1
|
Wu Y, Xue L, Xiong W, Li H, Wu J, Xie W, Long Y, Liu Y, Luo C. MicroRNA-505-3p mediates cell motility of epithelial ovarian cancer via suppressing PEAK1 expression. J Biochem Mol Toxicol 2024; 38:e23767. [PMID: 39003575 DOI: 10.1002/jbt.23767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
MicroRNAs (miRNAs) are a class of small RNA genes with important roles in cancer biology regulation. There are considerable studies regarding the roles of microRNA-505-3p (miR-505-3p) in cancer development and progression, but the function of miR-505-3p in epithelial ovarian cancer (EOC) has not been fully clarified. Comparative analysis of miRNA expression data set was used to select differentially expressed miRNAs. Quantitative real-time polymerase chain reaction was applied to detect expression levels of RNAs, while western blot and immunofluorescence staining were performed to detect expression levels of proteins of interest. The motility of EOC cells was assessed by wound healing and transwell assays. The binding and regulating relationship between miRNA and its direct target gene was investigated by dual-luciferase assay. Our results show that miR-505-3p was upregulated in recurrent EOC, which significantly inhibits EOC cell motility via modulating cell epithelial-mesenchymal transition. Furthermore, our results indicated that PEAK1 expression was inhibited by direct binding of miR-505-3p into its 3'-URT in EOC cells. Importantly, knockdown of PEAK1 attenuated the effect of mi-505-3p inhibitor on EOC cell migration and invasion. In conclusion, our findings indicate that miRNA-505-3p inhibits EOC cell motility by targeting PEAK1.
Collapse
Affiliation(s)
- Yanni Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Xue
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Haiyang Li
- Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Jiao Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ying Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chenhui Luo
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Mandić K, Milutin Gašperov N, Božinović K, Dediol E, Krasić J, Sinčić N, Grce M, Sabol I, Barešić A. Integrative analysis in head and neck cancer reveals distinct role of miRNome and methylome as tumour epigenetic drivers. Sci Rep 2024; 14:9062. [PMID: 38643268 PMCID: PMC11032388 DOI: 10.1038/s41598-024-59312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024] Open
Abstract
Head and neck cancer is the sixth most common malignancy worldwide, with the relatively low 5-year survival rate, mainly because it is diagnosed at a late stage. Infection with HPV is a well known aetiology, which affects the nature of these cancers and patients' survival. Besides, it is considered that the main driving force for this type of cancer could be epigenetics. In this study we aimed to find potential epigenetic biomarkers, by integrating miRNome, methylome, and transcriptome analyses. From the fresh head and neck cancer tissue samples, we chose a group for miRNome, methylome and transcriptome profiling, in comparison to adequate control samples. Bioinformatics analyses are performed in R v4.2.2. Count normalisation and group differential expression for mRNA and the previously obtained miRNA count data was performed with DESeq2 v1.36. Gene set enrichment analysis was performed and visualised using gProfiler2 v0.2.1 Identification of miRNA targets was performed by querying in miRTarBase using multiMiR v1.18.0. Annotation of CpG sites merging into islands was obtained from RnBeads.hg19 v1.28.0. package. For the integrative analysis we performed kmeans clustering using stats v4.2.2 package, using 8-12 clusters and nstart 100. We found that transcriptome analysis divides samples into cancers and controls clusters, with no relation to HPV status or cancer anatomical location. Differentially expressed genes (n = 2781) were predominantly associated with signalling pathways of tumour progression. We identified a cluster of genes under the control of the transcription factor E2F that are significantly underexpressed in cancer tissue, as well as T cell immunity genes and genes related to regulation of transcription. Among overexpressed genes in tumours we found those that belong to cell cycle regulation and vasculature. A small number of genes were found significantly differentially expressed in HPV-positive versus HPV-negative tumours (for example NEFH, ZFR2, TAF7L, ZNF541, and TYMS). In this comprehensive study on an overlapping set of samples where the integration of miRNome, methylome and transcriptome analysis were performed for head and neck cancer, we demonstrated that the majority of genes were associated exclusively with miRNome or methylome and, to a lesser extent, under the control of both epigenetic mechanisms.
