1
|
Du Y, Li G, Li X, Jian X, Wang X, Xie Y, Li Z, Zhang Z. Dietary Immunoglobulin Y by Targeting Both GbpB and GtfB Enhances the Anticaries Effect in Rats. Int Dent J 2024; 74:1298-1305. [PMID: 38797634 DOI: 10.1016/j.identj.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE The purpose of this work was to develop an anti-CAT-SYI immunoglobulin Y (IgY) antibody that targeted both GtfB (glucosyltransferase B) and GbpB (glucan-binding protein B) and test its anticaries properties in rats. METHODS A new CAT-SYI fusion gene was created utilising functional DNA fragments from the GtfB and GbpB genes. The recombinant antigens, comprising the fused CAT-SYI antigen, GtfB, and GbpB, were expressed and purified using a prokaryotic expression and purification system. The purified recombinant antigens were utilised to immunise laying hens against particular IgY production. The biological activities of these particular IgY antibodies were then assessed both in vitro and in vivo, including their capacity to suppress biofilm formation and tooth caries. RESULTS Results indicated that these produced IgY antibodies demonstrated a high antibody titer (>0.1 μg/mL) and could precisely recognise and bind to their respective antigens. Furthermore, it was discovered that these specific IgY antibodies successfully bind to Streptococcus mutans and significantly reduce biofilm development. After 8 weeks of ingesting antigen-specific IgY meals, comprising anti-GtfB IgY and anti-GbpB IgY, the severity of dental caries was dramatically reduced in S mutans-infected Sprague-Dawley rats (P < .01). Anti-CAT-SYI IgY therapy significantly reduced tooth cavities by 89.0% in vivo (P < .05) compared to other treatment groups. CONCLUSIONS The anti-CAT-SYI IgY, a multitarget antibody that targets both GtfB and GbpB, displayed excellent inhibitory effects against S mutans, making it a promising targeted method with improved anticaries efficacy and significant application opportunities.
Collapse
Affiliation(s)
- Yunxiao Du
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Guobin Li
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Xinglin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaohong Jian
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaoling Wang
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zaixin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Zhi Zhang
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| |
Collapse
|
2
|
Moradinezhad M, Abbasi Montazeri E, Hashemi Ashtiani A, Pourlotfi R, Rakhshan V. Biofilm formation of Streptococcus mutans, Streptococcus sanguinis, Staphylococcus epidermidis, Staphylococcus aureus, Lactobacillus casei, and Candida Albicans on 5 thermoform and 3D printed orthodontic clear aligner and retainer materials at 3 time points: an in vitro study. BMC Oral Health 2024; 24:1107. [PMID: 39294648 PMCID: PMC11412017 DOI: 10.1186/s12903-024-04893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Orthodontic clear aligners and retainers have numerous advantages that is making them ever increasingly popular. However, they might, similar to any other oral appliance, contribute to biofilm formation and finally dental caries or white spot lesions or gingival inflammations. The literature on biofilm formation on orthodontic clear appliances is very scarce and limited to a few microorganisms and materials. Therefore, this experimental study evaluated the biofilm formation on 5 thermoformed and 3D printed CAD/CAM orthodontic retainers in 3 intervals. METHODS In this in vitro study, 345 specimens (270 test discs and 45 negative controls) were created from fabricated retainers. Retainers included a 3D printed CAD/CAM material (Detax) and four thermoformed retainers [Erkodent (polyethylene terephthalate glycol [PETG]); EasyVac (polyethylene); DB (polyester based on terephthalic acid); and Clear Tech]. They were all 1 mm thick, and all completely fabricated, i.e., heated or printed. The discs were placed in 96-well plates. Microorganisms were cultured on 270 discs for 24 h (90 discs), 72 h (90 other discs), and 5 days or 120 h (90 other discs). Biofilm formation of the strains and negative controls was measured using the microtiter plate assay by ELISA reading. The microbes' ability to produce biofilm was categorized based on the comparison of average optical density (OD) of tests versus a cut-off point OD (ODc) calculated as the average of the OD of corresponding negative controls plus 3× its standard deviation: non-biofilm former [OD ≤ ODc], weak biofilm former [ODc < OD ≤ (2 × ODc)], moderate biofilm former [(2 × ODc) < OD ≤ (4 × ODc)], and strong biofilm former [(4 × ODc) < OD]. These were also converted to ranked scores between zero (no biofilm) and 3. The difference between ODs with control ODs were calculated. These were analyzed using 3-way ANOVA, 2-way ANOVA, and Tukey tests (α = 0.05, α = 0.008). RESULTS The 3-way ANOVA showed that the overall difference among the ΔODs of 5 retainers (all microorganisms and all intervals combined, n = 270) was not significant (F = 1.860, P = 0.119). Nevertheless, the difference among 3 intervals (F = 31.607, P = 0.0000) and the difference among the 6 microorganisms (F = 24.044, P = 0.0000) were significant. According to the Tukey test, the differences between the 1st interval with either of the other two intervals was significant (both P values = 0.000). There were significant differences between Candida albicans with all other organisms (all 5 P values = 0.0000). All other pairwise comparisons were insignificant (all 10 P values ≥ 0.1). After taking the averages of the 3 intervals, the order of the biofilm generation for different materials were as follows: Detax (average score: 1.56), Easyvac (1.67), Erkodent (1.78), Clear Tech (1.83), BD (2.28). CONCLUSIONS As far as these 6 microorganisms are of concern, there might not be a significant overall difference among the clear retainer materials tested in this study. A significant overall increase was observed between the first and third days, which later did not significantly increase more until day 5. The Candida albicans biofilm was more intense than the tested 5 bacteria, which themselves showed rather similar growth patterns to each other.
