao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| | - Chen Shao
- Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Liu M, Li T, Liang H, Zhong P. Herbal medicines in Alzheimer's disease and the involvement of gut microbiota. Front Pharmacol 2024; 15:1416502. [PMID: 39081953 PMCID: PMC11286407 DOI: 10.3389/fphar.2024.1416502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. It severely affects the quality of life of victims. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenic mechanism of AD and search for effective therapeutic approaches. Gut microbiota dysbiosis, an altered state of gut microbiota, has been well known for its involvement in the pathogenesis of AD. Much effort has been made in searching for approaches capable of modulating the composition of gut microbiota in recent years. Herbal medicines have attracted extensive attention in recent decades for the prevention and treatment of AD. Here, we gave an overview of the recent research progress on the modulatory effects of herbal medicines and herbal formulae on gut microbiota as well as the possible beneficial effects on AD, which may provide new insights into the discovery of anti-AD agents and their therapeutic potential for AD through modulating the composition of gut microbiota.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Tuming Li
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Huazheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Ying XX, Hou Y, Zheng X, Ma JX, Wu ML, Liu M, Liu XY, Zhang KL. Exploring Putative Causal Associations between Diet and Periodontal Disease Susceptibility. JDR Clin Trans Res 2024:23800844241247485. [PMID: 38708597 DOI: 10.1177/23800844241247485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Dietary factors may play an important role in periodontal health. However, current evidence from observational studies remains inconclusive. OBJECTIVE This study aimed to investigate the causal relationships between dietary exposures and periodontal disease risks using Mendelian randomization analysis. METHODS Large-scale genome-wide association study summary statistics for 20 dietary factors were obtained from the MRC-IEU consortium. Multivariable and univariable 2-sample Mendelian randomization analyses were performed to assess the causal effects of each dietary exposure on 6 periodontal outcomes, including gingivitis and periodontitis. RESULTS Genetically predicted higher dried fruit intake was significantly associated with reduced risks of acute gingivitis (odds ratio [OR]: 0.02; 95% confidence interval [CI]: 0.00-0.42; P = 0.01) and bleeding gums (OR: 0.96; 95% CI: 0.93-0.99; P = 0.01). Higher fresh fruit and water intake showed protective effects against chronic gingivitis (OR: 0.18; 95% CI: 0.04-0.91; P = 0.04 and OR: 0.15; 95% CI: 0.04-0.53; P = 0.00) and bleeding gums (OR: 0.95; 95% CI: 0.92-0.981; P = 0.00 and OR: 0.98; 95% CI: 0.96-0.99; P = 0.02). Alcohol intake frequency and processed meat intake were risk factors for bleeding gums (OR: 1.01; 95% CI: 1.00-1.02; P = 0.01 and OR: 1.05; 95% CI: 1.01-1.08; P = 0.00) and painful gums (OR: 1.01; 95% CI: 1.00-1.01; P = 0.00 and OR: 1.02; 95% CI: 1.01-1.03; P = 0.00). Most of the causal relationships between genetic predisposition to the specified dietary factors and periodontal diseases remained statistically significant (P < 0.05) after adjusting for genetic risks associated with dentures, smoking, and type 2 diabetes in multivariable Mendelian randomization models. CONCLUSIONS The findings suggest potential protective effects of higher fruit and water intake against gingivitis and other periodontal problems, while alcohol and processed meat intake may increase the risks of periodontal disease. Our study provides preliminary causal evidence on the effects of diet on periodontal health and could inform prevention strategies targeting dietary habits to improve oral health. KNOWLEDGE TRANSFER STATEMENT This study suggests that fruit and water intake may protect against periodontal disease, while alcohol and processed meats increase risk, informing dietary guidelines to improve oral health.
Collapse
Affiliation(s)
- X X Ying
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, China
| | - Y Hou
- School of Stomatology, China Medical University, Shenyang, China
| | - X Zheng
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - J X Ma
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - M L Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - M Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - X Y Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - K L Zhang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Waitzberg D, Guarner F, Hojsak I, Ianiro G, Polk DB, Sokol H. Can the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther 2024; 41:901-914. [PMID: 38286962 PMCID: PMC10879266 DOI: 10.1007/s12325-024-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.