Collapse
Affiliation(s)
- Katarina Mandić
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ksenija Božinović
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Jure Krasić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Biomedical Research Centre Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Anja Barešić
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Karagianni K, Bibi A, Madé A, Acharya S, Parkkonen M, Barbalata T, Srivastava PK, de Gonzalo-Calvo D, Emanueli C, Martelli F, Devaux Y, Dafou D, Nossent AY. Recommendations for detection, validation, and evaluation of RNA editing events in cardiovascular and neurological/neurodegenerative diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102085. [PMID: 38192612 PMCID: PMC10772297 DOI: 10.1016/j.omtn.2023.102085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alisia Madé
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Shubhra Acharya
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
| | - Mikko Parkkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | | | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - A. Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - on behalf of EU-CardioRNA COST Action CA17129
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
- National Heart & Lung Institute, Imperial College London, London, UK
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Zhu MX, Zhao TY, Li Y. Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10264-10283. [PMID: 37322932 DOI: 10.3934/mbe.2023450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Epigenetic changes, such as DNA methylation and miRNA-target gene mechanisms, have recently emerged as key provokers in Ischemic stroke (IS) onset. However, cellular and molecular events harboring these epigenetic alterations are poorly understood. Therefore, the present study aimed to explore the potential biomarkers and therapeutic targets for IS. METHODS miRNAs, mRNAs and DNA methylation datasets of IS were derived from the GEO database and normalized by PCA sample analysis. Differentially expressed genes (DEGs) were identified, and GO and KEGG enrichment analyses were performed. The overlapped genes were utilized to construct a protein-protein interaction network (PPI). Meanwhile, differentially expressed mRNAs and miRNAs interaction pairs were obtained from the miRDB, TargetScan, miRanda, miRMap and miTarBase databases. We constructed differential miRNA-target gene regulatory networks based on mRNA-miRNA interactions. RESULTS A total of 27 up-regulated and 15 down-regulated differential miRNAs were identified. Dataset analysis identified 1053 and 132 up-regulated and 1294 and 9068 down-regulated differentially expressed genes in the GSE16561 and GSE140275 datasets, respectively. Moreover, 9301 hypermethylated and 3356 hypomethylated differentially methylated sites were also identified. Moreover, DEGs were enriched in terms related to translation, peptide biosynthesis, gene expression, autophagy, Th1 and Th2 cell differentiation, primary immunodeficiency, oxidative phosphorylation and T cell receptor signaling pathway. MRPS9, MRPL22, MRPL32 and RPS15 were identified as hub genes. Finally, a differential miRNA-target gene regulatory network was constructed. CONCLUSIONS RPS15, along with hsa-miR-363-3p and hsa-miR-320e have been identified in the differential DNA methylation protein interaction network and miRNA-target gene regulatory network, respectively. These findings strongly posit the differentially expressed miRNAs as potential biomarkers to improve ischemic stroke diagnosis and prognosis.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, 3 College Road, Hainan 571199, China
| | - Tian-Yang Zhao
- Department of Anesthesia, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, China
| | - Yan Li
- Department of Anesthesia, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, China
| |
Collapse
|
5
|