Collapse
Affiliation(s)
- Mehrnaz Moradinezhad
- Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Hashemi Ashtiani
- Department of Prosthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Pourlotfi
- School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Vahid Rakhshan
- Department of Dental Anatomy, Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Khan MW, Cruz de Jesus V, Mittermuller BA, Sareen S, Lee V, Schroth RJ, Hu P, Chelikani P. Role of socioeconomic factors and interkingdom crosstalk in the dental plaque microbiome in early childhood caries. Cell Rep 2024; 43:114635. [PMID: 39154338 DOI: 10.1016/j.celrep.2024.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Early childhood caries (ECC) is influenced by microbial and host factors, including social, behavioral, and oral health. In this cross-sectional study, we analyze interkingdom dynamics in the dental plaque microbiome and its association with host variables. We use 16S rRNA and ITS1 amplicon sequencing on samples collected from preschool children and analyze questionnaire data to examine the social determinants of oral health. The results indicate a significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis reveals that Candida dubliniensis is strongly correlated with both Neisseria bacilliformis and Prevotella veroralis in ECC. Additionally, ECC shows significant associations with host variables, including oral health status, age, place of residence, and mode of childbirth. This study provides empirical evidence associating the oral microbiome with socioeconomic and behavioral factors in relation to ECC, offering insights for developing targeted prevention strategies.
Collapse
Affiliation(s)
- Mohd Wasif Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Betty-Anne Mittermuller
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shaan Sareen
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Lee
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert J Schroth
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry, Western University, London, ON, Canada.
| | - Prashen Chelikani
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
5
|
Sun Y, Chen Y, Du Q, Zhang J, Xu M, Zheng G, Zhou W, Zhou X, Qiu L, Pan Y, Zhang K. Fluoride-resistant Streptococcus mutans within cross-kingdom biofilms support Candida albicans growth under fluoride and attenuate the in vitro anti-caries effect of fluorine. Front Microbiol 2024; 15:1399525. [PMID: 39035442 PMCID: PMC11257928 DOI: 10.3389/fmicb.2024.1399525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Fluoride-resistant Streptococcus mutans (S. mutans) might affect the ecological balance of biofilms in the presence of fluoride. We used a S. mutans and Candida albicans (C. albicans) cross-kingdom biofilm model to investigate whether fluoride-resistant S. mutans in biofilms would support C. albicans growth under fluoride stress and attenuate the in vitro anti-caries effect of fluorine. The impact of fluoride-resistant S. mutans on formation of cross-kingdom biofilms by S. mutans and C. albicans in the presence of fluoride was investigated in vitro using the crystal violet staining assay. Biofilm constitution was determined using colony-forming unit (CFU) counts and fluorescent in situ hybridization (FISH). Extracellular polysaccharide (EPS) generation in biofilms was determined by EPS/bacterial dying and water-insoluble polysaccharide detection. Acid production and demineralization were monitored using pH, lactic acid content, and transversal microradiography (TMR). The gene expression of microorganisms in the cross-kingdom biofilm was measured using qRT-PCR. Our results showed that both C. albicans and fluoride-resistant S. mutans grew vigorously, forming robust cross-kingdom biofilms, even in the presence of sodium fluoride (NaF). Moreover, fluoride-resistant S. mutans-containing cross-kingdom biofilms had considerable cariogenic potential for EPS synthesis, acid production, and demineralization ability in the presence of NaF than fluoride-sensitive S. mutans-containing biofilms. Furthermore, the gene expression of microorganisms in the two cross-kingdom biofilms changed dissimilarly in the presence of NaF. In summary, fluoride-resistant S. mutans in cross-kingdom biofilms supported C. albicans growth under fluoride and might attenuate the anti-caries potential of fluorine by maintaining robust cross-kingdom biofilm formation and cariogenic virulence expression in vitro in the presence of NaF.