Collapse
Affiliation(s)
- Dan Waitzberg
- Department of Gastroenterology, LIM-35, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Iva Hojsak
- Referral Centre for Pediatric Gastroenterology and Nutrition, School of Medicine, University of Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, San Diego, and Rady Children's Hospital, University of California, San Diego, CA, USA
| | - Harry Sokol
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
11
|
Hamdi A, Baroudi S, Gharbi A, Babay W, Laaribi AB, Kacem I, Mrabet S, Zidi I, Klibi N, Gouider R, Ouzari HI. Dysregulation of Porphyromonas gingivalis Agmatine Deiminase Expression in Alzheimer's Disease. Curr Alzheimer Res 2024; 21:232-241. [PMID: 39143870 DOI: 10.2174/0115672050327009240808103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, with a significant burden on global health. AD is characterized by a progressive cognitive decline and memory loss. Emerging research suggests a potential link between periodontitis, specifically the presence of oral bacteria such as Porphyromonas gingivalis (P. gingivalis), and AD progression. P. gingivalis produces an enzyme, Agmatine deiminase (AgD), which converts agmatine to N-carbamoyl putrescine (NCP), serving as a precursor to essential polyamines. Recent studies have confirmed the correlation between disruptions in polyamine metabolism and cognitive impairment. OBJECTIVE This study aims to investigate the dysregulation of P. gingivalis Agmatine deiminase (PgAgD) in the context of AD. METHODS Saliva samples were collected from a total of 54 individuals, including 27 AD patients and 27 healthy controls. The expression of the PgAgD gene was analyzed using quantitative Real-- Time PCR. RESULTS The results showed a significant decrease in PgAgD gene expression in the saliva samples of AD patients compared to healthy controls. This downregulation was found in AD patients with advanced stages of periodontitis. Additionally, a correlation was observed between the decrease in PgAgD expression and the 30-item Mini-Mental State Examination (MMSE) score. CONCLUSION These findings suggest that measuring PgAgD expression in saliva could be a noninvasive tool for monitoring AD progression and aid in the early diagnosis of patients with periodontitis. Further research is needed to validate our results and explore the underlying mechanisms linking periodontitis, PgAgD expression, and AD pathophysiology.
Collapse
Affiliation(s)
- Asma Hamdi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Sana Baroudi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Alya Gharbi
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Wafa Babay
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Ahmed Baligh Laaribi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Imene Kacem
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Saloua Mrabet
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Ines Zidi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| | - Riadh Gouider
- Neurology Department, Razi University Hospital, Manouba, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Clinical Investigation Center (CIC), Razi University Hospital, Manouba, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire 2092, Tunis, Tunisia
| |
Collapse
|
12
|
Malloggi E, Santarcangelo EL. Physiological Correlates of Hypnotizability: Hypnotic Behaviour and Prognostic Role in Medicine. Brain Sci 2023; 13:1632. [PMID: 38137080 PMCID: PMC10742099 DOI: 10.3390/brainsci13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Studies in the field of experimental hypnosis highlighted the role of hypnotizability in the physiological variability of the general population. It is associated, in fact, with a few differences which are observable in the ordinary state of consciousness and in the absence of suggestions. The aim of the present scoping review is summarizing them and indicate their relevance to the neural mechanisms of hypnosis and to the prognosis and treatment of a few medical conditions. Individuals with high, medium and low hypnotizability scores display different cerebral functional differences-i.e., functional equivalence between imagery and perception/action, excitability of the motor cortex, interoceptive accuracy-possibly related to brain structural and functional characteristics, and different control of blood supply at peripheral and cerebral level, likely due to different availability of endothelial nitric oxide. These differences are reviewed to support the idea of their participation in hypnotic behaviour and to indicate their prognostic and therapeutic usefulness in a few medical conditions.
Collapse
Affiliation(s)
- Eleonora Malloggi
- Department Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy;
- Department of Physics, University of Trento, 38122 Trento, Italy
| | - Enrica L. Santarcangelo
- Department Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy;
| |
Collapse
|
13
|
Hashimoto K. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry 2023; 28:3625-3637. [PMID: 37845499 PMCID: PMC10730413 DOI: 10.1038/s41380-023-02287-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota. Current research is increasingly focusing on the potential association between the microbiota and various neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut, skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread presence of oral bacteria in the brains of patients with Alzheimer's disease. This article provides an overview of the emerging role of the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms, reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
14
|
Ishida E, Furusho H, Renn TY, Shiba F, Chang HM, Oue H, Terayama R, Ago Y, Tsuga K, Miyauchi M. Mouse maternal odontogenic infection with Porphyromonas gingivalis induces cognitive decline in offspring. Front Pediatr 2023; 11:1203894. [PMID: 37635786 PMCID: PMC10450928 DOI: 10.3389/fped.2023.1203894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, causes intrauterine infection/inflammation. Offspring exposed to intrauterine infection/inflammation have an increased risk of neurological disorders, regardless of gestational age. However, the relationship between maternal periodontitis and offspring functional/histological changes in the brain has not yet been elucidated. Methods In this study, we used a gestational mouse model to investigate the effects of maternal odontogenic infection of P. gingivalis on offspring behavior and brain tissue. Results The step-through passive avoidance test showed that the latency of the acquisition trial was significantly shorter in the P. gingivalis group (p < 0.05), but no difference in spontaneous motor/exploratory parameters by open-field test. P. gingivalis was diffusely distributed throughout the brain, especially in the hippocampus. In the hippocampus and amygdala, the numbers of neuron cells and cyclic adenosine monophosphate response element binding protein-positive cells were significantly reduced (p < 0.05), whereas the number of ionized calcium binding adapter protein 1-positive microglia was significantly increased (p < 0.05). In the hippocampus, the number of glial fibrillary acidic protein-positive astrocytes was also significantly increased (p < 0.05). Discussion The offspring of P. gingivalis-infected mothers have reduced cognitive function. Neurodegeneration/neuroinflammation in the hippocampus and amygdala may be caused by P. gingivalis infection, which is maternally transmitted. The importance of eliminating maternal P. gingivalis-odontogenic infection before or during gestation in maintenance healthy brain function in offspring should be addressed in near future.
Collapse
Affiliation(s)
- Eri Ishida
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ting-Yi Renn
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fumie Shiba
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuji Terayama
- Department of Maxillofacial Anatomy and Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|