Nopp S, van der Bent ML, Kraemmer D, Königsbrügge O, Wojta J, Pabinger I, Ay C, Nossent AY. Circulatory miR-411-5p as a Novel Prognostic Biomarker for Major Adverse Cardiovascular Events in Patients with Atrial Fibrillation. Int J Mol Sci 2023; 24:3861. [PMID: 36835272 PMCID: PMC9964230 DOI: 10.3390/ijms24043861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The risk stratification of patients with atrial fibrillation (AF) for subsequent cardiovascular events could help in guiding prevention strategies. In this study, we aimed at investigating circulating microRNAs as prognostic biomarkers for major adverse cardiovascular events (MACE) in AF patients. We conducted a three-stage nested case-control study within the framework of a prospective registry, including 347 AF patients. First, total small RNA-sequencing was performed in 26 patients (13 cases with MACE) and the differential expression of microRNAs was analyzed. Seven candidate microRNAs with promising results in a subgroup analysis on cardiovascular death were selected and measured via using RT-qPCR in 97 patients (42 cases with cardiovascular death). To further validate our findings and investigate broader clinical applicability, we analyzed the same microRNAs in a subsequent nested case-control study of 102 patients (37 cases with early MACE) by using Cox regression. In the microRNA discovery cohort (n = 26), we detected 184 well-expressed microRNAs in circulation without overt differential expression between the cases and controls. A subgroup analysis on cardiovascular death revealed 26 microRNAs that were differentially expressed at a significance level < 0.05 (three of which with an FDR-adjusted p-value <0.05). We, therefore, proceeded with a nested case-control approach (n = 97) focusing on patients with cardiovascular death and selected, in total, seven microRNAs for further RT-qPCR analysis. One microRNA, miR-411-5p, was significantly associated with cardiovascular death (adjusted HR (95% CI): 1.95 (1.04-3.67)). Further validation (n = 102) in patients who developed early MACE showed similar results (adjusted HR (95% CI) 2.35 (1.17-4.73)). In conclusion, circulating miR-411-5p could be a valuable prognostic biomarker for MACE in AF patients.
Collapse
Affiliation(s)
- Stephan Nopp
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - M. Leontien van der Bent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Daniel Kraemmer
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Königsbrügge
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Anne Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, The Netherlands
- Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Zhang J, Cai X, Cui W, Wei Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes (Basel) 2022; 13:genes13101786. [PMID: 36292671 PMCID: PMC9601900 DOI: 10.3390/genes13101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gastric cancer remains the most prevalent and highly lethal disease worldwide. MAP4K4, a member of Ste20, plays an important role in various pathologies, including cancer. However, its role in gastric cancer is not yet fully elucidated. Therefore, this study aims to determine the tumor-promoting role of MAP4K4 in gastric cancer and whether it can be used as a new and reliable biomarker to predict the prognosis of gastric cancer. For this purpose, we divide the samples into high- and low-expression groups according to the expression level of MAP4K4. The association of MAP4K4 expression with prognosis is assessed using the Kaplan–Meier survival analysis. Furthermore, immune infiltration analysis using ESTIMATE is conducted to evaluate the tumor immune scores of the samples. Results: The findings reveal a significantly higher expression of MAP4K4 in tumor samples than in adjacent samples. The high-expression group was significantly enriched in tumor-related pathways, such as the PI3K-Akt signaling pathway. In addition, immune infiltration analysis revealed a positive correlation between immune scores and MAP4K4 expression. We also observed that miRNAs, such as miR-192-3p (R = −0.317, p-value 3.111 × 10−9), miR-33b-5p (R= −0.238, p-value 1.166 × 10−5), and miR-582-3p (R = −0.214, p-value 8.430 × 10−5), had potential negative regulatory effects on MAP4K4. Moreover, we identified several transcription factors, ubiquitinated proteins, and interacting proteins that might regulate MAP4K4. The relationship between MAP4K4 and DNA methylation was also identified. Finally, we verified the high expression of MAP4K4 and its effect on promoting cancer. Conclusion: MAP4K4 might be closely related to gastric cancer’s progression, invasion, and metastasis. Its high expression negatively impacts the prognosis of gastric cancer patients. This suggests MAP4K4 as an important prognostic factor for gastric cancer and could be regarded as a new potential prognostic detection and therapeutic target.