Collapse
Affiliation(s)
- Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanhan Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qian Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Muxin Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gaozhe Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lili Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for the competitive fitness of pathogenic microorganisms in dental biofilm models. mBio 2024; 15:e0018424. [PMID: 38624207 PMCID: PMC11077948 DOI: 10.1128/mbio.00184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Dhull KS, Dutta B, Pattanaik S, Gupta A, Md I, Wandile B. Decoding Early Childhood Caries: A Comprehensive Review Navigating the Impact of Evolving Dietary Trends in Preschoolers. Cureus 2024; 16:e58170. [PMID: 38741840 PMCID: PMC11090680 DOI: 10.7759/cureus.58170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/16/2024] Open
Abstract
This comprehensive review delves into the intricate relationship between evolving dietary trends in preschoolers and the prevalence of early childhood caries (ECC). The investigation meticulously analyzes ECC epidemiology, etiology, and preventive strategies. The review unveils the multifaceted nature of ECC, highlighting microbial, dietary, and environmental factors contributing to its development. Significantly, the study explores the global prevalence of ECC and its substantial implications for the overall health, nutrition, and development of preschool-aged children. The implications for public health and policy are deliberated, advocating for targeted interventions and collaborative efforts among healthcare professionals, policymakers, educators, and parents. The conclusion presents a compelling call to action, urging collective engagement to mitigate the impact of ECC and prioritize the well-being of preschoolers. This review offers valuable insights for healthcare professionals, policymakers, educators, and parents to inform evidence-based strategies for addressing ECC and promoting early childhood oral health.
Collapse
Affiliation(s)
- Kanika S Dhull
- Pedodontics and Preventive Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, IND
| | - Brahmananda Dutta
- Pedodontics and Preventive Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, IND
| | | | - Aditi Gupta
- Pediatric Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, IND
| | - Indira Md
- Pedodontics and Preventive Dentistry, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysuru, IND
| | - Bhushan Wandile
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
8
|
Banerjee A, Stockbridge RB, Tenuta LMA. Measurement and analysis of microbial fluoride resistance in dental biofilm models. Methods Enzymol 2024; 696:155-174. [PMID: 38658078 DOI: 10.1016/bs.mie.2023.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Livia M A Tenuta
- School of Dentistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for competitive fitness of pathogenic microorganisms in dental biofilm models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576223. [PMID: 38293214 PMCID: PMC10827179 DOI: 10.1101/2024.01.18.576223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride, but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time, and biochemical purification the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms, and that S. mutans is especially susceptible to fluoride toxicity.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Santiago MB, dos Santos VCO, Teixeira SC, Silva NBS, de Oliveira PF, Ozelin SD, Furtado RA, Tavares DC, Ambrósio SR, Veneziani RCS, Ferro EAV, Bastos JK, Martins CHG. Polyalthic Acid from Copaifera lucens Demonstrates Anticariogenic and Antiparasitic Properties for Safe Use. Pharmaceuticals (Basel) 2023; 16:1357. [PMID: 37895828 PMCID: PMC10610108 DOI: 10.3390/ph16101357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at evaluating the potential of Copaifera lucens, specifically its oleoresin (CLO), extract (CECL), and the compound ent-polyalthic acid (PA), in combating caries and toxoplasmosis, while also assessing its toxicity. The study involved multiple assessments, including determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against cariogenic bacteria. CLO and PA exhibited MIC and MBC values ranging from 25 to 50 μg/mL, whereas CECL showed values equal to or exceeding 400 μg/mL. PA also displayed antibiofilm activity with minimum inhibitory concentration of biofilm (MICB50) values spanning from 62.5 to 1000 μg/mL. Moreover, PA effectively hindered the intracellular proliferation of Toxoplasma gondii at 64 μg/mL, even after 24 h without treatment. Toxicological evaluations included in vitro tests on V79 cells, where concentrations ranged from 78.1 to 1250 μg/mL of PA reduced colony formation. Additionally, using the Caenorhabditis elegans model, the lethal concentration (LC50) of PA was determined as 1000 μg/mL after 48 h of incubation. Notably, no significant differences in micronucleus induction and the NDI were observed in cultures treated with 10, 20, or 40 μg/mL of CLO. These findings underscore the safety profile of CLO and PA, highlighting their potential as alternative treatments for caries and toxoplasmosis.
Collapse
Affiliation(s)
- Mariana B. Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| | - Vinicius Cristian O. dos Santos
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| | - Samuel C. Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (S.C.T.); (E.A.V.F.)
| | - Nagela B. S. Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| | - Pollyanna F. de Oliveira
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Saulo D. Ozelin
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Ricardo A. Furtado
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Denise C. Tavares
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Sergio Ricardo Ambrósio
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Rodrigo Cassio S. Veneziani
- Nucleus of Research in Sciences and Technology, University of Franca, Franca 14404600, SP, Brazil; (P.F.d.O.); (S.D.O.); (R.A.F.); (D.C.T.); (S.R.A.); (R.C.S.V.)
| | - Eloisa Amália V. Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (S.C.T.); (E.A.V.F.)
| | - Jairo K. Bastos
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040900, SP, Brazil;
| | - Carlos Henrique G. Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405318, MG, Brazil; (M.B.S.); (V.C.O.d.S.); (N.B.S.S.)
| |
Collapse
|