1
|
Heidbuchel H, Arbelo E, D'Ascenzi F, Borjesson M, Boveda S, Castelletti S, Miljoen H, Mont L, Niebauer J, Papadakis M, Pelliccia A, Saenen J, Sanz de la Garza M, Schwartz PJ, Sharma S, Zeppenfeld K, Corrado D. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace 2021; 23:147-148. [PMID: 32596731 DOI: 10.1093/europace/euaa106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper belongs to a series of recommendation documents for participation in leisure-time physical activity and competitive sports by the European Association of Preventive Cardiology (EAPC). Together with an accompanying paper on supraventricular arrhythmias, this second text deals specifically with those participants in whom some form of ventricular rhythm disorder is documented, who are diagnosed with an inherited arrhythmogenic condition, and/or who have an implanted pacemaker or cardioverter defibrillator. A companion text on recommendations in athletes with supraventricular arrhythmias is published in the European Journal of Preventive Cardiology. Since both texts focus on arrhythmias, they are the result of a collaboration between EAPC and the European Heart Rhythm Association (EHRA). The documents provide a framework for evaluating eligibility to perform sports, based on three elements, i.e. the prognostic risk of the arrhythmias when performing sports, the symptomatic impact of arrhythmias while performing sports, and the potential progression of underlying structural problems as the result of sports.
Collapse
Affiliation(s)
- Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mats Borjesson
- Centre for Health and Performance (CHP), Department of Food, Nutrition and Sport Sciences, Gothenburg University, Sweden.,Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Serge Boveda
- Cardiology Department, Clinique Pasteur, 45 Avenue de Lombez, 31076 Toulouse, France
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Hielko Miljoen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Josef Niebauer
- Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Antonio Pelliccia
- National Institute of Sports Medicine, Italian National Olympic Committee, Via dei Campi Sportivi 46, Rome, Italy
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | | | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Domenico Corrado
- Department of Cardiology, University of Padova, Padova, Italy.,Department of Pathology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Campbell MLH, McNamee MJ. Ethics, Genetic Technologies and Equine Sports: The Prospect of Regulation of a Modified Therapeutic Use Exemption Policy. SPORT ETHICS AND PHILOSOPHY 2020. [DOI: 10.1080/17511321.2020.1737204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M. L. H Campbell
- Department of Production and Population Sciences, The Royal Veterinary College, South Mymms, UK
| | - M. J. McNamee
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
- Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Hudzik B, Hudzik M, Lekston A, Gasior M. Sudden unexplained cardiac deaths in young adults: a call for multidisciplinary approach. Acta Cardiol 2018; 73:7-12. [PMID: 28745206 DOI: 10.1080/00015385.2017.1351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The investigation of death in young (<35 years), previously fit individuals, calls for a detailed autopsy with emphasis placed upon the examination of the heart. In most instances, the cause of cardiac death can be identified during autopsy. However, a large percentage of sudden deaths remain unexplained even after comprehensive medicolegal investigation, including autopsy, and are labelled as autopsy-negative sudden unexplained cardiac death (SUD). Still, when you look to the law, an autopsy, a much needed truth-finding-instrument, usually is not mandatory and is left up to the discretion of various medical or legal authorities, which when making a decision, balance various, often conflicting interests of the state and society on the one hand and of the deceased and his family on the other. Cardiac molecular autopsy calls for a close cooperation between medical examiner, pathologist, family physician, cardiologist, geneticist, and the relatives. Multidisciplinary approach and the identification of genetic cause of SUD enable proper genetic counselling for surviving relatives as well as for implementing specific preventive/therapeutic strategies, e.g. implantable cardioverter-defibrillator (ICD) implantation.
Collapse
Affiliation(s)
- Bartosz Hudzik
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia, Silesian Center for Heart Disease, Zabrze, Poland
- Department of Nutrition-Related Disease Prevention, School of Public Health in Bytom, Medical University of Silesia, Katowice, Poland
| | - Michal Hudzik
- Department of Criminal Law, Kozminski University, Warsaw, Poland
- Research and Analyses Office, Supreme Court of the Republic of Poland, Criminal Law Chamber, Warsaw, Poland
| | - Andrzej Lekston
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia, Silesian Center for Heart Disease, Zabrze, Poland
| | - Mariusz Gasior
- Third Department of Cardiology, SMDZ in Zabrze, Medical University of Silesia, Silesian Center for Heart Disease, Zabrze, Poland
| |
Collapse
|
4
|
Vlahovich N, Hughes DC, Griffiths LR, Wang G, Pitsiladis YP, Pigozzi F, Bachl N, Eynon N. Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement. BMC Genomics 2017; 18:818. [PMID: 29143596 PMCID: PMC5688405 DOI: 10.1186/s12864-017-4185-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There has been considerable growth in basic knowledge and understanding of how genes are influencing response to exercise training and predisposition to injuries and chronic diseases. On the basis of this knowledge, clinical genetic tests may in the future allow the personalisation and optimisation of physical activity, thus providing an avenue for increased efficiency of exercise prescription for health and disease. RESULTS This review provides an overview of the current status of genetic testing for the purposes of exercise prescription and injury prevention. As such there are a variety of potential uses for genetic testing, including identification of risks associated with participation in sport and understanding individual response to particular types of exercise. However, there are many challenges remaining before genetic testing has evidence-based practical applications; including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention. CONCLUSION Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing.
Collapse
Affiliation(s)
- Nicole Vlahovich
- Australian Institute of Sport (AIS), Australian Sports Commission, Canberra, Australia
| | - David C Hughes
- Australian Institute of Sport (AIS), Australian Sports Commission, Canberra, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Guan Wang
- Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Eastbourne, UK
| | - Yannis P Pitsiladis
- Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Eastbourne, UK
- Department of Movement Human and Health Sciences University of Rome "Foro Italico", Rome, Italy
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Fabio Pigozzi
- Department of Movement Human and Health Sciences University of Rome "Foro Italico", Rome, Italy
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Nobert Bachl
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Sports and Exercise Physiology, Centre for Sports Science and University Sports of the University of Vienna, Vienna, Austria
| | - Nir Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.
| |
Collapse
|
5
|
Kaul KL, Sabatini LM, Tsongalis GJ, Caliendo AM, Olsen RJ, Ashwood ER, Bale S, Benirschke R, Carlow D, Funke BH, Grody WW, Hayden RT, Hegde M, Lyon E, Murata K, Pessin M, Press RD, Thomson RB. The Case for Laboratory Developed Procedures: Quality and Positive Impact on Patient Care. Acad Pathol 2017; 4:2374289517708309. [PMID: 28815200 PMCID: PMC5528950 DOI: 10.1177/2374289517708309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories.
Collapse
Affiliation(s)
- Karen L. Kaul
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Linda M. Sabatini
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Gregory J. Tsongalis
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, USA
- Laboratory Medicine, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Angela M. Caliendo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Randall J. Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | | | | | - Robert Benirschke
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Dean Carlow
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Birgit H. Funke
- Laboratory for Molecular Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Wayne W. Grody
- Departments of Pathology and Laboratory Medicine, Pediatrics and Human Genetics, UCLA School of Medicine, Los Angeles, CA, USA
| | - Randall T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elaine Lyon
- Pathology Department, University of Utah School of Medicine/ARUP Laboratories, Salt Lake City, UT, USA
| | - Kazunori Murata
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Pessin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard D. Press
- Department of Pathology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Richard B. Thomson
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|