Collapse
Affiliation(s)
- Junping Zhang
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Xiaoping Cai
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Weifeng Cui
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
- Correspondence:
| |
Collapse
|
7
|
Male-specific coordinated changes in expression of miRNA genes, but not other genes within the DLK1-DIO3 locus in multiple sclerosis. Gene 2022; 836:146676. [PMID: 35714798 DOI: 10.1016/j.gene.2022.146676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
The role of miRNAs, small non-coding regulatory RNAs, in the molecular mechanisms of multiple sclerosis (MS) development has been intensively studied. MiRNAs tend to be clustered within imprinted regions, and the largest number of miRNA genes is observed in the DLK1-DIO3 locus. Earlier using RNA-seq we identified sex-specific upregulation of the set of miRNA genes from this locus in peripheral blood mononuclear cells (PBMC) of treatment-naive relapsing-remitting MS (RRMS) patients. In the present study we set up to independently investigate the expression of a vast array of genes present in the DLK1-DIO3 imprinted locus. First, we analyzed the expression of miRNA genes, which levels in RRMS were mostly inconsistent based on RNA-seq data and not previously explored using qPCR. We identified that all selected miRNAs - miR-337-3p and -665 from 14q32.2 cluster and miR-370c, -380, -494, -654-3p, -300, -539, -668, and -323b-5p - were upregulated in MS men, but not women when compared to controls, regardless of conflicting RNA-seq data. The expression of miRNAs from the DLK1-DIO3 locus was highly correlated, indicating the existence of a common regulatory mechanism(s) that controls miRNA expression, regardless of the position of their genes within this region. Second, we performed the expression analysis of non-miRNA genes within the locus. The genes encoding proteins (DLK1, DIO3, RTL1), long non-coding RNAs (MEG3, MEG8, and MEG9) and small nucleolar RNAs (SNORD112, SNORD113-5, SNORD113-7, SNORD114-3, SNORD114-8, SNORD114-19) were not dysregulated in RRMS both in men and women. DNA methylation analysis of selected CpG sites within the differentially methylated regions IG-DMR, MEG3-DMR, and MEG8-DMR of the DLK1-DIO3 imprinted locus pointed out that they were not involved in the regulation of miRNA gene expression in RRMS, at least in PBMC population. The question of whether the observed changes in expression of miRNA genes (given that there is a constant expression of other non-miRNA genes of the DLK1-DIO3 locus) are involved in the development of RRMS or are they a consequence of the disease progress, remains open and needs further investigation.
Collapse
|
8
|
Nazarenko MS, Koroleva IA, Zarubin AA, Sleptcov AA. miRNA Regulome in Different Atherosclerosis Phenotypes. Mol Biol 2022. [DOI: 10.1134/s0026893322020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu YY, Ding CZ, Chen JL, Wang ZS, Yang B, Wu XM. A Novel Small Molecular Inhibitor of DNMT1 Enhances the Antitumor Effect of Radiofrequency Ablation in Lung Squamous Cell Carcinoma Cells. Front Pharmacol 2022; 13:863339. [PMID: 35401185 PMCID: PMC8983860 DOI: 10.3389/fphar.2022.863339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Radiofrequency ablation (RFA) is a relatively new and effective therapeutic strategy for treating lung squamous cell carcinomas (LSCCs). However, RFA is rarely used in the clinic for LSCC which still suffers from a lack of effective comprehensive treatment strategies. In the present work, we investigate iDNMT, a novel small molecular inhibitor of DNMT1 with a unique structure. In clinical LSCC specimens, endogenous DNMT1 was positively associated with methylation rates of miR-27-3p's promoter. Moreover, endogenous DNMT1 was negatively correlated with miR-27-3p expression which targets PSEN-1, the catalytic subunit of γ-secretase, which mediates the cleavage and activation of the Notch pathway. We found that DNMT1 increased activation of the Notch pathway in clinical LSCC samples while downregulating miR-27-3p expression and hypermethylation of miR-27-3p's promoter. In addition of inhibiting activation of the Notch pathway by repressing methylation of the miR-27-3p promoter, treatment of LSCC cells with iDNMT1 also enhanced the sensitivity of LSCC tumor tissues to RFA treatment. These data suggest that iDNMT-induced inhibition of DNMT-1 enhances miR-27-3p expression in LSCC to inhibit activation of the Notch pathway. Furthermore, the combination of iDNMT and RFA may be a promising therapeutic strategy for LSCC.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Cheng-Zhi Ding
