1
|
Beck-Friis J, Gisslén M, Nilsson S, Lindblom A, Oras J, Yilmaz A. Intensive care unit-acquired infections more common in patients with COVID-19 than with influenza. Sci Rep 2024; 14:16655. [PMID: 39030290 PMCID: PMC11271526 DOI: 10.1038/s41598-024-67733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Intensive care unit-acquired infections are complicating events in critically ill patients. In this study we analyzed the incidence, microbiological patterns, and outcome in patients with COVID-19 versus influenza in the intensive care unit (ICU). We included all adult patients treated with invasive mechanical ventilation due to (1) COVID-19 between January 2020 and March 2022, and (2) influenza between January 2015 and May 2023 at Sahlgrenska University Hospital, Sweden. Of the 480 participants included in the final analysis, 436 had COVID-19. The incidence rates of ICU-acquired infections were 31.6/1000 and 9.9/1000 ICU-days in the COVID-19 and influenza cohorts, respectively. Ventilator-associated lower respiratory tract infections were most common in both groups. In patients with COVID-19, corticosteroid treatment was associated with an increased risk of ICU-acquired infections and with higher 90-day mortality in case of infection. Furthermore, ICU-acquired infection was associated with a prolonged time in the ICU, with more difficult-to-treat gram-negative infections in late versus early ventilator-associated lower respiratory tract infections. Further research is needed to understand how the association between corticosteroid treatment and incidence and outcome of ICU-acquired infections varies across different patient categories.
Collapse
Affiliation(s)
- Josefine Beck-Friis
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, 416 85, Gothenburg, Sweden.
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, 416 85, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lindblom
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonatan Oras
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Anesthesia and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, 416 85, Gothenburg, Sweden
| |
Collapse
|
2
|
Aljabr W, Dandachi I, Abbas B, Karkashan A, Al-Amari A, AlShahrani D. Metagenomic next-generation sequencing of nasopharyngeal microbiota in COVID-19 patients with different disease severities. Microbiol Spectr 2024; 12:e0416623. [PMID: 38557102 PMCID: PMC11237758 DOI: 10.1128/spectrum.04166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024] Open
Abstract
Throughout the COVID-19 pandemic, extensive research has been conducted on SARS-COV-2 to elucidate its genome, prognosis, and possible treatments. However, few looked at the microbial markers that could be explored in infected patients and that could predict possible disease severity. The aim of this study is to compare the nasopharyngeal microbiota of healthy subjects, moderate, under medication, and recovered SARS-COV-2 patients. In 2020, 38 nasopharyngeal swabs were collected from 6 healthy subjects, 14 moderates, 10 under medication and 8 recovered SARS-COV-2 patients at the Prince Mohammed Bin Abdulaziz Hospital Riyadh. Metatranscriptomic sequencing was performed using Minion Oxford nanopore sequencing. No significant difference in alpha as well as beta diversity was observed among all four categories. Nevertheless, we have found that Streptococcus spp including Streptococcus pneumoniae and Streptococcus thermophilus were among the top 15 most abundant species detected in COVID-19 patients but not in healthy subjects. The genus Staphylococcus was found to be associated with COVID-19 patients compared to healthy subjects. Furthermore, the abundance of Leptotrichia was significantly higher in healthy subjects compared to recovered patients. Corynebacterium on the other hand, was associated with under-medication patients. Taken together, our study revealed no differences in the overall microbial composition between healthy subjects and COVID-19 patients. Significant differences were seen only at specific taxonomic level. Future studies should explore the nasopharyngeal microbiota between controls and COVID-19 patients while controlling for confounders including age, gender, and comorbidities; since these latter could affect the results and accordingly the interpretation.IMPORTANCEIn this work, no significant difference in the microbial diversity was seen between healthy subjects and COVID-19 patients. Changes in specific taxa including Leptotrichia, Staphylococcus, and Corynebacterium were only observed. Leptotrichia was significantly higher in healthy subjects, whereas Staphylococcus and Corynebacterium were mostly associated with COVID-19, and specifically with under-medication SARS-COV-2 patients, respectively. Although the COVID-19 pandemic has ended, the SARS-COV-2 virus is continuously evolving and the emergence of new variants causing more severe disease should be always kept in mind. Microbial markers in SARS-COV-2 infected patients can be useful in the early suspicion of the disease, predicting clinical outcomes, framing hospital and intensive care unit admission as well as, risk stratification. Data on which microbial marker to tackle is still controversial and more work is needed, hence the importance of this study.
Collapse
Affiliation(s)
- Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Basma Abbas
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alaa Karkashan
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahod Al-Amari
- Department of Basic Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Dayel AlShahrani
- Pediatric infectious diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Alrezaihi A, Penrice-Randal R, Dong X, Prince T, Randle N, Semple MG, Openshaw PJM, MacGill T, Myers T, Orr R, Zakotnik S, Suljič A, Avšič-Županc T, Petrovec M, Korva M, AlJabr W, Hiscox JA. Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome. J Clin Virol 2024; 171:105620. [PMID: 38237303 DOI: 10.1016/j.jcv.2023.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 03/17/2024]
Abstract
Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Malcolm G Semple
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Alder Hey Children's Hospital, Liverpool, UK
| | | | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | | | - Alen Suljič
- University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Miša Korva
- University of Ljubljana, Ljubljana, Slovenia
| | - Waleed AlJabr
- University of Liverpool, Liverpool, UK; King Fahad Medical City, Riyadh, Saudi Arabia
| | - Julian A Hiscox
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
4
|
Siasios P, Giosi E, Ouranos K, Christoforidi M, Dimopoulou I, Leshi E, Exindari M, Anastassopoulou C, Gioula G. Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study. J Pers Med 2024; 14:369. [PMID: 38672996 PMCID: PMC11051038 DOI: 10.3390/jpm14040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Patients with COVID-19 infection have distinct oropharyngeal microbiota composition and diversity metrics according to disease severity. However, these findings are not consistent across the literature. We conducted a multicenter, prospective study in patients with COVID-19 requiring outpatient versus inpatient management to explore the microbial abundance of taxa at the phylum, family, genus, and species level, and we utilized alpha and beta diversity indices to further describe our findings. We collected oropharyngeal washing specimens at the time of study entry, which coincided with the COVID-19 diagnosis, to conduct all analyses. We included 43 patients in the study, of whom 16 were managed as outpatients and 27 required hospitalization. Proteobacteria, Actinobacteria, Bacteroidetes, Saccharibacteria TM7, Fusobacteria, and Spirochaetes were the most abundant phyla among patients, while 61 different families were detected, of which the Streptococcaceae and Staphylococcaceae families were the most predominant. A total of 132 microbial genera were detected, with Streptococcus being the predominant genus in outpatients, in contrast to hospitalized patients, in whom the Staphylococcus genus was predominant. LeFSe analysis identified 57 microbial species in the oropharyngeal washings of study participants that could discriminate the severity of symptoms of COVID-19 infections. Alpha diversity analysis did not reveal a difference in the abundance of bacterial species between the groups, but beta diversity analysis established distinct microbial communities between inpatients and outpatients. Our study provides information on the complex association between the oropharyngeal microbiota and SARS-CoV-2 infection. Although our study cannot establish causation, knowledge of specific taxonomic changes with increasing SARS-CoV-2 infection severity can provide us with novel clues for the prognostic classification of COVID-19 patients.
Collapse
Affiliation(s)
- Panagiotis Siasios
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Evangelia Giosi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Maria Christoforidi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Ifigenia Dimopoulou
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Enada Leshi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Maria Exindari
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Gioula
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| |
Collapse
|