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Jia-Ling Chen
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Zheng-Shuai Wang
- Department of Traditional Chinese Medicine, Zhengzhou Xinhua Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ming Wu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Yuan Y, Jiang X, Tang L, Wang J, Zhang D, Cho WC, Duan L. FOXM1/lncRNA TYMSOS/miR-214-3p–Mediated High Expression of NCAPG Correlates With Poor Prognosis and Cell Proliferation in Non–Small Cell Lung Carcinoma. Front Mol Biosci 2022; 8:785767. [PMID: 35211508 PMCID: PMC8862726 DOI: 10.3389/fmolb.2021.785767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the most common cancer with high mortality. Increasing evidence has demonstrated that nonstructural maintenance of chromosomes condensin I complex subunit G (NCAPG) plays a crucial role in the progression of human cancers. However, the biological function and underlying mechanism of NCAPG in non–small cell lung cancer (NSCLC) are still unclear. Here, we utilized diverse public databases to analyze the expression of NCAPG in pan-cancer. We found that NCAPG was highly expressed in various human cancers, especially in NSCLC. NCAPG expression was significantly positively correlated with poor clinical-pathological features, poor prognosis, tumor mutational burden, DNA microsatellite instability, and immune cell infiltration in NSCLC. In addition, our results showed that depletion of NCAPG significantly inhibited NSCLC cell proliferation, migration, and self-renewal abilities, yet these could be reversed by adding microRNA (miRNA)-214-3p. Knockdown of long noncoding RNA (lncRNA) thymidylate synthetase opposite strand (TYMSOS) also inhibits the NSCLC cell proliferation, migration, and self-renewal abilities. In summary, our findings demonstrated that the crucial roles of the FOXM1/lncRNA-TYMSOS/miRNA-214-3p/NCAPG axis in NSCLC may shed light on how NCAPG may act as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yixiao Yuan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/ Kunming Institute of Zoology, Kunming, China
| | - Lin Tang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Lincan Duan, ; William C. Cho,
| | - Lincan Duan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Lincan Duan, ; William C. Cho,
| |
Collapse
|
11
|
van den Homberg DAL, van der Kwast RVCT, Quax PHA, Nossent AY. N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4. Int J Mol Sci 2022; 23:1057. [PMID: 35162982 PMCID: PMC8835077 DOI: 10.3390/ijms23031057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
N-6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification in eukaryotic cells. The modification is reversible and can be dynamically regulated by writer and eraser enzymes. Alteration in the levels of these enzymes can lead to changes in mRNA stability, alternative splicing or microRNA processing, depending on the m6A-binding proteins. Dynamic regulation of mRNA m6A methylation after ischemia and hypoxia influences mRNA stability, alternative splicing and translation, contributing to heart failure. In this study, we studied vasoactive microRNA m6A methylation in fibroblasts and examined the effect of hypoxia on microRNAs methylation using m6A immunoprecipitation. Of the 19 microRNAs investigated, at least 16 contained m6A in both primary human fibroblasts and a human fibroblast cell line, suggesting vasoactive microRNAs are commonly m6A methylated in fibroblasts. More importantly, we found that mature microRNA m6A levels increased upon subjecting cells to hypoxia. By silencing different m6A writer and eraser enzymes followed by m6A immunoprecipitation, we identified METTL4, an snRNA m6A methyltransferase, to be predominantly responsible for the increase in m6A modification. Moreover, by using m6A-methylated microRNA mimics, we found that microRNA m6A directly affects downstream target mRNA repression efficacy. Our findings highlight the regulatory potential of the emerging field of microRNA modifications.
Collapse
Affiliation(s)
- Daphne A L van den Homberg
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Reginald V C T van der Kwast
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department for Laboratory Medicine, Medical University of Vienna, AT-1090 Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
12
|
Baulina N, Kabaeva A, Boyko A, Favorova O. Expression analysis of miRNAs from the DLK1-DIO3 locus in CD4+ and CD14+ cells in patients with relapsing-remitting multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:52-59. [DOI: 10.17116/jnevro202212207252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet 2021; 29:R107-R116. [PMID: 32592473 DOI: 10.1093/hmg/ddaa133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Temple syndrome (TS) and Kagami-Ogata syndrome (KOS) are imprinting disorders caused by absence or overexpression of genes within a single imprinted cluster on human chromosome 14q32. TS most frequently arises from maternal UPD14 or epimutations/deletions on the paternal chromosome, whereas KOS most frequently arises from paternal UPD14 or epimutations/deletions on the maternal chromosome. In this review, we describe the clinical symptoms and genetic/epigenetic features of this imprinted region. The locus encompasses paternally expressed protein-coding genes (DLK1, RTL1 and DIO3) and maternally expressed lncRNAs (MEG3/GTL2, RTL1as and MEG8), as well as numerous miRNAs and snoRNAs. Control of expression is complex, with three differentially methylated regions regulating germline, placental and tissue-specific transcription. The strong conserved synteny between mouse chromosome 12aF1 and human chromosome 14q32 has enabled the use of mouse models to elucidate imprinting mechanisms and decipher the contribution of genes to the symptoms of TS and KOS. In this review, we describe relevant mouse models and highlight their value to better inform treatment options for long-term management of TS and KOS patients.
Collapse
Affiliation(s)
- Rexxi Prasasya
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen V Grotheer
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Linda D Siracusa
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Collura S, Ciavarella C, Morsiani C, Motta I, Valente S, Gallitto E, Abualhin M, Pini R, Vasuri F, Franceschi C, Capri M, Gargiulo M, Pasquinelli G. MicroRNA profiles of human peripheral arteries and abdominal aorta in normal conditions: MicroRNAs-27a-5p, -139-5p and -155-5p emerge and in atheroma too. Mech Ageing Dev 2021; 198:111547. [PMID: 34329656 DOI: 10.1016/j.mad.2021.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Atherosclerosis may starts early in life and each artery has peculiar characteristics likely affecting atherogenesis. The primary objective of the work was to underpin the microRNA (miR)-profiling differences in human normal femoral, abdominal aortic, and carotid arteries. The secondary aim was to investigate if those identified miRs, differently expressed in normal conditions, may also have a role in atherosclerotic arteries at adult ages. MiR-profiles were performed on normal tissues, revealing that aorta and carotid arteries are more similar than femoral arteries. MiRs emerging from profiling comparisons, i.e., miR-155-5p, -27a-5p, and -139-5p, were subjected to validation by RT-qPCR in normal arteries and also in pathological/atheroma counterparts, considering all the available 20 artery specimens. The three miRs were confirmed to be differentially expressed in normal femoral vs aorta/carotid arteries. Differential expression of those miRs was also observed in atherosclerotic arteries, together with some miR-target proteins, such as vimentin, CD44, E-cadherin and an additional marker SLUG. The different expression of miRs and targets/markers suggests that aorta/carotid and femoral arteries differently activate molecular drivers of pathological condition, thus conditioning the morphology of atheroma in adult life and likely suggesting the future use of artery-specific treatment to counteract atherosclerosis.
Collapse
Affiliation(s)
- Salvatore Collura
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carmen Ciavarella
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Ilenia Motta
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Sabrina Valente
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Enrico Gallitto
- Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Mohammad Abualhin
- Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Rodolfo Pini
- Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Francesco Vasuri
- Unit of Pathology, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Claudio Franceschi
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, Russian Federation
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Center - Alma Mater Research Institute on Global Challenges and Climate Change - University of Bologna, Bologna, Italy
| | - Mauro Gargiulo
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Unit of Vascular Surgery, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| | - Gianandrea Pasquinelli
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Subcellular Nephro-Vascular Diagnostic Program, Pathology Unit, IRCCS, Policlinico S. Orsola Hospital, Bologna, Italy
| |
Collapse
|
15
|
Essential Role of the 14q32 Encoded miRNAs in Endocrine Tumors. Genes (Basel) 2021; 12:genes12050698. [PMID: 34066712 PMCID: PMC8151414 DOI: 10.3390/genes12050698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The 14q32 cluster is among the largest polycistronic miRNA clusters. miRNAs encoded here have been implicated in tumorigenesis of multiple organs including endocrine glands. METHODS Critical review of miRNA studies performed in endocrine tumors have been performed. The potential relevance of 14q32 miRNAs through investigating their targets, and integrating the knowledge provided by literature data and bioinformatics predictions have been indicated. RESULTS Pituitary adenoma, papillary thyroid cancer and a particular subset of pheochromocytoma and adrenocortical cancer are characterized by the downregulation of miRNAs encoded by the 14q32 cluster. Pancreas neuroendocrine tumors, most of the adrenocortical cancer and medullary thyroid cancer are particularly distinct, as 14q32 miRNAs were overexpressed. In pheochromocytoma and growth-hormone producing pituitary adenoma, however, both increased and decreased expression of 14q32 miRNAs cluster members were observed. In the background of this phenomenon methodological, technical and biological factors are hypothesized and discussed. The functions of 14q32 miRNAs were also revealed by bioinformatics and literature data mining. CONCLUSIONS 14q32 miRNAs have a significant role in the tumorigenesis of endocrine organs. Regarding their stable expression in the circulation of healthy individuals, further investigation of 14q32 miRNAs could provide a potential for use as biomarkers (diagnostic or prognostic) in endocrine neoplasms.
Collapse
|
16
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
17
|
Karthika CL, Ahalya S, Radhakrishnan N, Kartha CC, Sumi S. Hemodynamics mediated epigenetic regulators in the pathogenesis of vascular diseases. Mol Cell Biochem 2020; 476:125-143. [PMID: 32844345 DOI: 10.1007/s11010-020-03890-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Endothelium of blood vessels is continuously exposed to various hemodynamic forces. Flow-mediated epigenetic plasticity regulates vascular endothelial function. Recent studies have highlighted the significant role of mechanosensing-related epigenetics in localized endothelial dysfunction and the regional susceptibility for lesions in vascular diseases. In this article, we review the epigenetic mechanisms such as DNA de/methylation, histone modifications, as well as non-coding RNAs in promoting endothelial dysfunction in major arterial and venous diseases, consequent to hemodynamic alterations. We also discuss the current challenges and future prospects for the use of mechanoepigenetic mediators as biomarkers of early stages of vascular diseases and dysregulated mechanosensing-related epigenetic regulators as therapeutic targets in various vascular diseases.
Collapse
Affiliation(s)
- C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - S Ahalya
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - N Radhakrishnan
- St.Thomas Institute of Research on Venous Diseases, Changanassery, Kerala, India
| | - C C Kartha
- Society for Continuing Medical Education & Research (SOCOMER), Kerala Institute of Medical Sciences, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
18
|
Baganha F, de Jong A, Jukema JW, Quax PHA, de Vries MR. The Role of Immunomodulation in Vein Graft Remodeling and Failure. J Cardiovasc Transl Res 2020; 14:100-109. [PMID: 32542547 PMCID: PMC7892738 DOI: 10.1007/s12265-020-10001-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Obstructive arterial disease is a major cause of morbidity and mortality in the developed world. Venous bypass graft surgery is one of the most frequently used revascularization strategies despite its considerable short and long time failure rate. Due to vessel wall remodeling, inflammation, intimal hyperplasia, and accelerated atherosclerosis, vein grafts may (ultimately) fail to revascularize tissues downstream to occlusive atherosclerotic lesions. In the past decades, little has changed in the prevention of vein graft failure (VGF) although new insights in the role of innate and adaptive immunity in VGF have emerged. In this review, we discuss the pathophysiological mechanisms underlying the development of VGF, emphasizing the role of immune response and associated factors related to VG remodeling and failure. Moreover, we discuss potential therapeutic options that can improve patency based on data from both preclinical studies and the latest clinical trials. This review contributes to the insights in the role of immunomodulation in vein graft failure in humans. We describe the effects of immune cells and related factors in early (thrombosis), intermediate (inward remodeling and intimal hyperplasia), and late (intimal hyperplasia and accelerated atherosclerosis) failure based on both preclinical (mouse) models and clinical data.
Collapse
Affiliation(s)
- Fabiana Baganha
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, Aberdeen University, Aberdeen, UK
| | - Alwin de Jong
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
19
|
Goossens EA, de Vries MR, Jukema JW, Quax PH, Nossent AY. Myostatin Inhibits Vascular Smooth Muscle Cell Proliferation and Local 14q32 microRNA Expression, But Not Systemic Inflammation or Restenosis. Int J Mol Sci 2020; 21:E3508. [PMID: 32429150 PMCID: PMC7278907 DOI: 10.3390/ijms21103508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Myostatin is a negative regulator of muscle cell growth and proliferation. Furthermore, myostatin directly affects the expression of 14q32 microRNAs by binding the 14q32 locus. Direct inhibition of 14q32 microRNA miR-495-3p decreased postinterventional restenosis via inhibition of both vascular smooth muscle cell (VSMC) proliferation and local inflammation. Here, we aimed to investigate the effects of myostatin in a mouse model for postinterventional restenosis. In VSMCs in vitro, myostatin led to the dose-specific downregulation of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p. VSMC proliferation was inhibited, where cell migration and viability remained unaffected. In a murine postinterventional restenosis model, myostatin infusion did not decrease restenosis, neointimal area, or lumen stenosis. Myostatin inhibited expression of both proliferation marker PCNA and of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p dose-specifically in cuffed femoral arteries. However, 14q32 microRNA expression remained unaffected in macrophages and macrophage activation as well as macrophage influx into lesions were not decreased. In conclusion, myostatin did not affect postinterventional restenosis. Although myostatin inhibits 14q32 microRNA expression and proliferation in VSMCs, myostatin had no effect on macrophage activation and infiltration. Our findings underline that restenosis is driven by both VSMC proliferation and local inflammation. Targeting only one of these components is insufficient to prevent restenosis.
Collapse
Affiliation(s)
- Eveline A.C. Goossens
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.A.C.G.); (M.R.d.V.)
- Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.A.C.G.); (M.R.d.V.)
- Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Paul H.A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.A.C.G.); (M.R.d.V.)
- Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.A.C.G.); (M.R.d.V.)
- Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
van Ingen E, Foks AC, Kröner MJ, Kuiper J, Quax PHA, Bot I, Nossent AY. Antisense Oligonucleotide Inhibition of MicroRNA-494 Halts Atherosclerotic Plaque Progression and Promotes Plaque Stabilization. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:638-649. [PMID: 31689618 PMCID: PMC6838792 DOI: 10.1016/j.omtn.2019.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022]
Abstract
We have previously shown that third-generation antisense (3GA) inhibition of 14q32 microRNA (miRNA)-494 reduced early development of atherosclerosis. However, patients at risk of atherosclerotic complications generally present with advanced and unstable lesions. Here, we administered 3GAs against 14q32 miRNA-494 (3GA-494), miRNA-329 (3GA-329), or a control (3GA-ctrl) to mice with advanced atherosclerosis. Atherosclerotic plaque formation in LDLr−/− mice was induced by a 10-week high-fat diet and simultaneous carotid artery collar placement. Parallel to 3GA-treatment, hyperlipidemia was normalized by a diet switch to regular chow for an additional 5 weeks. We show that, even though plasma cholesterol levels were normalized after diet switch, carotid artery plaque progression continued in 3GA-ctrl mice. However, treatment with 3GA-494 and, in part, 3GA-329 halted plaque progression. Furthermore, in the aortic root, intra-plaque collagen content was increased in 3GA-494 mice, accompanied by a reduction in the intra-plaque macrophage content. Pro-atherogenic cells in the circulation, including inflammatory Ly6Chi monocytes, neutrophils, and blood platelets, were decreased upon miRNA-329 and miRNA-494 inhibition. Taken together, treatment with 3GA-494, and in part with 3GA-329, halts atherosclerotic plaque progression and promotes stabilization of advanced lesions, which is highly relevant for human atherosclerosis.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Amanda C Foks
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Mara J Kröner
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Johan Kuiper
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Ilze Bot
- Division BioTherapeutics, LACDR, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands; Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|